
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

IPFilter: A Unix Host-Based Firewall
GSEC Practical Assignment v.1.4 option 1
Dana Price
June 1st, 2002

Abstract

With the advent of TCP wrappers and dedicated firewalling hardware, host-
based firewall packages for unix operating systems have fallen by the wayside.  
Daemons such as inetd, xinetd, and tcpd allow hosts to effectively limit outside 
connections to an out-of-the-box unix distribution, and as such, many users 
seldom consider using a third party firewall package.  IPFilter is one such host-
based firewall.  It provides several useful security features which are lacking in 
stock unix installs, such as the ability to filter egressing traffic, protocol/packet 
state filtering, and true stateful firewalling.  This paper will explain the benefits of 
using IPFilter on a unix host by detailing its configuration and implementation on 
a Solaris 8 SPARC box, and providing examples users can follow to safeguard 
their machines against some of the more popular remote exploits.

Background

First, a little background.  What is a host-based firewall and why would a user 
need one?

A firewall can be defined as “a system that is designed to prevent unauthorized 
access to private computers or networks.”(1)  It is a hardware or software device 
which filters network traffic based on a set of rules.  The firewall examines each 
packet received and determines whether there are any characteristics of this 
data matching the ruleset by which it is disallowed.  If there is a match (or lack 
thereof), the packet can be barred from passing on.  In short, users can protect 
their machines from unwanted (or malicious) network traffic.

The first thing a potential hacker wants is information on the target machine or 
network.  Logic would have it that preventing them from getting this information 
is a huge step in securing an infrastructure.  A firewall does exactly this using 
the methods described above, disallowing the traffic that represents the 'prying 
eyes' of a hacker.  So where does the 'host-based' part come in?

Where some firewall devices protect specific access points to a network, a host-
based firewall protects only a single machine or host on the network.  This may 
seem like a drawback until one realizes that good network security comes in 
layers, and that the combination of a host-based and network-based firewalling 
structure can provide a very strong multi-tiered defense.  There are an 
abundance of windows host-based firewalls such as ZoneAlarm, BlackIce, etc. 
which I will not cover.  What about those users with unix workstations as 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

opposed to a windows box?  They have a very strong option in IPFilter.

Notes on Installation

IPFilter has been tested on many flavors of unix, including but not limited to 
Solaris 2.3-9, earlier versions of SunOS, NetBSD, FreeBSD, IRIX, and HP-UX.  
Since I am discussing a Solaris 8 implementation, I will discuss installation on 
that platform only (which is fairly straightforward). Pre-compiled binaries can be 
obtained at 
http://www.maraudingpirates.org/ipfilter/archive/ipf-3.4.28-Sol8-sparc-
64bit.pkg.gz 
Note that IPFilter resides as a kernel driver, and Solaris versions greater than 7 
require kernel drivers to be compiled 64-bit.  Since gcc only recently became 
able to generate 64-bit code, users must either a.) compile the IPFilter source 
using the Sun C compiler, or b.) use the pre-compiled binaries above, which is 
much easier, and the path I chose.

After un-gzipping the file, you are left with a standard Solaris .pkg package.  Use 
pkgadd –d to install it:

% gzip –d ipf-3.4.28-Sol8-sparc-64bit.pkg.gz
% pkgadd –d ipf-3.4.28-Sol8-sparc-64bit.pkg

You will be prompted with two sub-packages to install:

The following packages are available:
1  ipf      IP Filter

(sparc) 3.4.28
2  ipfx     IP Filter (64-bit)

(sparc) 3.4.28

Since the ipf package contains the post-install script that loads the drivers 
contained by the ipfx package, ipfx must be installed FIRST followed by ipf.  The 
/usr/local/ipf and /etc/opt/ipf trees are created by the script, as well as an 
/etc/init.d/ipfboot script to start the daemon at boot time.  Link the script into 
/etc/rc2.d:

/etc/rc2.d% ln –s ../init.d/ipfboot S98ipfboot

A reboot will ensure the kernel module is loaded and the daemon started.  The 
following messages at boot will certify this:

ipf: [ID 920137 kern.notice] IP Filter: attach to [hme0,0] - IPv4
ipf: [ID 989912 kern.notice] IP Filter: v3.4.25, attaching complete.

Now that IPFilter has been installed, what can we do with it?  We can filter 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

network traffic with it.  How do we tell it what and how to filter?  With a ruleset, 
which is.. a set of rules.  Each rule gives IPFilter some characteristic of the 
packet to match on, and an action to take when a match is made.  This ruleset 
is stored as a simple text file, with one rule per line.  Since the functionality of a 
firewall (host based or otherwise) is only as good as its ruleset, a large part of 
this paper will be dedicated to explaining how to get IPFilter to do what we want 
as a function of the rules we give it.  From this point on, I will refer to the file 
containing the ruleset as the 'config file'.  On different platforms, the location of 
this file may vary.  The Solaris pre-packaged distribution looks for it in 
/etc/opt/ipf/ipf.conf

Each time a change is made to the config file, the IPFilter daemon must be 
restarted so that it can grab the updated rules.  This can be done by reloading 
the rc script:

% /etc/rc2.d/S98ipfboot reload

Basic Operations

Let's start simple by adding a single rule to the file.  This will give IPFiler a single 
directive.  It is important to mention at this point that the file is read from top to 
bottom, and that the firewall does NOT stop parsing after the first match is 
made.  This means that if two rules in the file match the same packet, the action 
which the second rule directs is the one that is carried out.  This can lead to 
rather confusing situations in lengthy config files.  With that said, lets go ahead 
and add one rule to the file:

block in all

Upon restarting the daemon, users may notice that their machine has just lost 
all network connectivity.  This is a direct result of IPFilter doing its job.  As stated 
before, the overall function of a firewall is to limit access.  It limits access by 
blocking traffic.  As such, the 'block' statement will be used quite a bit from here 
on out.  It is of the format 
[block/pass] [INcoming/OUTgoing packets] [packet characteristics to filter on]
With that in mind, we can take a look at the rule we implemented above and 
see that we blocked access to incoming packets of type 'all' (or all packets).  
This is why network connectivity was lost.. all incoming traffic was being 
blocked.  Let's add a second rule:

block in all
pass in all

Once in effect, we can see that network connectivity has been restored.  As 
mentioned earlier, if more than 1 rule matches a given packet, the latter of those 
rules is applied.  In this case, both rules match all traffic, but the action dictated 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

by the latter most one (which is to allow the incoming traffic to pass) is applied.  
Some machines may have rulesets that are several hundred lines long.  Based 
on what was stated above, one can imagine how tedious it would be to try to 
troubleshoot and determine if any blocked traffic is unintentionally being allowed 
to pass by a latter statement.  This problem can be solved by using the ‘quick’
keyword:

block in quick all
pass in all

Once a match is made on a statement containing the ‘quick’ keyword, IPFilter 
stops the comparison step and continues on to the next packet.

So  what  about the next rule?

pass  in       all

This rule is never encountered.  “It could just as easily not be in the config file at 
all.  The sweeping match of all  and  the  terminal keyword quick from the 
previous rule make certain that no rules are followed afterward.”(3)

Nevertheless, the last line should be included in the config file as we are 
currently operating under an ‘allow unless explicitly denied’ premise, which is to 
say that traffic that has not matched any of our filters should eventually be 
allowed though.

Methods of filtering

In a real world scenario, it is not likely that we would want to block ALL traffic to 
our machine.  Normally, we want to filter what we deem necessary and let the 
rest pass on by.  Let’s say that each night our logs constantly show port scans 
from a host that resolves to 24.24.208.56.  Chances are this is a hacker 
scanning for open ports to gather information on our host/network.  It would be 
wise to deny him this ability.  As I stated before, IPFilter can filter traffic based 
on a myriad of packet characteristics.  One of these characteristics is the 
originating IP address.  We can instantly drop every packet coming from his 
machine henceforth by adding

block in quick from 24.24.208.25/255.255.255.0 to any

to the config file.  Note the usage of the ‘from/to’ keywords.  ‘from’ being the 
originating host IP and ‘to’ denoting the destination IP of the traffic (currently set 
to ‘all’, we’ll revisit this later).  Take note as well that the netmask of the remote 
network must also be present.  This will allow us to block a single IP address as 
above, or an entire network segment, i.e



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

block in quick from 24.24.0.0/255.255.0.0 to any

will block all traffic from the network 24.24.0.0.  One can also use the CIDR 
shorthand when denoting netmasks.  The following serves the same purpose as 
the above:

block in quick from 24.24.0.0/16 to any

Blocking incoming traffic is an important means in securing our machine, but
what about outgoing traffic?  Let’s say a worst case scenario exists in which a 
hacker was able to compromise the machine and is now attempting a man-in-
the middle attack by spoofing a different IP and grabbing network traffic destined 
for it.  Not only does IPFilter examine incoming traffic, but outgoing as well:

pass out quick from 165.230.10.10/255.255.255.0 to any
block out quick from any to any

This rule combination will forward on only outgoing traffic with a source IP 
address of 165.230.10.10 (i.e, that came from our machine).  Traffic with a 
spoofed IP address will be dropped.  The destination address can be anywhere.  
Notice that the ‘in’ keyword has been replaced with ‘out’ (as we are filtering 
outbound traffic).  The rest of the syntax remains unchanged.   The second of 
the two rules will ensure that NO other traffic save for that which matches the 
first rule is passed on.  This is an example of a ‘deny unless explicitly allowed’
situation.  By “spoof-proofing” our box, we have heightened not only our own 
network security, but that of others around us.

Now it’s time to magnify our network traffic even further.  I stated earlier that the 
first thing a hacker wants is information on a target machine.  The ever popular 
port scan attempts a connection to an entire range of tcp/udp ports to determine 
if any are open.  These open ports can then be used in an attempt to gain 
access to the machine by any one of a number of exploits, the most common 
being a buffer overflow.  This is where the most notorious functionality of 
IPFilter, and any firewall for that matter, comes in to play.  Filtering of specific 
protocols and ports.
We can filter based on protocol by using the ‘proto’ keyword:

block in quick proto tcp from any to any

This will serve to block all incoming tcp traffic.  This probably isn’t a good idea, 
since all we really wanted to do was stop that hacker from finding our open 
telnet port (port 23).  Taking it one step further, we will filter only traffic on tcp 
port 23 using the ‘port’ keyword:

block in quick proto tcp from any to any port = 23



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

No more telnet traffic, but is that really what we wanted?  Maybe we still want 
people from within our local subnet to have telnet access:

pass in quick proto tcp from 165.230.10.0/24 to any port = 23
block in quick proto tcp from any to any port = 23

The first rule allows in tcp port 23 traffic only from our subnet, while the second 
ensures that no other telnet traffic is allowed by.  Remember again that by using 
the ‘quick’ keyword, we need to list passing traffic before that which is blocked 
since the firewall begins anew after a match is made.  Blocking udp as opposed 
to tcp can be done by substituting ‘udp’ for ‘tcp’ in the above, or with ‘tcp/udp’ to 
denote both protocols.  It is in this manner that one can pick and choose which 
ports can be accessed, and by whom. 

Logging

‘By whom’ brings us to another very important feature of any good firewall.. 
logging.  We can gain invaluable information by being able to see exactly who 
has been making connections to our machine, which port they were attempting 
to connect to, and other major characteristics of the traffic coming from the 
remote machine.  IPFilter provides the ability to log all of this and more to 
several facilities.  IPFilter by default sends its log data to the device /dev/ipl.  It 
can be converted into human readable form and analyzed with the ‘ipmon’ utility 
provided with the standard distribution.  Ipmon can be set to pipe logged data to 
screen, a text file, or the syslog service.  The precompiled Solaris package, by 
default, loads an instance of ipmon at startup which logs all ipfilter messages to 
the syslog local0 facility, so little needs to be done here to begin viewing your 
logs.  The ‘log’ keyword must be inserted into each rule for which you wish to 
see log information for.  When inserted into a block statement, logs will be 
generated for each packet the firewall drops, as is the opposite for a pass 
statement, i.e;

pass in log quick proto tcp from 165.230.10.0/24 to any port = 23

will log connections on port 23 from machines on the designated subnet.

Advanced Features; Securing Other Common Vulnerabilities

The features I’ve discussed up until this point are not necessarily unique to 
Ipfilter, or to firewalls in general.  Many out-of-the-box unix distributions come 
with tcp wrappers and/or daemons such as tcpd.  These utilities are able to filter 
and log very efficiently based on IP access lists for different ports/services.  I’ll 
now discuss a few common vulnerabilities that are not as easily circumvented in 
a stock unix distribution, and how to use more advanced features of Ipfilter to 
secure against them.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

A well known range of exploits which can be easily evaded by use of IPFilter are 
the denial of service (DoS) attack.  A DoS attack is a somewhat generalized 
term which encompasses several types of attacks, all of which prevent 
legitimate network users from being able to access that particular networks 
resources. The CERT Coordination center lists some subsets of DoS attacks in 
the form of ICMP echo bandwidth consumption, IP fragmenting, and SYN 
flooding.  We will first deal with ICMP echoes.  

“An intruder may also be able to consume all the available bandwidth on 
your network by generating a large number of packets directed to your 
network. Typically, these packets are ICMP ECHO packets, but in 
principle they may be anything. Further, the intruder need not be 
operating from a single machine; he may be able to coordinate or co-opt 
several machines on different networks to achieve the same effect.” (2)

The IPFilter howto addresses this topic directly by stating that “Denial of Service 
attacks  are  as  rampant  as  buffer overflow  exploits.   Many denial of service 
attacks rely on glitches in the OS's TCP/IP  stack.   Frequently,  this  has come  
in  the  form  of  ICMP  packets.   Why not block them entirely?”(3)

We can block ICMP packets by again using the protocol specific filtering 
functionality of IPFilter, this time filtering on ICMP as opposed to tcp:

block in quick proto icmp from any to any

The use of the ‘proto icmp’ keyword here should be self explanatory by now.  In 
a real world situation, just as with tcp, one may not want to block ALL ICMP 
traffic, since some of it can be useful.  Utilities such as ping and traceroute can 
help diagnose network connectivity problems, etc.  The ICMP protocol itself has 
different forms, ping being of type 0 and traceroute of type 11.  What if we 
wanted to allow only these two variants of ICMP through the firewall?  Ipfilter 
can differentiate between them:

pass in quick proto icmp from any to any icmp-type 0
pass in quick proto icmp from any to any icmp-type 11
block in quick proto icmp from any to any

The use of the ‘icmp-type’ keywords make sure that ping and traceroute will still 
function to and from our machine, while the third rule functions as an implicit 
deny to make sure all other ICMP traffic is blocked (recall that CERT stated 
coordinated attacks from several different machines were common).

Now let’s deal with IP fragments.  IP fragments are, as defined by SANS as
“a certain type of IP packets that are not sent at once but in multiple 
parts. The destination or target system has to reassemble the pieces into 
an IP packet. There are legitimate reasons why fragmentation can (and 
must) occur. One example of the legitimate uses of IP fragments is for a 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

router that connects networks with different MTU's. It has no choice but to 
create IP fragments…”(4)

These packets can be just as malicious as they are legitimate, however.  
Several very popular exploits have evolved around the requirement of the target 
machine to reconstruct these fragments into a valid IP datagram, the intricacies 
of which are given by Microsoft:

“This vulnerability results because of a flaw in the way the affected 
systems perform IP fragment reassembly. If a stream of IP fragments 
with a particular type of malformation are directed against an affected 
machine, the work factor associated with performing IP fragment 
reassembly can be driven arbitrarily high by varying the data rate at which 
the fragments are sent. This could allow a malicious user to consume 
most or all of the machine's CPU availability. “(5)

This sounds like something we would want to prevent.  One approach would be 
to block all IP fragments.  Ipfilter can easily do so with the following rule:

block in all with frag

But I stated above that IP fragments are a useful, if not integral, aspect of 
networking.  Luckily, those most malicious fragments all possess one common 
characteristic.  They are simply too short to contain even the headers for 
fragment reassembly.  Ipfilter has accounted for this, and we can narrow our 
rule to accommodate only these short fragments:

block in all with short

This will offer protection within networks utilizing IP fragments.

The last type of DoS attack I would like to discuss is the SYN flood.  First, a brief 
explanation.  Each TCP packet that is responsible for creating a new connection 
with a remote host will have its SYN flag set.  The remote host then does two 
critical things, it answers back with the necessary packet to continue opening 
the connection, and it creates a data structure within system memory for that 
particular connection.

“The potential for abuse arises at the point where the server system has 
sent an acknowledgment (SYN-ACK) back to client but has not yet 
received the ACK message. This is what we mean by half-open 
connection. The server has built in its system memory a data structure 
describing all pending connections. This data structure is of finite size, 
and it can be made to overflow by intentionally creating too many partially-
open connections.”(6) 

Like the packet fragmentation exploit, SYN floods are not meant to consume 
bandwidth, rather to require massive amounts of CPU usage, which eventually 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

causes the target machine to crash.  With that being said, how can we 
safeguard ourselves?  TCP flags are yet another packet characteristic that 
Ipfilter is able to discern and filter.  It is a simple measure to never again see 
another SYN packet:

block in quick proto tcp from any to any flags S/SA

All that needed to be appended to our stock ‘block’ rule was ‘flags S/SA’, which 
filter those packets with only the SYN flag set.  

“The flags after the / represent the TCP flag mask, indicating which bits of 
the TCP flags you are interested in checking. When using the SYN bit in 
a check, you SHOULD specify a mask to ensure that your filter CANNOT 
be defeated by a packet with SYN and URG flags, for example, set (to 
Unix, this is the same as a plain SYN)”(7)

Aside from protecting against SYN floods, this rule also prevents any machine 
from ever creating a tcp connection to our machine, period.  If our machine is 
the one sending the SYN packet, however, a session can be successfully 
opened since the rule applies only to incoming packets.  This effectively means 
that connection requests must come from our machine, which may be a very 
good policy in the case of a client only, or a not-so-very-effective policy should 
we be discussing a machine running remote services, or a server.  It is the only 
realistic way to prevent something such as a SYN flood with IPfilter, however, 
and comes at an expense.  Discussing server firewalling in this manner provides 
an interesting segway into my next topic.

In that last example, it was shown that it could be somewhat difficult to secure a 
host which does in fact need to serve remote services.  What solutions exist for 
those machines that perform such tasks?  Creating a ruleset for them can be an 
extremely tedious and lengthy task when we look at the different ports they 
listen on and types of traffic that each should receive.  The fact is that Ipfilter 
offers a solution which allows our host to serve data, blocks rogue network 
traffic, and provides for a simple rule set.  It is called stateful firewalling. 

The stateful firewalling concept is quite simple.  Established connections (or 
those that have completed the TCP handshake) are allowed to transmit data 
completely free of examination by Ipfilter. In other words, once the start of the 
conversation has been validated, the firewall no longer examines the traffic 
comprising the middle or end.  It is assumed to be legitimate data, “rather than 
just arbitrary TCP packets which can be used to perform ‘stealth scanning’.” (8)

Say for example we have an ftp server we want to secure.  The machine should 
do nothing save for serve ftp.  We can ensure this is the case with the following:

Block in proto tcp all
Block out proto tcp all



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

pass in quick proto tcp from any to 154.230.171.5 port = 21 keep state

Note the use of the ‘keep state’ keyword added to the third rule, it makes our 
lives much easier.  The first two rules blocks all tcp traffic, ingressing and 
egressing.  We didn’t use the ‘quick’ keyword here, however, which means that 
Ipfilter will continue down the list and apply other rules that match.  Should the 
packet in question be an ftp request coming in on port 21, a match is made on 
the third rule and an entry is created in the Ipfilter state table for this connection.  
From here on out, packets flowing across this connection are ignored entirely by 
the firewall.  This remains in effect until the connection is terminated.  What we 
have done here is make the machine completely invisible to the network, save 
for a single port.  Apply this model to a machine with multiple network services 
and the benefits are immediately seen.  One need not fret over creating rules to 
block would-be attackers “because there's no need to track down what ports 
we're listening to, only the ports we want people to be able to get to.” (3)

Apply the same logic to securing a client, or other machine that does not run 
any services:

block in quick all
pass out quick proto tcp from 165.230.10.10 to any keep state

The first rule blocks all incoming traffic, period. The second rule matches all 
outgoing traffic, passes it, and applies the ‘keep state’ directive.  
This means that all tcp connections can only be initiated from our machine, and 
once they are initiated they are entered into the state table and ignored by the 
firewall.  I’ll refer to our machine in this situation as a ‘true client’ in that 
absolutely no traffic is allowed past the kernel unless the session was first 
opened by the machine itself.  This host has complete access to the internet, 
however the internet has virtually no access to the host itself.  In a system where 
access limitations and security go hand in hand, this is an extremely useful 
capability.

Conclusion

Through discussing the basic and extended features of IPFilter, it becomes 
apparent that this host-based firewalling package offers benefits above and 
beyond stock daemons provided with unix operating systems.  Its ability to filter 
outgoing traffic, coupled with its myriad packet characteristic filters allow users 
to lock down their stations from virtually any form of unwanted network traffic, 
and avoid several of the most common remote exploits.  Using the true stateful 
firewalling features provides functionality that, until now, was only available from 
rather expensive netowork firewall devices.  Perhaps not to be overlooked as 
well is the fact that this software and all its features comes absolutely free, 
which can for any IT budget.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

References

1. D-Link Web Site, “Frequently Asked Questions” URL:
http://www.dlink.com/tech/faq/broadband/di701_3.htm (7/7/02)

2. CERT Coordination Center, “Denial of Service Attacks” June 14, 2001 URL:
http://www.cert.org/tech_tips/denial_of_service.html (7/7/02)

3.  Conoboy, Brendan and Fichtner, Erik.  “IP Filter Based Firewalls HOWTO”
March 1, 2002 URL: http://www.obfuscation.org/ipf/ipf-howto.txt (7/9/2002)

4.  SANS Institute. “Intrusion Detection FAQ v. 0.91” 1999 URL: 
http://secinf.net/info/ids/IDFAQ/fragments.htm (7/9/02)

5.  Microsoft TechNet.  “Microsoft Security Bulletin (MS00-029): Frequently 
Asked Questions” URL: 
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bull
etin/fq00-029.asp (7/12/2002)  

6.  CERT Coordination Center, “CERT Advisory CA-1996-21 TCP SYN Flooding 
and Spoofing Attacks” Nov. 29, 2000 URL: http://www.cert.org/advisories/CA-
1996-21.html (7/10/02)

7.  Reed, Darren.  “IP Filter Examples”.  URL: 
http://coombs.anu.edu.au/~avalon/examples.html#packetstate (7/10/02)

8.  Reed, Darren.  “IP Filter FAQ”.  URL: 
http://coombs.anu.edu.au/~avalon/faq/IPFques.html#1 (7/10/02)


