
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Michael Ryan
GSEC Option 1 version 1.4
25 July 2002

OpenBSDs PF: An Alternative to Commercial Firewalls

Introduction

With so many people and companies having access to the Internet, many do not
have the money to spend for a commercial firewall. Fortunately, an alternative
way to protect internal networks effectively is with a Stateful Inspection firewall
running on an inexpensive and functional operating system: OpenBSD.

The Stateful firewall is PF (Packet Filter), which runs on OpenBSD. This paper
goes over the basic operation of PF, examples of some attacks that PF can help
prevent, and how to get a basic system up and running. The OpenBSD project is
known for its extensive security audits performed on the code that makes up the
OpenBSD system. The members that make up the OpenBSD team are
constantly reviewing the code looking for already known security vulnerabilities
and for potential ones that may not have been discovered. Due to the attention
to details when it comes to security, OpenBSD is an ideal platform for a firewall.
Some background knowledge is assumed in OpenBSD, basic networking
concepts, and TCP/IP. The following information will help to better understand
Stateful Inspection and OpenBSDs implementation of it.

Background

A basic understanding of the Open Systems Interconnect (OSI) protocol stack
and the way data is encapsulated especially the structure of an IP packet, is
important to understanding any implementation of Stateful Inspection. The OSI
stack is comprised of seven layers. The Application layer (layer 7) is where the
user programs operate. This layer provides FTP, SMTP, Telnet, and more. The
Presentation layer (layer 6) takes care of formatting data so that the application
layer can accept it and formats and encrypts data to be sent across a network.
The Session layer (layer 5) establishes, manages and terminates connections
between applications. Reliable communication from end-to-end is provided in
the Transport layer (layer 4). The Network layer (layer 3) handles the movement
of packets around the network, i.e. routing, error handling and packet
sequencing. In the Data Link layer (layer 2), packets are encoded and decoded
into bits. The Data Link layer also handles errors in the physical layer. This layer
further divides into the Media Access Control layer (MAC) and Logic Link Control
layer (LLC). The Physical layer (layer 1) actually puts the data on the physical
medium. In addition, Layer 1 controls voltage, electrical pulses, and light or radio
waves.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Figure 1 OSI Protocol Stack (Stevens)

Another protocol stack one should be familiar with is the TCP/IP stack. In
comparison to the OSI protocol stack, the TCP/IP stack is much simpler. The
OSI stack was also designed with more granularity and other protocols in mind
other than TCP/IP and the TCP/IP stack. The TCP/IP stack is made up of only
four layers: the Application, Transport, Network or Internet, and the Link layers.
The Application layer (layer 4) handles the details of an application. The
Transport layer (layer 3) handles the flow of data between to hosts from the
application layer above. The TCP/IP suite has two different protocols at the
Transport layer, Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP). TCP provides a reliable flow of data, doing such tasks as error
checking and breaking the data into appropriately sized chunks for the network
layer. On the other hand, UDP only sends the data out, which is commonly
referred to as datagrams. There is no guarantee that the packets reach the other
host, this reliability must be handled by the application. Routing and movement
of packets around the network are handled in the Network layer (layer 2). The
Link layer (layer 1) puts the data on the wire. It also includes the device driver in
the operating system and the Network Interface Card (NIC).

Application

(layer 4)
Transport
(layer 3)
Network
(layer 2)

Link
(layer 1)

Figure 2 TCP/IP Protocol Stack (Stevens)

Encapsulation

As the data goes down through the layers, each layer adds a header to the
previous layers header and data. This process is widely known as
encapsulation. When the receiving system gets these packets, the opposite
takes place. Each layer strips off its header and sends the rest up the stack to
the next layer. This process is called demultiplexing.

Application (layer 7)
Presentation (layer 6)

Session (layer 5)
Transport (layer 4)
Network (layer 3)

Data Link (layer 2)
Physical (layer 1)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

User Data
Application

header
User Data

TCP
header

Application Data

IP
header

TCP
header

Application Data

Eth
header

IP
header

TCP
header

Application Data Ethernet
trailer

Figure 4 Encapsulation (Stevens)

A header that will be discussed is the IP version 4. The structure of the IP
header is shown in Figure 5.

Version Header Len TOS Total Length
IP Identifier Flags Fragment Offset

TTL Protocol Header Checksum
Source Address

Destination Address
Options (Padding if needed)

Data
Figure 5 The structure of the IP header. (Stevens)

The Version field indicates the format of the IP header, in this case Ipv4. The
Header Length specifies the length of the IP header in 32 bit words. Type of
Service (TOS) specifies what type of service is requested by the application
sending the data, e.g. minimize delay, maximize throughput, maximize reliability,
and minimize monetary cost. The Total Length field is the length of the IP packet
including header and data. The maximum packet size is 65535 bytes. IP
Identifier contains a unique identification number that is given when the packet is
created. When a packet is fragmented all of the fragments of the original packet
contain the same IP Identifier to aid in reassembly. The Flags field contains
three flags: Reserved, Don’t Fragment (DF), and More Fragments (MF). The
Reserved flag must be set to 0. In the second flag DF, if the flag is 0 the IP
packet can be fragmented. If the flag is set to 1 the IP packet cannot be
fragmented. In MF, if the flag is 0 there are no more fragments to follow. If the
flag is 1, there are more fragments to follow. The Fragment Offset field contains
a value to point to where the fragments data fit into the original packet; this is
used when the receiving host reassembles the fragmented packets. Time to Live
(TTL) contains a value, no greater than 255. When a packet passes through a
router, the router decreases the TTL by one. If the TTL reaches 0 it is discarded.
The reason for this functionality is to keep packets from wandering endlessly
around a network. The Protocol field contains what protocol gave IP the data to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

send. Header Checksum has a value referred to as a checksum. When an IP
packet is created a Cyclic Redundancy Check (CRC) is performed on the IP
header, it does not cover the data portion. When the receiving host gets the
packet it also performs a CRC on the IP header. If the two Header Checksums
do not match the packet, it is considered damaged and is discarded. The Source
Address has the 32-bit IP address from the sending host. The Destination
Address contains the address of the receiving host. The Options and Padding
field is optional; it contains special handling instructions not covered in any other
field in the IP header. Finally, the last field is the Data field; it contains the actual
data and the previous layers header that is being sent from one host to another.
(Stevens, 34-37)

Stateful Inspection

When a firewall is stateful, it keeps track of connections and the information
pertaining to these connections in memory. An example of information stored in
the state table is the destination address, port number, TCP sequencing numbers
and flags. When a packet hits the firewall it is compared to entries in the state
table. If an entry exists, it is passed; if not the firewall parses a user defined rule
file to determine if the packet is allowed.

The advantage to Stateful Inspection is the information that the firewall has on
each connection. The firewall can then use this information to detect and
eliminate various types of spoofing attacks and other attacks that will be
discussed later.

OpenBSDs PF

OpenBSDs PF was originally written by Daniel Hartmeier. It’s now being
improved and expanded by numerous other contributors. (Hartmeier, OpenBSD
Packet Filter) PF resides in the kernel where it inspects every packet that enters
or leaves the stack. PF is made of two components: the filter rules and the state
table. All packets are compared against the rule set, which describe actions to
be taken; for example, a pass or block. An example rule may look like:

 block in all
 pass in all

When the packet is being compared to the rule set, it is compared against all of
the rules within the set. A packet may match more than one rule. If this
happens, the last rule, which matches is applied to the packet. PF is also able to
keep state. Any rule that passes a packet may also create an entry in the state
table. A rule that passes a packet and creates and entry may look like this:

 Pass in proto tcp from any to any port = 80 keep state

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

If PF receives a packet from a connection and it has an entry in the state table, it
recognizes this connection as a pre-established valid connection and passes the
received packet without further checking it against the rule set. PF handles TCP
somewhat differently from UDP connections since UDP is stateless and TCP is
stateful. When keeping state on TCP connections PF checks the sequence
numbers of each packet against the state table. If they do not match they are
dropped. Since UDP is stateless, PF keeps track of connections by host address
and port number. PF considers additional UDP packets part of the same
connection if the host address and port numbers match an entry in the state
table. It may seem that keeping state on connections would be a performance
burden on the firewall, by consuming system resources and therefore causing a
bottleneck and slowing the connection down. However, it is much faster to
perform state table lookups than to parse the rule set. “A typical rule set of 50
rules takes about 50 rule comparisons, whereas a state table of 50,000 entries,
due to its binary tree structure, takes only about 16 comparisons.” (Coene,7)

Another security advantage to PF is the capability to generate Initial Sequence
Numbers (ISN). ISNs are randomly chosen at the beginning of a connection
between two hosts. Then they are incremented by one for each byte sent.
Some TCP stacks provide easy to guess ISNs, which makes them susceptible to
ISN exploits, such as session hijacking. The ability for PF to provide random
Initial Sequence Numbers (ISN) is quite beneficial for systems behind the firewall
that do not have the ability to generate random ISNs, thus leaving them open to
attacks such as IP spoofing and session hijacking. The generating of ISN
numbers through PF is referred to as State Modulation and can be added to a
rule in the rule set, with the directive “modulate state”.

PF also provides IP normalization (defragmentation). To better understand IP
normalization a brief explanation of IP fragmentation is needed. When packets
traverse many networks, such as the Internet, certain network segments can only
handle certain sized packets. The media that the network is made up of, e.g.
FDDI, Ethernet and Token Ring causes this restriction. As the data reaches a
new network segment, the IP layer of the protocol stack determines the
Maximum Transmission Unit (MTU) of that particular segment. If the packet is
larger than the MTU, then the IP layer performs fragmentation. When a packet is
fragmented, each fragment becomes it’s own packet, with its own IP header.
(Stevens, 149) If the fragmented packet reaches a network that has a larger MTU
compared to the network from which they just came from; then, the packets
normally remain fragmented. As fragmented packets are received by PF, they
are cached and reassembled. Reassembly of the packets takes place so if the
vulnerability to various fragment attacks exists on any machines in the internal
network; the threat to them is minimized. Here are a few different fragmentation
attacks that PF can help eliminate through normalization.

Ping O’ Death

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

In essence, the Ping O’ Death is an illegal, oversized packet that may create
havoc on an operating system. Many operating systems don’t like to be pinged
with a packet size greater than 65535 bytes (the default being 64 bytes). So, if
65536 byte packets are illegal, how are they made? Some versions of Ping will
allow the user to send a Packet with a payload of 65536 or more. These
oversized packets are then fragmented. When some receiving hosts reassemble
them it causes a buffer overflow and corrupts the stack, resulting in a reboot,
crash, panic, or hang.

Tiny Fragment Attack

The Tiny Fragment Attack uses small fragments. This attack is used to get
through a firewall that checks the first packet. If the packet does not match any
rules it’s passed, as are subsequent packets. Ziemba, Reed and Traina clearly
describe the Tiny Fragment attacks passage, “If the Fragment size is made small
enough to force some of a TCP packets TCP header fields into the second
fragment, filter rules that specify patterns for those fields will not match” (RFC
1858). Often this technique is employed to hide other malicious activities from a
company’s Intrusion Detection System (IDS), which use signatures to recognize
various attacks.

Teardrop Attack

The Teardrop attack uses overlapping offset fields to cause problems on the
receiving host, the Teardrop program crafts these custom packets. When the IP
layer is reassembling a fragmented packet, it expects the incoming fragments to
align so that the start of the data in the packet immediately follows the end of the
data in the preceding packet.

Preventive Measures from Attacks

The previous attacks were added to give an idea of different types of
fragmentation attacks. There are also many variations on these attacks. While a
lot of these are old attacks and most vendors have released patches for their
systems, a system behind the firewall may be unpatched, or a new type of
fragmentation vulnerability may surface. OpenBSD can handle these attacks by
caching the packets it receives and defragmenting them, then sending them on
to the receiving host. This way if PF does encounter any anomalies in the
packets either they are discarded or corrected and passed on.

It’s helpful to have a firewall like OpenBSDs PF that can perform normalization
on the packets that pass through it. While the firewall may prevent some attacks
on unpatched systems, some other attacks may get through. The security
should be layered to further ensure protection. Patching is another form, or
layer, of prevention to add to the networks security. One should have a
procedure in place for patching the systems on a regular basis and for monitoring

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

various sources, such as Bugtraq for new vulnerabilities.
(http://www.securityfocus.com/cgi-bin/vulns.pl) In order for PF to normalize
traffic, the scrub directive needs to be used. The following rule can be used to
scrub (normalize) all incoming traffic:

 scrub in all

Wouter Coene forewarns “Using the scrub directive uses quite an amount of
server resources, so its use should be limited to protecting only the weak TCP/IP
stack implementations” (Coene, 16).

Applying Concepts to a Working System

I will not discuss installation of OpenBSD. OpenBSDs site provides excellent
documentation on installing a base system. However, I will go over some tips
and advice for running PF.

We only want what is necessary for running our firewall, the more things you
have running the more problems you can have, e.g. services to exploit.
Fortunately, the OpenBSDs teams design goals where primarily that of security.
Under /etc/rc.conf set the following:

portmap=NO
check_quotas=NO
ntpd=NO
sendmail_flags=NO

These are disabled due to the fact that they are not necessary on a firewall and
are open to numerous vulnerabilities.

Next, make sure your system is up-to-date on all patches. Detailed instructions
for doing this are on OpenBSDs site: www.openbsd.org. In /etc/sysctl.conf
uncomment the line:

net.inet.ip.forwarding=1

This will allow your firewall to route packets between the two network cards.

The base install of OpenBSD provides PF. PF is disabled by default; one has to
enable it. To enable it set the PF line to yes in /etc/rc.conf. This will also enable
NAT (Network Address Translation).

 pf=YES

The writing of PF rules should not be overlooked. These rules are located in
/etc/pf.conf. Examining more closely the example of a rule previously used:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 block in all
 pass in all

“Block in all” is short for “block in from any to any”. Similarly, “pass in all” is
shortened from “pass in from any to any”. As PF parses these rules, the first one
tells it to block all incoming packets. When PF finds a match, it doesn’t stop
going through the rules, PF “remembers” that it found a rule that matched and
continues. The second rule also matches. PF remembers this as well. At this
point, it’s reached the end of the rule file. PF goes back and sees that “pass in
all” was the last rule that matched, and applies it.

The example above doesn’t help too much, as it lets everything in to the network.
All of our PF rules will start with “block in all” and a “block out all” (to cover both
directions). The reason for starting with “block in all” and “block out all” is to
explicitly tell PF if this packet is not allowed later on in the rule set, to block it. By
default, PF will pass packets if they do not match a rule. Here are some useful
rules that can be incorporated into a pf.conf. First, the objective is to block
anyone trying to spoof non-routable addresses that would be coming from the
Internet. In the rules below, ep0 is assumed to be the external interface on the
firewall. The quick option tells PF to perform the rule without going through the
rest of the ruleset. This can speed PF up if the rule explicitly directs the
appropriate action to be taken next.

 block in quick on ep0 inet from 127.0.0.1/8 to any
 block in quick on ep0 inet from 192.168.0.0/16 to any
 block in quick on ep0 inet from 172.16.0.0/12 to any
 block in quick on ep0 inet from 10.0.0.0/8 to any

Next, add two rules to block everything going and leaving the network, so we can
open explicitly what we want later.

 block in all
 block out all

To allow users on the internal network, access to the Internet. We can add a rule
that passes any tcp traffic out of the internal network. This rule passes the initial
packet (SYN packet) of each connection and keeps state on it. Keeping state on
the SYN of incoming connections is another way to prevent people trying to scan
a network using invalid combination of flags.

 Pass out on ep0 proto tcp from any to any flags S/SA keep state

In a network that has a web server, which is available to the public, it is prone to
exploits. Perhaps a preferable option for this web server is to keep state on the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

initial SYN of the connections. This can be done with the following, where
“xxx.xxx.xxx.xxx” is the web server address:

 pass in on ep0 proto tcp from any to xxx.xxx.xxx.xxx/32 port = 80 \

flags S/SA keep state

The potential is present in the above example for someone to take advantage of
the firewall. The state table entries are being created with the initial SYN of each
connection. Someone could send a lot of packets with the SYN flag set to fill the
connection tables and cause a denial of service. In this case, legitimate traffic
could not reach the web server. To get around this possible denial of service
(DoS) PF will clear connections from the state table after a preset period of time.

The utility to interact with PF is pfctl. Pfctl is run when OpenBSD is started up,
but it can also run when the system is up. This is helpful for making changes to
the rule set and not having to reboot to have those changes take affect. PF will
be able to keep current connections open if a rule set is reloaded. The only time
it wouldn’t be able to do this is if a connection has a state table entry based on
the initial SYN flag. To load the rules without rebooting the firewall:

 pfctl –R /etc/pf.conf

Conclusion

OpenBSD allows the use of Stateful Inspection through PF to make an effective
and inexpensive addition to an organization’s security plan. In order to
comprehend the implementation of OpenBSD and PF as a measure of security
for a network, the given background knowledge is reviewed. This knowledge is
vital in any area of an environment’s security. Understanding how PF parses its
rule sets and makes decisions are critical to writing a rule set. If incorrect rules
are put in, packets that were blocked at one point may be allowed at another rule
later on. Preventing attacks from the outside environment using a firewall is the
first step to securing a network. Preventative measures, such as adding patches
for systems, aides in the protection of a network, but OpenBSDs PF performs
more extensive methods like normalization and the checking of sequence
numbers.

To remodel and refine the security of a network, preliminary actions must be
taken before applying OpenBSD with Stateful Inspection and PF. Applying these
guidelines includes but is not limited to: shutting off unnecessary services,
enabling IP forwarding, writing specific rules and taking precautions to prevent
certain attacks such as the installment of updated patches.

For further reference or investigation visit following hyperlinks:

To access OpenBSD material:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://www.openbsd.org

Home of PFs author and extensive information related to PF:
http://www.benzedrine.cx

The OpenBSD Packet Filter HOWTO:
http://www.inebriated.demon.nl/pf-howto/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

References

 “FAQ 6.0 Networks.” URL: http://www.openbsd.org/faq/faq6.html (10 July 2002).

 “OpenBSDs Programmers Manual PF.CONF.” 2 July 2002. URL:
http://www.openbsd.org/cgi-bin/man.cgi?
query=pf.conf&apropos=0&sektion=0&manpath=OpenBSD+Current&arch=i386&
format=html (15 July 2002).

Coene, Wouter. “The OpenBSD Packet Filter HOWTO.” Version 20020405.2.
5 April 2002. URL: http://www.inebriated.demon.nl/pf-howto/ (10 July 2002).

Farrell, James. “IP Fragmentation Attacks on Checkpoint Firewalls.” 3 April 2001.
URL: http://rr.sans.org/firewall/frag_attacks.php (9 July 2002).

Hartmeier, Daniel. “Design and Performance of the OpenBSD Stateful Packet
Filter (pf).” URL: http://www.benzedrine.cx/pf-paper.html (10 July 2002).

Hartmeier, Daniel. “OpenBSD Packet Filter.” July 15, 2002. URL:
http://www.benzedrine.cx/pf.html (July 21, 2002).

Handley, Mark, Vern Paxson, and Christian Kreibich. “Network Intrusion
Detection: Evasion, Traffic Normalization, and End-to-End Protocol Semantics.”
February 19, 1998. URL: http://www.icir.org/vern/papers/norm-usenix-sec-01-
html/ (15 July 2002).

Hill, Greg. “Linux Comes of Age with Stateful Firewalling.” 20 February 2001.
URL: http://rr.sans.org/firewall/stateful.php (8 July 2002).

Senner, Lisa. “Anatomy of a Stateful Firewall.” 9 May 2001. URL:
http://rr.sans.org/firewall/anatomy.php (7 July 2002).

Stevens, W. Richard. TCP/IP Illustrated Volume 1 The Protocols New York:
Addison-Wesley, 1994.

 “The Ping o’ Death Page.” 25 November 1996. URL:
http://www.pp.asu.edu/support/ping-o-death.html (11 July 2002).

Tran, Hoang Q. “OpenBSD firewall using pf.” 10 July 2002. URL:
http://www.muine.org/~hoang/openpf.html (11 July 2002).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Walden, Ralph E. “IP Header Fields.” URL:
http://www.ee.siue.edu/~rwalden/networking/iphead.html (15 July 2002).

Ziemba, Paul G., Darren Reed, and Paul Traina. “Security Considerations for IP
Filtering.” 5 October 1995. URL: http://www.ietf.org/rfc/rfc1858.txt?number=1858
(19 July 2002).

