
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

State maintenance in Web applications
Jeni Li
July 24, 2002
GSEC v1.4, option 1

Abstract

As each transaction between Web client and Web server occurs in a stateless
environment, state must somehow be passed from one transaction to the next in
a Web application. State maintenance is one of the major vulnerabilities in Web
applications and application environments today, whether commercial, open-
source, or home-grown. Flawed state maintenance techniques can leave an
application vulnerable to user impersonation, unauthorized data access, or
outright systems compromise.

This paper will provide an overview of the four basic methods for keeping state in
Web applications (in the URL, in hidden form fields, in cookies, and on the server
side), discuss security considerations in using these methods, and offer some
recommendations for keeping state securely.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1 Introduction

In a survey of 45 Web applications in production at client companies, @stake
researchers found that 31% of e-commerce applications examined were
vulnerable to session replay or hijacking -- the highest incidence of Web
application security defects encountered in the study. @stake's Andrew Jaquith
(2002) comments, "user session security remains the Achilles heel of most e-
business applications."

State maintenance (also known as session maintenance, or session state) is a
familiar issue for Web programmers. HTTP is a stateless protocol (Fielding et al,
1999). For our purpose, this means that each transaction between Web client
and Web server occurs in a brand-new environment with no recollection of
previous transactions. For any reasonably complex Web application, this means
that state must somehow be passed from one transaction to the next.

This paper will provide an overview of the four basic methods for keeping state in
Web applications. It will then discuss security considerations in using these
methods and offer some recommendations for keeping state securely.

Some Web application development packages (both commercial and open
source) provide state maintenance mechanisms to assist the developer. These
mechanisms are simply black-box functions of the same basic state maintenance
methods, and the application developer is well advised to examine such
functions before relying on them for application security.

2 State maintenance methods

There are four basic ways to keep state in Web applications:
§ pass it in the URL
§ pass it in hidden form fields
§ set a cookie
§ keep it on the server side

Even in the case of server-side state maintenance, the session state is still
maintained and reported by the client; the difference is that the application gives
the client a session id and stores the rest of the state data on the server side,
associated with the session id. These are also the only options available to
application environments (e.g., ASP, php, ColdFusion) that offer the programmer
a black-box approach such as a Session object. Really.

2.1 In the URL (path info or query string)

If you've used a popular search engine such as Yahoo or Google, you are
familiar with state passed in the URL. The technique is simple: State information
is tacked onto the URL after the file location, preceded by a slash (known as path
info) or a question mark (known as the query string). An example URL containing
state data is shown below:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://somesite.com/somescript.cgi?var1=foo&var2=bar

In a CGI application, this information is available in environment variables
(PATH_INFO and QUERY_STRING) created by the Web server. In ASP and
similar development environments, the information is available as properties of a
Request object or similar construct. Web applications can pass information in this
way by redirecting the browser to the new URL (e.g., with a Location header) or
through form submission using the GET method.

Passing state in the URL is handy for some applications. A particular session
state can be bookmarked, or called from other sites. The technique will work with
absolutely any browser (but it should be noted that use of the "Back" button can
be a serious problem with this technique, as state will be lost by backtracking
through the URL history).

On the other hand, state data in the URL can be easily detected, modified, and
reposted... and therefore faked. It may also be exposed in the URL history on the
client machine, and in the access logs of proxy servers and Web servers.

2.2 Hidden form fields

Passing state in hidden form fields should work with any browser that supports
forms. State passed in hidden form fields will be treated as the query string if the
form method is GET, or as standard input if the form method is POST. Using
hidden form fields with the POST method generally looks prettier than passing
state in the URL. An example HTML tag indicating a hidden form field is shown
below.

<input type="hidden" name="var3" value="foobar">

Those form fields aren't totally hidden, of course; the fields are visible by viewing
the HTML source. And the form can be copied, modified locally, and reposted.
Web programmers may try to work around this issue by checking the Referer
header (in CGI, the HTTP_REFERER environment variable) to verify that it
contains the URL of the form they expect to call their application. This is a
mistake (Stein, 1998). The Referer header is reported by the browser; it can
therefore be forged using browser proxy tools such as WebProxy (Swiderski,
2002, in software references) and RFProxy (Rain Forest Puppy, 2001, in
software references) -- or even by simply telnetting to the appropriate port on the
Web server (usually port 80) and entering HTTP headers and commands by
hand.

2.3 Cookies

Cookies are pieces of information saved in memory and/or a text file on the
browsing machine as directed by the server. On replying to a request from the
client, the Web application returns a Set-Cookie header containing session
information. This instructs the client software to return a Cookie header

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

containing the same session information to the domain and path specified by the
Web application when making future requests.

Timeouts can be set on cookies, assuming the browser complies. If a timeout is
set, the cookie is written to disk; this means the state information can persist
across browser sessions on a given machine. If no timeout is set, the cookie
remains in memory and becomes unavailable after the browser is closed.

The Set-Cookie header in common use is formatted as follows (Netscape, 1995):

Set-Cookie: NAME=VALUE; expires=Wdy, DD-Mon-YYYY
HH:MM:SS GMT; Path=PATH; Domain=DOMAIN_NAME; Secure

NAME and VALUE are the name and value, respectively, of the state information
(e.g, a variable) as specified by the Web application. All other parameters are
optional. The expires parameter sets a timeout as mentioned above, based on
the time according to the client machine. The Domain and Path parameters
specify request conditions (host names and file locations, respectively) under
which the client software will send a Cookie header. The Secure parameter
means that the client will send the Cookie header only when the connection is
SSL-encrypted or otherwise deemed by the client to be secure.

Note: The specification given here is an ad-hoc standard developed by Netscape
Corp. The proposed standard for cookies varies somewhat from this use; in
particular, the fixed expiration time is replaced with an optional "Max-Age"
parameter indicating the maximum age of the cookie in seconds. Details of this
can be found in IETF RFC2965 (Kristol & Montulli, 2000).

Cookies are not immediately visible to the user; however, it is possible to view
and/or change them. Cookies are not supported by all browsers, but are
supported by most browsers in use today. However, many users are suspicious
of them (due to privacy concerns over targeted marketing à la DoubleClick and
similar applications) and will turn them off.

Cookies are commonly considered to be fairly secure and unchangeable;
however, a modified browser or browser proxy such as WebProxy (Swiderski,
2002) or RFProxy (Rain Forest Puppy, 2001) would readily report any cookie
desired to any domain desired.

2.4 Server-side state

Instead of storing the data on the client, a session ID is stored on the client using
one of the previously described techniques. The data are stored on the server
side (e.g., in a temporary file or database table) and associated with the session
ID. Using server-side state maintenance, a session might still be hijacked, but the
state data can’t be faked without compromising the data source. Nor is server-
side state data accessible in access logs or client history.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Keeping state data on the server side is generally considered the safest and
most appropriate technique when handling information of a sensitive nature.

3 Security considerations

State-related threats to Web application security include:
• state forgery (falsification of state data on submission)
• session forgery (guessing and impersonating a valid session)
• session replay and hijacking (detecting and impersonating a valid session)
• malicious input (specially formatted input designed to compromise the

application)
• "session residue" on public clients (leading to potential session replay

and/or compromise of sensitive user information)

This section will discuss these threats and countermeasures against them.

3.1 State forgery

State variables reported by the client are subject to falsification. For example, a
user may modify state data in the URL and resubmit the request, or post a locally
saved copy of an HTML form with modified hidden form fields. As previously
mentioned, the user can modify state data passed in cookies as well.

Many shopping cart applications (both free and commercial) have displayed
classic state falsification vulnerabilities, allowing users to modify product prices
and quantities before submitting order forms (ISS X-Force, 2000). In applications
such as Mambo Site Server 3.0.x (Miro Pty., Ltd., 2001, in software references),
which set a generic "authenticated" or "admin" variable, state falsification may be
used to bypass user authentication and gain administrative privileges within the
application (Palomo, 2001).

Countermeasures against state forgery include the following:
• Keep state data on the server side.
• Verify client-side state data with a hash.
• Avoid relying on global variables, or at least make sure they're explicit.

3.1.1 Keep state data on the server side
As mentioned above, in this case the browser maintains only a session id. The
session id is related to relevant state data on the server side -- as a unique key in
a database table, for example.

Some Web applications using server-side state maintenance have attempted to
use the client IP address to identify a client’s session. This is a mistake. Given
the use of proxy servers by major ISPs such as America Online and major
corporations such as Motorola, client IP addresses are neither unique nor
consistent.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Additional care must be taken when using server-side state maintenance with
multiple, load-balanced servers, as in a Web farm. Depending on the Web farm's
configuration, it may be possible for a single user session to begin on one server
but continue on a different server. Therefore, state data should not be kept on
local disk on each server, as this could result in a session losing state partway
through a transaction. State data may instead be kept in a file or database
accessible to all servers in the farm, or in some similar construct. This raises
another issue: With multiple servers writing state data to the same source, race
conditions may occur if file locking is not handled appropriately.

3.1.2 Verify client-side state data with a hash
Stein (1998) suggested a workaround for verifying state information that is stored
on the client side: Before passing state data to the client, generate an MD5 hash
of all critical state variables (e.g., product prices and quantities in the shopping
cart example) plus a hash key known only to the application, and pass the hash
as well. On receiving subsequent requests from the client, the application can
regenerate the hash from the reported critical variables and the secret hash key.
If the regenerated hash is different from the reported hash, then the variables
have been tampered with and the application can handle that condition
accordingly (e.g., reject the session as invalid and/or log the tampering attempt).

This is a reasonable workaround, especially if the secret hash key can be
changed regularly (e.g., daily), but server-side state maintenance is still a more
reliable safeguard against falsification of state data.

3.1.3 Avoid relying on global variables, or at least make sure they're explicitly
set

The Mambo Site Server 3.0.x vulnerability (Palomo, 2001) may serve to illustrate
this problem and the countermeasure. In vulnerable versions, a login page would
check the login credentials entered by the user. If the user successfully
authenticated as an application administrator, the login page would set a global
variable indicating administrative privileges and pass control to a separate page.
The second page did not check user credentials, but relied on the global variable
for authorization. Unfortunately, the second page could be called directly with the
global variable set in the URL, bypassing user authentication altogether.

The countermeasure in this case is straightforward: Don't do that. Any global
variables used in the application should always be set explicitly by the
application; however, it is better to avoid using them altogether (Rafail, 2001).
Depending on the Web application environment, there may also be some
configuration options to safeguard against this problem.

3.2 Session forgery

Session forgery is really state forgery using a session id. By passing a different
session identifier to the Web application, the attacker hopes to assume the
identity of a legitimate user and conduct application transactions as that user.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Applications are susceptible to session forgery when they rely on predictable
session identifiers to validate users. A "predictable" session id may be derived
from user information (e.g., account numbers) or an obvious id generation
algorithm (e.g., numbers or strings that follow a predictable sequence). For
example, a commercial fax server application included a Web client that
generated session ids according to a set pattern. Knowing one session id, a user
could guess other session ids and use those ids to access other users' faxes and
documents (Torres, 2000).

Countermeasures against session forgery include the following:
• Generate random, complex session identifiers.
• Enforce session timeouts.

3.2.1 Generate random, complex session identifiers
Valid session ids should not be easily guessed or inferred from the id of an active
session. Account numbers, userids, and sequential numbers are examples of
Really Bad Session Ids. A good session id has nothing to do with the user or the
state of the session, aside from being related on the server side; it is long,
complex, and truly random.

"Truly random" deserves passing mention here. If session ids are generated
using randomizing functions, but are predictable, then they are not truly random.
Ensuring randomness is outside the scope of this paper; however, further
information can be found in Eastlake et al (1994).

3.2.2 Enforce session timeouts
By restricting the time a session id is valid, the Web application can reduce an
attacker's opportunity to forge a valid session. If a given transaction is expected
to take ten minutes to complete, for example, session ids may be expired after
ten (or perhaps fifteen) minutes. A measure of flexibility can be attained by
tinkering with the time limit, or even renewing a session's validity with each
legitimate hit.

Sessions should be timed out according to timestamps generated on the server
side and saved with each session, not according to expiration times on the client
(e.g., a cookie expiration timestamp). In this way, a session that has timed out
cannot be "resuscitated" by forging a cookie header. Depending on the design of
the application, some garbage collection may be necessary to purge expired
sessions.

Why expire sessions based on the server's time and not the client's? Aside from
the question of trusting the client to respect the time limit, time zone issues on
the client side may render the application unusable. For example, this author's
employer in Arizona deployed a Web application with a session timeout of ten
minutes. In addition to timing out sessions on the server side, the application
specified cookies with expiration dates in GMT (the time zone required by the
Netscape cookie spec). The application rolled out without problems in February;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

however, in April, many users complained that the site didn't work. After much
head-scratching and many failed attempts to recreate the problem, it dawned on
a programmer that the users with problems had computers set to the Pacific time
zone -- which had just switched to Daylight Savings Time, which Arizona does
not observe. The cookies were being expired before they were set.

3.3 Session replay and hijacking

Using sniffing or cross-site scripting, a malicious third party may obtain a
legitimate user's session id and use that id to impersonate the user (Kolsek,
2000). A malicious third party may also take advantage of application design
flaws such as race conditions in state table maintenance (Phuzzy L0gic, 2001).

Local users on a Web system may have additional opportunities to detect and
forge valid session ids, depending on the architecture and configuration of
applications and their environments. For example, the state maintenance
functionality built into php 4.x writes session ids into the /tmp directory by default
(Lorch, 2002). By browsing this directory, any local user could detect current
session ids and use them in a session hijacking attempt. This may be of
particular concern in multi-user commercial Web hosting environments.

Countermeasures against session replay and hijacking include the following:
• Use SSL.
• Enforce session timeouts.

3.3.1 Use SSL
To avoid session id detection through sniffing, use SSL to encrypt the session
whether the transmitted information is sensitive or not (Jaquith, 2002).

As a corollary to this, if session ids are passed as cookies, the cookies should be
specified using the "secure" parameter. If the "secure" parameter is omitted, the
browser will send the same session id to the server via both encrypted and
unencrypted sessions. This may allow cross-site scripting exploits to obtain a
session id (Kolsek, 2000).

3.3.2 Enforce session timeouts
This countermeasure has been discussed above. Enforcing reasonable session
timeouts on the server side can reduce the effectiveness of sniffing exploits
involving, say, sending the user a malicious email message containing HTML
that invokes an unencrypted connection to the target server when the message is
opened or previewed (Kolsek, 2000).

3.4 Malicious input

Session ids and state data should be treated as any other user input. It cannot be
assumed that the client will report session data as it was set by the application. A
malicious user may attempt to compromise a Web application by modifying

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

session data. This includes not only user input to a form, but any information
reported by the client machine -- cookies, referring URLs, browser identification
strings, et cetera. An application relying on any of this information may be
susceptible to buffer overflows, SQL injection, or any of the usual malicious-input
exploits.

Depending on the application and server configuration, SQL injection and other
malicious input exploits may be used to bypass user authentication, access user
data (including login credentials and account information), insert or modify
existing user data, or even execute arbitrary stored procedures or system
commands in a privileged context (Rain Forest Puppy, 1999; Rain Forest Puppy,
2001; SK, 2002; Yamazaki, 2002).

Countermeasures against malicious input include the following:
• Untaint and validate session ids and state data.
• Beware buffer overflow.

3.4.1 Untaint and validate session ids and state data
All user input and other information reported by the browser should be untainted
and validated before it is used. There are two approaches to untainting input,
which we may call positive and negative. The positive untainting approach
specifies the format or structure of a well-formed input string and accepts nothing
else. The negative untainting approach specifies invalid characters and looks for
them in the input string, rejecting them (or the entire string) if any are found. The
positive approach is preferred. In most cases, we may not know every type of evil
input that could break an application, but we do know what types of input are
good and expected (CERT Coordination Center, 1999).

Much has been written on this topic, and it is somewhat outside the scope of this
paper; however, the topic is critical to the security of any Web application. For
further reference on this topic, see Stein & Stewart (2002) and Rain Forest
Puppy (1999).

3.4.2 Beware buffer overflow
Avoid static memory allocation and check content length. This may be an
argument for using hidden form fields and the POST method, as the length of
posted input is available in the CGI environment variable CONTENT_LENGTH.
By checking this variable, the application can determine the length of the posted
data before handling the input.

3.5 "Session residue" on public clients

In the case of a kiosk or public-access client (e.g., in a library, computer lab, or
"Internet café"), information remaining on the computer after a session may be a
vulnerability. After the user walks away from the public client, a new user may
view cached pages, URL history, and cookies on the disk. In this way, the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

original user's personal information may be compromised, and the potential for
session replay is introduced.

This can be especially problematic if valid, active session ids or authentication
credentials remain on the client after the session is over. A commercial travel
booking Web portal was recently found to store userids and passwords in
cookies in clear text (Sutton, 2002). While a session might be encrypted and
therefore safe from sniffing attacks, an attacker with physical access to the
machine could obtain authentication credentials by simply viewing the cookie, a
process that is as simple as opening a text file on the disk.

Countermeasures against "session residue" on public clients include the
following:

• Enforce session timeouts.
• Encrypt any authentication credentials that must be stored on the client.
• Avoid GET method and passing session ids in the URL.
• If using cookies, use only per-session cookies.
• Use non-caching directives.

3.5.1 Enforce session timeouts
This countermeasure has been discussed above. Enforcing reasonable session
timeouts on the server side can reduce the risk of a new user exploiting a
previous user's session, simply by limiting the time period during which the
session is valid.

3.5.2 Encrypt any authentication credentials that must be stored on the client
The better approach, of course, is never to store authentication credentials on
the client machine (e.g., in a cookie). However, user convenience may trump
security considerations in some cases, as when users would like to have a
"remember my id and password" function in an application. In this case, such
credentials should be encrypted rather than stored in plain text (Sutton, 2002).

3.5.3 Avoid GET method and passing session ids in the URL
Session information passed using the GET method appears in the URL. Session
information in the URL may be visible in the browser's URL history. If it is likely
that an application will be accessed from a public client, the POST method or
cookies should be used instead.

3.5.4 If using cookies, use only per-session cookies
Specifying a cookie without an expiration time will result in the browser keeping
the cookie in memory rather than writing it to disk. As soon as the browser
process is closed on the client machine, the cookie will disappear. Again, user
convenience may trump this countermeasure in the type of case described
above. Where possible, however, specifying a per-session cookie rather than a
persistent cookie is a useful countermeasure.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

3.5.5 Use non-caching directives
Intermediate forms containing session data in hidden form fields may be visible in
cache files generated by the browser (Sutton, 2002) or, incidentally, maintained
by a proxy server. The application may specify additional HTTP headers that
instruct the browser and any proxy servers not to cache such forms. Not all
clients will support these headers, but putting them in doesn't hurt. The syntax of
appropriate headers is given below:

Cache-Control: no-store
Pragma: no-cache
Expires: Wdy, DD-Mon-YYYY HH:MM:SS GMT

Use all three. The Cache-Control directive shown will instruct HTTP/1.1-
compliant browsers and proxy servers not to save the response to non-volatile
media (Fielding et al, 1999). The Pragma: no-cache and Expires directives
(compatible with HTTP/1.0-compliant clients) do not explicitly direct clients not to
store responses (Ibid.), but clients may refrain from storing a non-cached/expired
response. In the Expires directive, the date can be the current time (according to
the time on the Web server) or some time in the past.

4 Conclusion: The state of state maintenance on the Web

Several years ago, a few projects were undertaken by W3C working groups
addressing state maintenance. Strictly from the application security perspective,
these projects seem to have little to offer beyond state maintenance techniques
currently in use.

The most relevant project resulted in a working draft on session identification
(Hallam-Baker & Connolly, 1996). This would have added an HTTP request
header, Session-id, with a session identifier generated by the browser. The
session id would then be used as a unique identifier in a server-side state
maintenance scheme of the application developer's design (or perhaps in a
manner built into the Web server or application environment, as is currently the
case with ASP, php, ColdFusion, and other environments with built-in session
support). From the application security perspective, this approach is no different
from server-side state maintenance using a cookie for the session id -- except
that the client would now determine what that session id looks like. In particular,
session ids could still be forged or contain malicious input.

The HTTP/1.1 specification (Fielding et al, 1999) did not incorporate the Session-
id request header and is silent on state maintenance in general, except to
indicate that the From request header (intended to contain the user's email
address) should not be used for that purpose. As the protocol involves simple
text communications between the client and the server, it is hard to imagine an
extension or modification to the protocol that could prevent a malicious client
from lying about its state.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Given the stateless nature of the protocol and the likelihood that making the
protocol "stateful" would still involve some sort of negotiation between client and
server with the client reporting state, it would seem that the basic state
maintenance issues aren't going to go away anytime soon. Happily, much of the
risk can be minimized using plain old good programming practice, which is
available right now.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

5 References

5.1 Online references

CERT Coordination Center. "How to remove meta-characters from user-
supplied data in CGI scripts." February 1999. URL:
http://www.cert.org/tech_tips/cgi_metacharacters.html (21 Jul. 2002).

Eastlake, Donald; Stephen Crocker; Jeffrey Schiller. "Randomness
recommendations for security." December 1994. URL:
http://www.ietf.org/rfc/rfc1750.txt (21 Jul. 2002).

Fielding, Roy; Jim Gettys; Jeffrey Mogul; Henrik Frystyk Nielsen; Larry
Masinter; Paul Leach; Tim Berners-Lee. "Hypertext Transfer Protocol --
HTTP/1.1." June 1999. URL: http://www.ietf.org/rfc/rfc2616.txt (21 Jul. 2002).

Hallam-Baker, Phillip; Dan Connolly. "Session identification URI." 1996. Rev.
960221. URL: http://www.w3.org/TR/WD-session-id/ (21 Jul. 2002).

ISS X-Force. "Form tampering vulnerabilities in several Web-based shopping
cart applications." June 2000. URL:
http://bvlive01.iss.net/issEn/delivery/xforce/alertdetail.jsp?id=advise42 (21 Jul.
2002).

Jaquith, Andrew. "The importance of application security." March 2002. URL:
http://www.atstake.com/research/reports/acrobat/atstake_application_security.pdf (21
Jul. 2002).

Kolsek, Mitja. "Remote retrieval of IIS session cookies from Web browsers." July
2000. URL: http://www.acros.si/aspr/ASPR-2000-07-22-1-PUB.txt (21 Jul. 2002).

Kristol, Dave; Lou Montulli. "HTTP state management mechanism." October
2000. URL: http://www.ietf.org/rfc/rfc2965.txt (21 Jul. 2002).

Lorch, Daniel. "PHP 4.x session spoofing." Bugtraq Mailing List. January 2002.
URL: http://online.securityfocus.com/archive/1/250196 (21 Jul. 2002).

Netscape. "Client side state - HTTP cookies." 1995. URL:
http://wp.netscape.com/newsref/std/cookie_spec.html (21 Jul. 2002).

Palomo, Ismael. "Serious security hole in Mambo Site Server version 3.0.X."
Bugtraq Mailing List. July 2001. URL:
http://online.securityfocus.com/archive/1/199414 (21 Jul. 2002).

Phuzzy L0gic. "NMRC advisory - NetDynamics session ID is reusable."
November 2001. URL: http://www.nmrc.org/advise/netdynamics1.txt (21 Jul.
2002).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Rafail, Jason. "CERT/CC vulnerability note VU#874803: php variables passed
from the browser are stored in global context." rev. 32. October 2001. URL:
http://www.kb.cert.org/vuls/id/847803 (21 Jul. 2002).

Rain Forest Puppy. "Perl CGI problems." Phrack 9(55). September 1999. URL:
http://www.wiretrip.net/rfp/p/doc.asp/i2/d6.htm (21 Jul. 2002).

Rain Forest Puppy. "RFP2101: RFPlutonium to fuel your PHP-Nuke." February
2001. URL: http://www.wiretrip.net/rfp/p/doc.asp/i2/d60.htm (21 Jul. 2002).

SK. "SQL injection walkthrough." May 2002. URL:
http://www.securiteam.com/securityreviews/5DP0N1P76E.html (21 Jul. 2002).

Stein, Lincoln. "Referer refresher." WebTechniques 3(9). September 1998.
URL: http://www.webtechniques.com/archives/1998/09/webm/ (21 Jul. 2002).

Stein, Lincoln; John Stewart. "The World Wide Web security FAQ." v. 3.1.2.
February 2002. URL: http://www.w3.org/Security/Faq/ (21 Jul. 2002).

Sutton, Michael. "Datalex BookIt! Consumer password vulnerabilities." Bugtraq
Mailing List. June 2002. URL: http://online.securityfocus.com/archive/1/276215
(21 Jul. 2002).

Torres, Efrain. "RightFax Web Client 5.2: Hijack user's sessions." Bugtraq
Mailing List. January 2000. URL: http://online.securityfocus.com/archive/1/44245
(21 Jul. 2002).

Yamazaki, Keigo. "Webmin/Usermin session ID spoofing vulnerability." SNS
Advisory #53. May 2002. URL:
http://www.lac.co.jp/security/english/snsadv_e/53_e.html (21 Jul. 2002).

5.2 Software references

Miro Pty., Ltd. Mambo Site Server. March 2001. v. 3.0.x php source. URL:
http://www.mamboserver.com/ (21 Jul. 2002).

Rain Forest Puppy. RFProxy. March 2001. v. 0.pr perl source. URL:
http://www.wiretrip.net/rfp/talks/cansecwest-2001/ (21 Jul. 2002).

Swiderski, Frank. WebProxy. April 2002. v. 1.0 binaries for Windows, Linux, and
Solaris. URL:
http://www.atstake.com/research/tools/index.html#vulnerability_scanning (21 Jul.
2002).

