
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.1

Security Techniques for Mobile Code
SANS Security Essentials (GSEC) Practical Assignment Version 1.4
Nathan Macrides
July 11, 2002

Abstract1.

From a security point of view mobile code entities extend the potential of
(stationary) distributed systems through the possibility of programs being
executed on computers that are often not maintained by the employer of that
program. Here two parties are involved in running a program, and thus
guarantees have to be given that one party will not harm the other. This paper
discusses the various techniques and trust models needed to enforce a level
of security that prevents malicious mobile code from infiltrating and running
on an unsuspecting users system.

Introduction2.

Mobile code is a term used to describe general-purpose executables that run
in remote locations. The concept is not new. Distributed objects have been
an important topic in computer science for years, and several object-based
systems are well established (CORBA, for example). Mobile code is
revolutionary in that Web browsers come with the ability to run general-
purpose executables. The beauty of this is that code can be written once and
run anywhere on any hardware or operating system provided they have a
suitable browser. The ability to run general-purpose code on any machine on
the Internet opens a new world for distributed applications. However, such
potential is implemented at a great cost, especially from the perspective of
security where there is nothing more dangerous than a global, homogenous,
general-purpose interpreter. The implementation of the interpreter as part of a
browser, a large, continuously modified and hence notoriously buggy
software package increases the risks. Especially when you consider that
Internet Explorer is a fundamental part of the Windows family of Operating
systems. In the worst case, mobile code interpreters, with their inherent
bugs, allow an attacker to run native code that is subject to neither
restrictions nor access control on the executing machine. Consequently, by
somehow bypassing any protection mechanisms in place on the client side,
attackers can include malicious machine code in executables and cause it to
be executed.

The dominant platform on the Internet is an Intel PC with Windows NT/2000
or 95/98/ME. Windows 9X provides little protection from native code running
on a machine. In fact, most users keep all their files on the local disk drive in
a way that is completely accessible to manipulation by any program they run.
Even on Unix and NT systems, which were designed with security in mind,
code executed by a user runs with that user’s permissions. This gives the
mobile code interpreter, or virtual machine, potential access to system files

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.2

1 M. Erdos, B. Hartman and M. Mueller, “Security Reference Model for
the Java Developer's Kit 1.0.2,” white paper, Sun Microsystems, Palo Alto, Calif., 1996; available at
http://java.sun.com/security/SRM.html.

2 ibid.

and network connections. There are three practical techniques for securing
mobile code. The first is to limit the privileges of the executable to a small set
of operations; this is the sandbox model. The second technique is to obtain
assurance that the source of the executable is trusted; this is known as code
signing. A hybrid approach that combines these two techniques was
implemented in version 1.2 of Sun’s Java Development Kit and in Netscape’s
Communicator. The third approach is to examine executables as they enter a
trusted domain and to decide whether or how to run them on the client based
on specific executable properties; this is fire-walling. All these approaches
are in widespread use at this time. A fourth technique, called proof-carrying
code, is currently limited to use with assembly language programs written by
the developers of the approach. In this technique, mobile code carries with it
a proof that it satisfies certain properties. In the following sections, we look at
all these approaches in turn, describing them briefly, along with the trust
model that each one assumes.

THE SANDBOX3.

The idea behind the sandbox is to contain mobile code in such a way that it
cannot cause any damage to the executing environment. Usually this
involves restricting file system access and limiting network connectivity. The
Java Virtual Machine, Suns Java interpreter is the most widespread sandbox
implementation, and is found inside Internet browsers. 1

Sun has several security policies, and gives classifications of their execution
environments. Applications that implement these policies correctly are said
to be secure. Obviously, this is dependent on the policy not being flawed or
inconsistent. An excellent overview of the fundamental security requirements
of the Java environment is provided by the JDK (Java Development Kit) 1.0.2
Security Reference Model. 2

Three main components secure the Java interpreter:

the class loader, •
the verifier, •
and the security manager. •

The Class Loader is a special Java object that converts remote bytecodes
into data structures representing Java classes. Classes loaded from the
network require an associated class loader that is they are required to be a
subtype of Classloader class. Therefore to add a remote class to a machines
local class hierarchy the class loader must be used. In addition, the class
loader creates a name space for the downloaded code and resolves classes

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.3

3 Joseph A. Bank, “Java Security”, MIT., 1995, available at
http://www-swiss.ai.mit.edu/~jbank/javapaper/javapaper.html

against the local name space. Local names are always given priority, so
remote classes cannot overwrite local names. Without this restriction, an
applet could redefine the class loader itself.

The Verifier performs static checking on the remote code before it is loaded.

It checks that the remote code

is valid virtual machine code, •
does not overflow or underflow the operand stack, •
does not use registers improperly, •
and does not convert data types illegally. •

These checks attempt to verify that remote code cannot forge pointers or
access arbitrary memory locations. This is important because if an applet
could access memory in an unrestricted fashion, it could run native machine
code on the client machine—an ultimate hacker goal and the definition of
disaster. 3

The Security Manager has been used since JDK 1.0 and in all sandbox
implementations. This provides downloaded classes flexible access to
potentially dangerous system resources, unlike local classes, which are
unrestricted.

Operations are classified as safe or potentially harmful by the Class loader.
Safe operations are always allowed, but potentially harmful ones cause an
exception and defer a decision to the security manager. In effect, the security
manager classes represent a security policy for remote applets.

Public boolean XXX(Type arg1)
{

SecurityManager security = System.getSecurityManager();
if (security != null) {

security.checkXXX(arg1);

}

Figure 1. Code segment demonstrating how the Java interpreter’s
security manager works: A public method call invokes the system
manager, which determines whether the operation XXX is allowed.

Figure 1 shows how the security manager is invoked when a caller attempts
to execute a method that is restricted by the security policy. A call to a public
method, results in the security manager checking to ensure such a method is
allowed to run. If the call is not allowed, the security manager throws a
security exception. If it is allowed, then the security manager calls a private
method, which actually performs the operation. Thus, a system administrator
or browser developer can control an applet’s access to resources by
changing the Security Manager. 4

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.4

4 Bank, op. cit.

5 D. Dean, E. W. Felten and D. Wallach, “Java Security: From HotJava to Netscape and Beyond”, Proceedings of
1996 IEEE Symposium on Security and Privacy (Oakland, California), May 1996; available at
http://www.cs.princeton.edu/sip/pub/secure96.php3

6 ibid.

7 Microsoft Corp, “Microsoft Security Bulletin MS02-013. 04 March 2002 Cumulative VM Update”, Microsoft TechNet,
March 18, 2002; available at http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS02-
013.asp

8 ibid.

The Java sandboxes biggest problem is that an error in any security component can
lead to a violation of security policy. The complexity of interaction between
components heightens the risks. For example, if the class loader has
incorrectly identified a class as local, the security manager might not apply
the right verifications.

There have been repeated examples of shortcomings in the Netscape
Navigator and Internet Explorer interpreters. Two types of applets cause most
of the problems. Attack applets try to exploit software bugs in the client’s
virtual machine; they have been shown to successfully break the type safety
of the JDK’s since version 1.0 and to cause buffer overflows in Hotjava.5

These are the most dangerous. Malicious applets are designed to
monopolize resources, and cause inconvenience rather than actual loss.6

Examples of such shortcoming in the Microsoft Internet Explorer browser
have been discovered recently. Microsoft release a security bulletin on March
4, 2002, outlining vulnerabilities in the Microsoft Java VM (Virtual Machine)
that affected how Java requests for proxy resources are handled. A malicious
Java applet could exploit this flaw to re-direct web traffic once it has left the
proxy server to a destination of the attacker’s choice. 7

The attacker could then:

Forward the information on to the intended destination, giving the •
appearance that the session was behaving normally.
Send his own malicious response, making it seem to come from the •
intended destination, or could discard the session information,
creating the impression of a denial of service
The attacker could capture and save the user’s session information. •
This could enable him to execute a replay attack or to search for
sensitive information such as user names or passwords. 8

The second vulnerability is a problem with the security checks on casting
operations (allows casting of data types by the Java language) within the VM.
A vulnerability results because it is possible for an attacker to exploit this flaw
and use it to execute code outside of the sandbox. This code would execute
as in the context of the user, and would only be limited by those constraints

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.5

10 Bank, op. cit.

11 Microsoft Corp, “MSDN – Creating, Viewing, and Managing Certificates” , MSDN Library May 2002, available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/security/Security/creating_viewing_and_managing_certificates.asp

9 Microsoft Corp, “Microsoft Security Bulletin MS02-013. 04 March 2002 Cumulative VM Update”, op cit.

which govern the user.9

More examples of attacks caused by malicious code are:

Integrity Attacks
Deletion/Modification of files. •
Modification of memory currently in use. •
Killing processes/threads. •

DOS Attacks
Allocating large amounts of memory. •
Creating thousands of windows. •
Creating high priority processes/threads. •
Remote DOS attacks on machines.•

Disclosure Attacks
Mailing information about your machine (i.e. /etc/passwd). •
Sending personal or company files to an adversary or competitor over •
the network.

Annoyance Attacks
Displaying obscene pictures on your screen. •
Playing unwanted sounds over your computer. 10•

Overall something is said to be trusted if it is believed that it will behave
correctly. Java does not involve trust except as a function of the design of the
sandbox; it does not address matters of trust in the distant author of the
applet. The trust model is therefore that the sandbox is trustworthy in its
design and implementation but mobile code is universally untrustworthy.

CODE SIGNING4.

In code signing, the client manages a list of entities that it trusts. The client
verifies that the mobile code it has received was signed by an entity on the
list. Once verified the code is executed, usually with the full rights of the user
executing it. Microsoft uses a system called Authenticode to determine if the
ActiveX content is trusted and should be run with full privileges, or not at all.
11

There is a problem with this system, which can render ActiveX useless. A
malicious ActiveX control could modify the policy; usually this is stored in a
text file on a user’s machine. The new policy can then enable the acceptance
of all ActiveX content. In fact legitimate ActiveX content has allowed
malicious code to run because it has access to the entire system. Such
attacks have been demonstrated.12

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.6

12 D. Hopwood, “A Comparison between Java and ActiveX Security”, Network Security; available at
http://www.users.zetnet.co.uk/hopwood/papers/compsec97.html

13 M. Erdos, B. Hartman and M. Mueller, op cit.

14 M. Erdos, B. Hartman and M. Mueller, op cit.

15 D. Hopwood, op cit.

More problems with signed code exist. Examples include delayed attacks from
installed ActiveX content. The attack cannot be traced back to an Active control run
in the past. Code signing works on a trust model that assumes that
trustworthy and untrustworthy authors of mobile code can be distinguished
and those authors are incorruptible.

HYBRID: SANBOXES & SIGNATURES5.

A hybrid scheme attempts to merge the benefits of the sandbox model with
code signing.

In the JDK 1.1, a digitally signed applet is treated as trusted local code if the
signature key is recognized as trusted by the client system that receives it.
That is upon downloading an applet; the client consults a policy table of all
signed applets to determine if the signer is trusted. The class loader then
tags the applet as local if the applet is trusted, therefore giving the applet
access to all system resources. Functionality such as file system access and
network connectivity, that are usually restricted by the sandbox are enabled.
Consequently the same security issues inherent in ActiveX code signing are
introduced. 13

Because of the limitations of the JDK 1.1 approach JDK 1.2 introduced a
flexible approach that subjects all classes local, signed, remote or unsigned
to access control decisions. Access to client resources is defined through a
security policy. Such a security mechanism allows for an extensible
architecture. The result is an environment that users can fine-tune to meet
their functionality-to-security trade-off and allows signed code to run with
different privileges based on the key that is used. 14

One such example of this is JAR signing. The JAR file format is a convention
for storing Java classes and other resources that may be signed. The format
allows the contained files to be signed by different principals. This allows
different people to sign different classes inside the JAR file. Consequently an
attacker could add unsigned classes to a JAR, and use them to exploit the
signed classes in an effort to break security. A successful attack of this kind
is dependent on the care taken by the class writer to ensure that his/her code
cannot be exploited. The problem therefore lies in ensuring that if a large
number of signed controls are produced, that they are bug free, an almost
impossible task. 15

As discussed in section 4 (Code Signing), Microsoft uses a system called

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.7

17 Microsoft Corp, “INFO: Steps for Signing a .cab File (Q247257)” , MSDN Library July 2000, available at
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q247257

16 Microsoft Corp, “MSDN – Creating, Viewing, and Managing Certificates”, op cit.

Authenticode to determine if the ActiveX content is trusted and should be run with
full privileges, or not at all.16 A CAB (short for cabinet file) file containing Java
classes can be signed using Authenticode. CAB signing is similar to JAR
signing, in that the CAB is a convention for storing either Java classes or
ActiveX controls. While CAB files are usually signed by both trusted sources,
test keys can be generated by virtually anyone with the right tools. A test
certificate can then be generated from the key and used to sign the CAB.
Once signed with a test certificate and the CAB downloaded and accepted
by the client, the applet has full access to all client resources.17 Being a
generated test certificate client users are told that the certificate is from an
untrustworthy source and prompted to accept or reject the code. Most people
are tricked into accepting and so unwittingly and without thinking the
malicious code is executed.

The necessary tools for signing a CAB file are available at

http://msdn.microsoft.com/MSDN-FILES/027/000/219/codesign.exe

The Figure 2 shows the steps performed in signing a CAB file with a test
certificate using a batch file.

@echo off

rem Create a new test key
makecert -sk testkey -n "CN=Nathan says that you must click on YES below." testcert.cer

rem Convert to a software publishers certificate
cert2spc testcert.cer testcert.spc

rem Create the CAB file with the java class files
cabarc n myapplet.cab *.class

rem Sign and timestamp the CAB file
signcode -spc testcert.spc -k testkey myapplet.cab

Figure 2. Batch file demonstrating how to sign a CAB file using a test certificate.

The trust model for current hybrid approaches is that all code is untrustworthy
except for code from a trustworthy supplier who, once identified, is
incorruptible.

FIREWALLING6.

Firewalling takes the approach of selectively choosing whether or not to run a
program at the point where it enters the client domain. Organisations running
a firewall or Web proxy may try to identify Java applets, analyse them, and
decide whether or not to serve them to the client. Research has shown that
this it is not always easy to do.18

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.8

18 D. Martin, S. Rajagopalan, and A.D. Rubin, “Blocking Java Applets at the Firewall,” Proc. Internet Society Symp.
Network and Distributed System Security, 1997; available online at http://www.cs.bu.edu/~dm/pubs/java-firewalls.pdf.

19 M.E. Davis and E.J. Weyuker, “Computability, Complexity,and Languages”, Academic Press, New York, 1983.

20 D. Malkhi, M.K. Reiter, and A.D. Rubin, “Secure Execution of Java Applets Using a Remote Playground,” Proc.
IEEE Computer Society Symp. Research in Security and Privacy, IEEE CS Press, Los Alamitos, Calif., 1998, pp. 40-
51. Available at
http://citeseer.nj.nec.com/cache/papers/cs/14965/http:zSzzSzwww.avirubin.comzSzplayground.pdf/malkhi98secure.pdf

21 D. Malkhi, M.K. Reiter, and A.D. Rubin, op cit.

Finjan Software (http://www.finjan.com) has several products that attempt to
identify applets and then examine them for security properties. Only applets
that are deemed safe are allowed to run. Unfortunately, this company uses
proprietary techniques, so the mechanisms by which they operate are not
known. This approach is fundamentally limited, however, by the halting
problem,19 which states that there is no general-purpose algorithm that can
determine the behaviour of an arbitrary program.

Another approach is taken by Malkhi et al.20 (developed independently and
marketed by Digitivity Inc.) where Java applets are divided into graphics
actions and all other actions. The former run on the client machine; the latter
run on a sacrificial playground machine.

Figure 3. The playground architecture separates Java classes that prescribe graphics
actions from those prescribing all other actions. The former are loaded on the client machine;
the latter are loaded on a sacrificial playground machine.21

Figure 3 shows how the playground works.

Step 1: When a browser requests a Web page, the request is sent to a proxy.

Step 2: The proxy forwards the request to the end server.

Step 3: The requested page is received. As the page is received, the proxy
parses it to identify all <applet> tags and, for each <applet> tag so identified,
replaces the named applet with the name of a trusted graphics server applet
stored locally to the browser.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.9

22 ibid.

23 Andrew W. Appel, Edward W. Felten, Zhong Shao, “Scaling Proof-Carrying Code to Production Compilers and
Security Policies”, Princeton University 2002, available at http://www.cs.princeton.edu/sip/projects/pcc/whitepaper/

Step 4: The proxy sends this modified page back to the browser.

Step 5: The browser then loads the graphics server applet.

Step 6: For each <applet> tag the proxy identified, the proxy retrieves the
named applet and modifies its bytecode to use the graphics server in the
requesting browser for all input and output.

Steps 7 & 8: the proxy forwards the modified applet to the playground. It is
the executed using the graphics server in the browser as an I/O terminal. The
untrustworthy and dangerous mobile code is run where it has no access to
meaningful resources. The small graphics package is trusted by the
playground architecture because it is easy to analyse and well enough
understood to trust. Due to the need for the playground to modify the
bytecode, code signing techniques cannot be used in conjunction with it.22

PROOF-CARRYING CODE7.

The technique of Proof Carrying Code (PCC) involves statically checking
untrustworthy code to make sure it does not violate some safety policies.
Typically, the receiver of the code defines a set of safety rules that guarantee
safe behaviour of programs. The developer of the untrustworthy code also
constructs a safety proof that adheres to the safety rules. The code is then
validated, simply and efficiently proving that it is safe for execution. However,
there are properties related to information flow and confidentiality that can
never be proved in this way. PCC’s trust model may change in the future,
because it is still very much in the stages of research and development. It
can be said that the verifier’s implementation is trustworthy and that mobile
code is considered universally untrustworthy.23

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.10

CONCLUSIONS8.

All of the techniques discussed in this paper offer different approaches to
combating malicious mobile code. However the best approach is probably a
combination of security mechanisms. The sandbox and code signing
approaches are already hybridized. Combining these with firewalling
techniques such as the playground gives an extra layer of security. PCC is
still very much in the research and development phase at present. However
the ability to prove the safety properties of code is an important weapon in
the fight to securing mobile code. Diligence is also needed on the part of
systems administrators. They need to be aware of any exploits and bugs that
could be exploited by mobile code. Consequently any fixes supplied by the
software vendors should be applied as soon as possible to maintain security.

None of these measures can do much to protect users from social
engineering attacks. Users can be fooled into revealing something that they
shouldn’t. Passwords could be revealed with the use of JavaScript or even
Java applets and then sent to remote server. The strictest of security policies
will not be able to prevent such an attack. Educating users in social
engineering attacks based around mobile code is usually the best way to
prevent a security breach.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.11

REFERENCES9.

M. Erdos, B. Hartman and M. Mueller, “Security Reference Model for the Java 1.
Developer's Kit 1.0.2,” white paper, Sun Microsystems, Palo Alto, Calif., 1996;
available at http://java.sun.com/security/SRM.html.

Joseph A. Bank, “Java Security”, MIT., 1995, available at http://www-2.
swiss.ai.mit.edu/~jbank/javapaper/javapaper.html

D. Dean, E. W. Felten and D. Wallach, “Java Security: From HotJava to Netscape 3.
and Beyond”, Proceedings of 1996 IEEE Symposium on Security and Privacy
(Oakland,California), May 1996; available at
http://www.cs.princeton.edu/sip/pub/secure96.php3

Microsoft Corp, “Microsoft Security Bulletin MS02-013. 04 March 2002 Cumulative 4.
VM Update”, Microsoft TechNet, March 18, 2002; available at
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/
MS02-013.asp

Microsoft Corp, “MSDN – Creating, Viewing, and Managing Certificates” , MSDN 5.
Library May 2002; available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/security/Security/creating_viewing_and_managing_certificates.asp

D. Hopwood, “A Comparison between Java and ActiveX Security”, Network 6.
Security; available at
http://www.users.zetnet.co.uk/hopwood/papers/compsec97.html

Microsoft Corp, “INFO: Steps for Signing a .cab File (Q247257)” , MSDN Library July 7.
2000; available at http://support.microsoft.com/default.aspx?scid=kb;EN-US;q247257

D. Martin, S. Rajagopalan, and A.D. Rubin, “Blocking Java Applets at the Firewall,”8.
Proc. Internet Society Symp. Network and Distributed System Security, 1997;
available online at http://www.cs.bu.edu/~dm/pubs/java-firewalls.pdf.

M.E. Davis and E.J. Weyuker, “Computability, Complexity,and Languages”, 9.
Academic Press, New York, 1983.

D. Malkhi, M.K. Reiter, and A.D. Rubin, “Secure Execution of Java Applets Using a 10.
Remote Playground,” Proc. IEEE Computer Society Symp. Research in Security and
Privacy, IEEE CS Press, Los Alamitos, Calif., 1998, pp. 40-51. Available at
http://citeseer.nj.nec.com/cache/papers/cs/14965/http:zSzzSzwww.avirubin.comzSzpl
ayground.pdf/malkhi98secure.pdf

Andrew W. Appel, Edward W. Felten, Zhong Shao, “Scaling Proof-Carrying Code to 11.
Production Compilers and Security Policies”, Princeton University 2002, available at
http://www.cs.princeton.edu/sip/projects/pcc/whitepaper/

