
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Using Linux Scripts to Monitor Security
by

Harvey Newstrom

GSEC Practical Requirements (v.1.4)
Option 1 – Research on Topics in Information Security

August 23, 2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.2

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

Table of Contents

1. Abstract 3

2. Purpose 3

3. Linux Commands 4

4. Automating Linux Commands 5

5. Interpreting Results 6

6. Creating a Generic Tool 9

7. Enhancing the Tool 10

8. Applying the Tool to Security Requirements 12
Server configuration change control 13
Performance 13
Availability of server services 14
Availability of other network nodes 14
File integrity 14
Unauthorized web changes or defacement 14
Incoming port scans or other attempts 15
Trojan worm attacks and common backdoor scans 16
SNMP devices 16
Unauthorized servers 17
Specific version levels of software products 17
Log analysis 18
Logging 18

9. Conclusions 18

Appendix A: Complete Example Script 20

Appendix B: Complete Example Output 24

Appendix C: References 25

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.3

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

Abstract1.

This paper will show how to use basic Linux scripting to create a reusable
network security monitor that is easy to use and easy to maintain. The purpose
of this exercise is introduced with suggestions where it might be useful. Linux
commands are discussed, along with techniques to automate them and
interpret their results. Methods for turning these scripts into a generic, reusable
tool that is easy to maintain are demonstrated, along with further suggestions for
enhancing this tool. Various examples are given to show how these techniques
can be applied to various security requirements. The full script including all the
examples and the complete output are given at the end of the paper, along with
a list of references. This should be enough information for security
professionals to start creating their own generic reusable Linux scripts within
their own collection of personal tools.

Purpose2.

Many security professionals find themselves in a position where they do not
have a complete set of commercial security tools. This can occur at a client site
where the tools are lacking, in a low-budget situation where tools cannot be
purchased, or in limited environments where commercial products cannot be
implemented. Even in limited situations, it is unacceptable to try to implement
security without proper tools. Even where extensive commercial tools are
unavailable, each security requirement must be addressed in some way.
Where extensive tools are not available, simpler tools of some sort must be
implemented to enable basic security.

This is where Linux scripting can help. Linux has many powerful commands
that can be utilized to check various aspects of security. These commands can
be harnessed and automated into a generic reusable tool that will provide the
desired results. While such scripts may not always rival extensive commercial
products, they do provide basic functionality, consistency, ease of use, and ease
of maintenance.

This paper will demonstrate how to create such a generic tool. The examples
are written in the bash (GNU Bourne-Again shell) scripting language, since this
is a default shell that is available under most Linux systems. Any other shell or
scripting language can be used as well. Perl provides an excellent scripting
language, but may not be implemented in all environments.

Linux Commands3.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.4

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

Paul Sheer in “Linux: Rute User’s Tutorial and Exposition”
(http://rute.sourceforge.net/node51.html) says that “Unix systems are the
backbone of the Internet. Heavy industry, mission-critical applications, and
universities have always used Unix systems.” There are many powerful Linux
commands that can be used to check various aspects of network security.

The ping command will show whether a machine is available on the network or
not. It can also show timing delays and whether packets are being lost on the
network.

The arp command will lookup the MAC (media access card) hardware address
of a machine. This can be used to verify that the IP address being pinged is
actually the correct hardware device to be checked and not some other device
that has been misconfigured with the same IP address.

The traceroute command will show the route taken by packets to a specific IP
address, as well as the IP address of each router between the two. It also will
show timing delays and whether packets are being lost on the network.

The netstat command will show what connections are currently active between
the local machine and other network machines. On a server this would show
who is connected to the server or communicating with it.

The cksum command or md5sum command will produce a checksum for files
or textual output from another command. This can be used to determine if these
have changed since previous checks.

The lynx command will dump content from web pages. This can be used to
access web-enabled devices on the network and to obtain data from them.

The snmpwalk command will show various MIB (management information base)
variables from snmp-compliant network devices. This can be used to query
such devices and obtain a lot of detailed statistical and status information on
their operations.

The nmap command is a network exploration tool and security scanner. This
can be used to scan IP address ranges to see if any unexpected machines are
found. It also can be used to scan specific ports on specific machines.

The netcat command will scan a range of ports on a specified machine and
report the response from each. For many ports, this will even report the
software and version number running on the port. This can be used to check
software version levels of machines on a network.

Automating Linux Commands4.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.5

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

Basic scripts can be created to automate these commands. This allows a
single script to perform frequent tests. The script can contain hard-coded
commands so that command syntax does not have to be remembered and so
helpful options are not forgotten. Whenever a new technique is discovered, it
can be added to the script for future use. The first chapter of the Advanced
Bash-Scripting Guide (http://mirrors.sunsite.dk/ldp/LDP/abs/html/why-shell.html)
by Mendel Cooper states that “A shell script is a ‘quick and dirty’ method of
prototyping a complex application” and that “Shell scripting hearkens back to the
classical Unix philosophy of breaking complex projects into simpler subtasks, of
chaining together components and utilities.”

Consider this simple environment consisting of a server, five PCs and a DLS
router connecting to the Internet:

Machine: IP Address:
router 192.168.1.1
pc1 192.168.1.201
pc2 192.168.1.202
pc3 192.168.1.203
pc4 192.168.1.204
pc5 192.168.1.205
server 192.168.1.254

These devices can be tested by interactively typing the ping command with a
count of three and observing the results:

ping –c3 routerØ

PING router (192.168.1.1): 56 data bytes
64 bytes from 192.168.1.1: icmp_seq=0 ttl=150 time=0.451 ms
64 bytes from 192.168.1.1: icmp_seq=1 ttl=150 time=0.428 ms
64 bytes from 192.168.1.1: icmp_seq=2 ttl=150 time=0.428 ms
--- router ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.428/0.435/0.451 ms

This shows that the router machine is up on the network. It shows that it is not
losing packets and that its round-trip times appear good. However, it would be
time-consuming to frequently ping every machine and observe these results. A
better method would be to automate a script to automate these commands.
Instead of repeating the above commands for each machine, consider the
following script called “report”:

#!/bin/bash
"report" script to report network status
ping -c3 router
ping -c3 pc1
ping -c3 pc2
ping -c3 pc3
ping -c3 pc4
ping -c3 pc5
ping -c3 server

This script can be typed into a file using any text editor, such as vi or emacs.
The first line tells the Linux system which shell to use to execute this script.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.6

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

(This paper uses the /bin/bash shell because it is a common default on most
Linux systems.) The second line is a comment line starting with “#” and space.
The subsequent lines are the commands that the script will execute. This script
will execute the seven ping commands for when the command name of the
script is typed at the Linux prompt:

reportØ

PING router (192.168.1.1): 56 data bytes
64 bytes from 192.168.1.1: icmp_seq=0 ttl=150 time=0.454 ms
64 bytes from 192.168.1.1: icmp_seq=1 ttl=150 time=0.425 ms
64 bytes from 192.168.1.1: icmp_seq=2 ttl=150 time=0.420 ms
--- router ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.420/0.433/0.454 ms
PING pc1 (192.168.1.201): 56 data bytes
--- pc1 ping statistics ---
3 packets transmitted, 0 packets received, 100% packet loss
PING pc2 (192.168.1.202): 56 data bytes
64 bytes from 192.168.1.202: icmp_seq=0 ttl=255 time=0.383 ms
64 bytes from 192.168.1.202: icmp_seq=1 ttl=255 time=0.360 ms
64 bytes from 192.168.1.202: icmp_seq=2 ttl=255 time=0.371 ms
--- pc2 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.360/0.371/0.383 ms
PING pc3 (192.168.1.203): 56 data bytes
64 bytes from 192.168.1.203: icmp_seq=0 ttl=255 time=0.357 ms
64 bytes from 192.168.1.203: icmp_seq=1 ttl=255 time=0.323 ms
64 bytes from 192.168.1.203: icmp_seq=2 ttl=255 time=0.317 ms
--- pc3 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.317/0.332/0.357 ms
PING pc4 (192.168.1.204): 56 data bytes
64 bytes from 192.168.1.204: icmp_seq=0 ttl=64 time=0.725 ms
64 bytes from 192.168.1.204: icmp_seq=1 ttl=64 time=0.272 ms
64 bytes from 192.168.1.204: icmp_seq=2 ttl=64 time=0.236 ms
--- pc4 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.236/0.411/0.725 ms
PING pc5 (192.168.1.205): 56 data bytes
64 bytes from 192.168.1.205: icmp_seq=0 ttl=255 time=0.359 ms
64 bytes from 192.168.1.205: icmp_seq=1 ttl=255 time=0.341 ms
64 bytes from 192.168.1.205: icmp_seq=2 ttl=255 time=0.324 ms
--- pc5 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.324/0.341/0.359 ms
PING server (192.168.1.254): 56 data bytes
64 bytes from 192.168.1.254: icmp_seq=0 ttl=255 time=0.108 ms
64 bytes from 192.168.1.254: icmp_seq=1 ttl=255 time=0.070 ms
64 bytes from 192.168.1.254: icmp_seq=2 ttl=255 time=0.072 ms
--- server ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.070/0.083/0.108 ms

Interpreting Results5.

While the report command certainly is easier to type than all those ping
commands, the output is not any easier to read. To simplify the output, there
needs to be added functionality in the script. Instead of just automating the
commands, the script should capture the output of these commands, and
automate the evaluation of their results. Consider the following more advanced

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.7

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

version of the report script:

#!/bin/bash
"report" script to report network status

ping=`ping -c3 router | tail -2`
loss=`echo $ping | cut -d"," -f3 | cut -d" " -f2`
delay=`echo $ping | cut -d"=" -f2 | cut -d"." -f1`

if ["$loss" = "100%"] ; then
echo router is not responding at all

elif ["$loss" != "0%"] ; then
echo router is responding with packet loss

else
if ["$delay" -lt 100] ; then

echo router is responding normally
else

echo router is responding slow
fi

fi

This script not only pings the router machine, but also interprets the results to
report if it is losing packets or responding slowly.

The first executable line of the script (ping=`ping –c3 router | tail –2`) captures
the desired ping results and stores it in a variable named “ping”. The “ping=”
sets the variable named $ping to whatever results from the following commands
inside the reverse single quotes (`…`). The first command inside the reverse
single quotes (ping –c3 router) pings the router machine and produces its
normal output. The pipe character (|) forces the output to go through the
following command instead of to the screen as usual. In this line, the following
command (tail –2) extracts the last two lines of the output. It is these last two
lines that get stored into the $ping variable for later use. These two lines contain
the packet-loss report and the round-trip report.

The second executable line of the script (loss=`echo $ping | cut -d"," -f3 | cut -d"
" -f2`) extracts the percent of packet-loss from the ping results and stores it in a
variable called “loss”. The “loss=” sets the variable named “loss” to whatever
results from the following commands inside the reverse single quotes (`…`).
The first command inside the reverse single quotes (echo $ping) merely outputs
the contents of the $ping variable which contains the ping results. The dollar-
sign ($) in the beginning of the variable name references the contents stored in
this variable and not the literal word “ping” itself. The pipe character (|) forces
the output to go through the following command. In this case, the following
command (cut -d"," -f3) extracts the third field of text delimited by commas (,).
This is then piped with another pipe character (|) into another command (cut -d"
" -f2) which extracts the second field delimited by spaces. The end result of this
is to cut off the output after the second comma and then cut out output between
the first and second spaces. If the ping output produces “3 packets transmitted,
3 packets received, 0% packet loss” the script would capture the “0%” in the
$loss variable.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.8

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

The third executable line of the script (delay=`echo $ping | cut -d"=" -f2 | cut -d"."
–f1`) extracts the best delay time from the ping results and stores it in a variable
called “delay”. It is similar to the above line, except in this case it is extracting
the number after the equals-sign (=) and before the decimal point (.) for the
value. This is the number of whole milliseconds that the round-trip ping packet
took to return. If the ping output produces “round-trip min/avg/max =
0.423/0.436/0.451 ms” the script would capture “0” in the $delay variable.

The next paragraph of the script tests these stored variables to interpret the
results and to output conclusions based on these results. The first if-then
statement (if ["$loss" = "100%"] ; then) decides whether the loss is 100%. The
brackets ([…]) invoke the test program to evaluate whatever expression is in-
between them. In this case, it tests whether the variable $loss is equal to (=)
“100%”. The semi-colon (;) allows the “if” and “then” commands to be put on the
same line. This if-then sequence will execute the following command if the
above test is true. If loss is 100%, the following command (echo router is not
responding at all) will report. Only if the above test is false will it continue on
with the “elif” command. This command (short for “else if”) specifies an
alternate test to try if the previous one fails. If loss wasn’t 100%, it will then test
to see if it was not “0%” (elif ["$loss" != "0%"] ; then). If so, it will report it (echo
router machine is responding with packet loss). Otherwise, it continues to the
default (else) case. If all else fails, the if-then-else series will execute this last
case. The script has already tested for total loss and partial loss. The
remaining case is no loss. In this case, it tests for slowness instead. If $delay
is less than (-lt) 100 milliseconds, it reports that router is responding normally,
otherwise it reports that router is responding slowly. (The exact timing that
should be considered “slow” will vary for different environments.)

The above script will perform the ping commands, test the results, and give the
final conclusions in a simplified form. The commands do not have to be
executed separately, the results read, or conclusions drawn. The usage and
output of this script would be simple:

reportØ

router is responding normally

Note that the simplification of the output has complicated the script. The
complexity of command interpretation has been moved from the user into the
script itself. It performs this work for the user. However, an unpleasant side
effect of this is that the script can become very unwieldy. The above script only
tests a single machine. It would have to repeat those lines for all the other
machines. This would produce a very long script that is very difficult to maintain.

Creating a Generic Tool6.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.9

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

Steve Parker says in the Bourne Shell Programming section of his Shell
Scripting Tutorial (http://steve-parker.org/sh/philosophy.shtml) that “A clear
layout makes the difference between a shell script appearing as ‘black magic’
and one which is easily maintained and understood.” It is not sufficient to
merely simplify the invocation and results of the script. The script itself must be
simple to maintain. If the script itself becomes too complex, it merely replaces
network maintenance tasks with script maintenance tasks. It becomes difficult
to add or remove devices to check, and to keep the script working without
errors.

To solve the scripting complexity problem, this complexity can be separated
from the parts of the script that need to be maintained. This can be done by
moving the complex portions of the script out of the way into subroutines. Once
a subroutine is working, it does not need to be maintained or changed as the
script is modified. Instead, there will be a much simpler list of subroutine calls
that will be edited. Consider the script after it is enhanced to use a subroutine to
perform the ping tests:

#!/bin/bash
"report" script to report network status

pingtest() {
ping=`ping -c3 $1 | tail -2`
loss=`echo $ping | cut -d"," -f3 | cut -d" " -f2`
delay=`echo $ping | cut -d"=" -f2 | cut -d"." -f1`

if ["$loss" = "100%"] ; then
echo $1 is not responding at all

elif ["$loss" != "0%"] ; then
 echo $1 is responding with packet loss

else
if ["$delay" -lt 100] ; then

echo $1 is responding normally
else

echo $1 is responding slow
fi

fi
}

pingtest router
pingtest pc1
pingtest pc2
pingtest pc3
pingtest pc4
pingtest pc5
pingtest server

By simply moving the script commands into the “pingtest” subroutine, the
maintenance of the script is greatly simplified. The subroutine itself is defined in
the beginning with its name followed by parenthesis (pingtest()). The subroutine
commands are contained between the curly braces ({…}). The script lines for
the subroutine are simply moved in between the subroutine curly braces, and
the specific $router variable is replaced with the more generic $1 variable.
When the subroutine is invoked by name “pingtest”, the following word on the
line is passed to the subroutine in variable $1. Thus, the first ping test (pingtest
router) executes the subroutine lines using “router” in $1. The second ping test

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.10

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

(pingtest pc1) reuses the same code, this time using “pc1” in $1.

The above script will produce this quick summary of network status:

router is responding normally
pc1 is not responding at all
pc2 is responding normally
pc3 is responding normally
pc4 is responding normally
pc5 is responding normally
server is responding normally

The list of pingtest commands at the end of the script is now much easier to
maintain. More tests can be added simply, without needing to understand the
inner workings of the subroutine. This maintainability is key to making such
scripts truly reusable. This script could be quickly copied into a new
environment and edited with the machine names for that environment to make it
functional there.

Enhancing the Tool7.

One of the benefits of using subroutines and maintainable code is that it makes
the script easy to modify. This means it can be reused easily in new
environments. It also means that it can be quickly enhanced to incorporate new
ideas. Any capability added to the subroutine will be consistently applied to all
checks in the script.

For example, it would be easy to add logging to the pingtest subroutine with an
additional line following each echo line. The `date` command will attach a time-
stamp to each record, and the “>>” appending redirector will send the output to
the end of the “report.log” file. A logging line can be inserted after each echo
that prints to the screen:

echo $1 is not responding at all
echo `date` $1 is not responding at all >>report.log

It is also possible to set up the script to automatically run at regular intervals and
page someone if anything is detected. The crontab command can be used to
set up the script to run at every ten minutes (0, 10, 20, 30, 40, and 50 minutes
after every hour, every day, every month, any weekday). It will invoke the default
text editor to allow you to edit the crontab file.

crontab –eØ

0,10,20,30,40,50 * * * * /usr/local/bin/report

Instead of displaying the error to the screen, it could notify an on-call pager. For
this function, the echo commands would be redirected to the e-mail program
which sends a message to a network-enabled pager. (Of course, if the network

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.11

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

is completely down, the message won’t get through!)

echo router is not responding at all | mail –s'Report' pager@192.168.1.254

It also is possible to reduce the screen clutter and use color-codes to represent
the status of each device. The tput command will look up the specific escape
codes required to display colored text for your particular type of terminal. These
can then be stored in variables for easy use. (The TERM variable must be
correctly set to identify the terminal type. Try typing “TERM=linux” at the
command prompt if the colors do not appear correctly.)

red=`tput bold;tput setaf 1` # bright red text
yellow=`tput bold;tput setaf 3` # bright yellow text
green=`tput setaf 2` # dim green text
blue=`tput bold;tput setaf 4` # bright blue text
purple=`tput bold;tput setaf 5` # bright magenta text
cyan=`tput bold;tput setaf 6` # bright cyan text
normal=`tput sgr0` # normal text

Then the echo commands could be modified to display color codes instead of
longer messages. Red could be used for devices that are not responding,
yellow for devices that are losing packets, blue for devices that are slow, and
green for devices that are OK. The “-n” option on the echo command will leave
the cursor at its position on the current line so that subsequent text can be
echoed onto the same line later. (This needs to specifically include a trailing
space within the single-quotes so there will be spaces between the words.)
This allows the script to output a single color-coded word for each device as
shown here:

 echo -n red1$normal' ' # not responding at all

The output of the report would then be greatly simplified down to a single color-
coded line. In our example, the names of all the machines will show up as
green for good, except for pc1, which shows up as red because it is not
responding:

reportØ

router PC1 pc2 pc3 pc4 pc5 server

One enhancement could be to create html output to display the status screen on
a webpage instead of a terminal console. All that would be required would be to
put html tags in the echo commands, and redirect the results to a webpage file.
It would also be helpful to redirect the results to a temporary file until it is
complete and then move the completed temporary file to the webpage file
quickly. In the example below, the $$ variable is used to append a unique
process-id number to the temporary filename so different users running the
script at the same time will use different temporary files without interfering with
each other.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.12

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

echo '<html><head></head><body>' >> /tmp/report.$$ # start
…
echo '<p style="color: red">pc1</p>' >> /tmp/report.$$ # errors
…
echo '</body></html>' >> /tmp/report.$$ # end
mv –f /tmp/report.$$ /website/report.html # file

Another enhancement could be to use the arp command to verify the hardware
address of the machine being pinged. A misconfigured PC could be using the
same IP as the router. This would cause false responses to be received from
that IP address even when the router is down. It would be a simple matter to
use the arp command to verify that the correct hardware is answering the
pingtest. Once this is added to the subroutine, it applies to all machines
checked with the pingtest. All that would be required is a second parameter to
the pingtest subroutine that specified what hardware address is expected:

pingtest router 12:34:56:78:9a:bc

The arp check would then be added to the pingtest subroutine. It could use the
purple color to indicate that the wrong hardware is answering. The first line
below performs the arp command, grabs the last line, and cuts out the address.
The if-then statement tests the $arp variable to see if it looks like a proper
hardware address with colons in the expected places. If it doesn’t it is set to the
expected result so that no error is reported. This is because the arp cannot get
the hardware address in all cases, such as through a router or firewall. The
script must determine the difference between getting the wrong address and not
getting an address at all. This keeps it generically reusable in all cases. If it
does get a hardware address and it doesn’t match the expected value, then it
would display a purple color for this machine on the screen:

arp=`arp $1|tail -1|cut -c34-50`
if ["${arp:2:1}${arp:5:1}${arp:8:1}${arp:11:1}${arp:14:1}" != ":::::"] ; then

arp="$2"
fi

if ["$arp" != "$2"] ; then
echo -n $purple$1$normal' ' # responding with wrong hardware
echo `date` $1 is responding with wrong hardware >>report.log

elif ["$loss" = "100%"] ; then
etc. continuing with the rest of the pingtest subroutine…

Applying the Tool to Security Requirements8.

So far, the ping command has been used for most of the examples. This is
because it is such a simple command, is available on all platforms, and
provides a variety of information that needs to be captured and interpreted.
However, any command under Linux can be automated in a similar manner.
This section of the paper demonstrates how to apply the generic script to a
variety of security situations.

To automate these commands, consider an even more generic subroutine

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.13

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

called “check”. This subroutine merely compares the actual results of a
command with the desired results, and outputs the name of the check in either
green for good or red for bad. This simple subroutine would look like this:

check() {
if ["$2" != "" –a “$2” $3] ; then

echo -n $green$1$normal' ' # expected result
else

echo -n red1$normal' ' # unexpected results
echo `date` $1 was not $3 >>report.log

fi
}

This subroutine would be invoked with a simple one-line call. The first
parameter would be the name of the check, which would be the colored word
that appears on the screen. The second parameter would be the command to
execute contained in between reverse quotes (`…`). This actually executes the
command in between the reverse quotes and passes the result to the
subroutine. The third parameter is the expected result including the test
command operator, which would be “=” for equals, “!=” for not equals, “-lt” for
less than, and “-gt” for greater than. More information about the test command
can be found in the manual page invoked with the command “man test”.

The generic check subroutine can automate various Linux commands to monitor
specific security requirements, using the same techniques already discussed.
Any command can be automated into the script and its output interpreted. The
head command can be used to extract a specified number of lines from the
beginning of the output. The tail command can be used to extract a specified
number of lines from the end. The grep (get regular expression and print)
command can be used to search for keywords and extract those lines. The cut
command can be used to cut out specific fields out of the lines extracted. The
wc (word count) command can be used to count lines to see if the desired
number of lines was found. Even more complicated editing and manipulation of
output could be performed with the awk command.

Server configuration change control can be checked with various Linux
commands:

echo Server configuration:
check hostname `hostname -s` '= server'
check domain `hostname -d` '= domain.com'
check ipaddress `hostname -i|cut -d" " -f1` '= 192.168.1.254'
check gateway `netstat -nr|grep ^0.0.0.0|cut -c17-27` '= 192.168.1.1'
echo

Performance can be checked with vmstat and df commands:

echo Server performance:
check user-cpu `vmstat 1 2|tail -1|cut -c69-71` '-lt 50'
check system-cpu `vmstat 1 2|tail -1|cut -c73-75` '-lt 50'
check idle-cpu `vmstat 1 2|tail -1|cut -c77-79` '-gt 50'
check diskspace `df | head -2|tail -1|cut -c52-54` '-lt 90'

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.14

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

echo

Availability of server services can be checked with the netstat command:

echo Availability of Services:
check afp-over-tcp `netstat -ltu|grep afpovertcp|wc -l` '-gt 0'
check internet-printer `netstat -ltu|grep ipp|wc -l` '-gt 0'
check ssh `netstat -ltu|grep ssh|wc -l` '-gt 0'
check syslog `netstat -ltu|grep syslog|wc -l` '-gt 0'
echo

Availability of other network nodes can be checked with the pingtest
subroutine as already indicated:

echo Availability of Machines:
pingtest router 12:34:56:78:9a:bc
pingtest pc1 12:34:56:78:9a:bd
pingtest pc2 12:34:56:78:9a:be
pingtest pc3 12:34:56:78:9a:bf
pingtest pc4 12:34:56:78:9a:c1
pingtest pc5 12:34:56:78:9a:c2
pingtest server 12:34:56:78:9a:c3
echo

File integrity can be checked with the md5sum command to detect
unauthorized
changes. The MD5 message-digest algorithm is defined by RFC1321
(http://www.faqs.org/rfcs/rfc1321.html) as an algorithm that “takes as input a
message of arbitrary length and produces as output a 128-bit ‘fingerprint’ or
‘message digest’ of the input. The RFC further states that “it is conjectured that
it is computationally infeasible to produce two messages having the same
message digest.” This makes it excellent so summarize a file or command
output into a hex string that can be verified to remain unchanged:

echo Integrity of Files:
check hostsfile ̀ md5sum /etc/hosts|grep d673d19596a31509157b5c89c3ca11ec |wc -l̀ '= 1'
check passwd ̀ md5sum /etc/passwd|grep ccad8e19f9c3ba3e56876723c92f314c |wc -l̀ '= 1'
check inetd.conf ̀ md5sum /etc/inetd.conf|grep 398b450e5322855cc503f9ebc5a0444a |wc -l̀ '= 1'
echo

Unauthorized web changes or defacement can be detected using the
lynx command to dump out a text-only copy of a webpage and then using
md5sum. The Lynx Users Guide v.2.8.3 (http://lynx.isc.org/release/lynx2-8-
3/lynx_help/Lynx_users_guide.html) describes lynx as “a fully-featured World
Wide Web (WWW) client” that can dump “files on remote systems running http,
gopher, ftp, wais, nntp, finger, or cso/ph/qi servers, and services accessible via
logins to telnet, tn3270 or rlogin accounts.” Note that in the example, the
secondary output for error messages is merged in with the standard output
using the “2>&1” redirector. This forces error messages to go into the regular
output stream instead of directly to the screen. It wouldn’t hurt to do this on all
check subroutine calls if it is not clear when it is needed. (Note that the longer
lines wrap around onto the next line on this page, but they should be typed into a
single line in the script.)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.15

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

echo Integrity of Website:
check www/index.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= 0d60f6cd602d1e7eb31c4e57df8a6bac'
check www/home.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= b705be7b7ca33e0a169a2fe0f5cc3a08'
check www/header.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= 4de3b88cb46e24193cca011c152ace79'
check www/footer.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= 105a15e76cb75ea74a3e50745aaf20d0'
check www/menu.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= 945d1b1ab846a1f5cbd3a6064be2b413'
check www/search.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= 88253e672ec15b86e2278a9f879d9562'
check www/page1.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= 8969a68b5ea7521831c1bf76e2e58c84'
check www/page2.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= dd9a044aa4762cdab4b4ebe8508693d9'
check www/page3.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= 92372dc46db0fec87fbf8c779ffd792d'
echo

Incoming port scans or other attempts can be monitored through a web-
enabled device, such as a Linksys router using the lynx command to access the
data via the web interface. A port scan is described by searchSecurity
(http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci214054,00.html)
as “a series of messages sent by someone attempting to break into a computer
to learn which computer network services, each associated with a ‘well-known’
port number, the computer provides.” The example will detect such attempts in
the web-enabled log of a Linksys router:

echo Incoming attempts:
lynx –auth user:password –dump http://192.168.1.1/inLogTable.htm > /tmp/linksys.log 2>&1
check telnet `grep \ 23$ /tmp/linksys.log|wc -l` '= 0'
check ftp `grep \ 21$ /tmp/linksys.log|wc -l` '= 0'
check ssh `grep \ 22$ /tmp/linksys.log|wc -l` '= 0'
check smtp `grep \ 25$ /tmp/linksys.log|wc -l` '= 0'
check dns `grep \ 53$ /tmp/linksys.log|wc -l` '= 0'
check tftp `grep \ 69$ /tmp/linksys.log|wc -l` '= 0'
check finger `grep \ 79$ /tmp/linksys.log|wc -l` '= 0'
check http `grep \ 80$ /tmp/linksys.log|wc -l` '= 0'
check pop2 `grep \ 109$ /tmp/linksys.log|wc -l` '= 0'
check pop3 `grep \ 110$ /tmp/linksys.log|wc -l` '= 0'
check rpc `grep \ 111$ /tmp/linksys.log|wc -l` '= 0'
check nntp `grep \ 119$ /tmp/linksys.log|wc -l` '= 0'
check ntp `grep \ 123$ /tmp/linksys.log|wc -l` '= 0'
check imap `grep \ 143$ /tmp/linksys.log|wc -l` '= 0'
check netbios-name `grep \ 137$ /tmp/linksys.log|wc -l` '= 0'
check netbios-datagram `grep \ 138$ /tmp/linksys.log|wc -l` '= 0'
check netbios-session `grep \ 139$ /tmp/linksys.log|wc -l` '= 0'
check snmp `grep \ 161$ /tmp/linksys.log|wc -l` '= 0'
check snmptrap `grep \ 162$ /tmp/linksys.log|wc -l` '= 0'
check bgp `grep \ 179$ /tmp/linksys.log|wc -l` '= 0'
check ldap `grep \ 389$ /tmp/linksys.log|wc -l` '= 0'
check ssl `grep \ 443$ /tmp/linksys.log|wc -l` '= 0'
check rexec `grep \ 512$ /tmp/linksys.log|wc -l` '= 0'
check rlogin `grep \ 513$ /tmp/linksys.log|wc -l` '= 0'
check rshell `grep \ 514$ /tmp/linksys.log|wc -l` '= 0'
check lpd `grep \ 515$ /tmp/linksys.log|wc -l` '= 0'
check kazaa `grep \ 1214$ /tmp/linksys.log|wc -l` '= 0'
check ms-sql `grep \ 1433$ /tmp/linksys.log|wc -l` '= 0'
check nfs `grep \ 2049$ /tmp/linksys.log|wc -l` '= 0'
check lockd `grep \ 4045$ /tmp/linksys.log|wc -l` '= 0'
check x-windows `grep \ 6000$ /tmp/linksys.log|wc -l` '= 0'
check gnutella `grep \ 6349$ /tmp/linksys.log|wc -l` '= 0'

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.16

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

check proxy `grep \ 8080$ /tmp/linksys.log|wc -l` '= 0'
echo

Trojan worm attacks and common backdoor scans can be detected using the
same technique described above. Robert Vamosi, in his article “Will 2002 be
the year of the Trojan Horse?” (http://hwreviews.netscape.com/techtrends/0-
6014-8-8724341-1.html) calls 2001 “The Year of the Worm” and predicts 2002 to
be “The Year of the Trojan Horse,” and he predicts it will get worse. The
example detects incoming worm attacks or attempts by hackers to reach
backdoor ports used by Trojan horses:

echo Incoming Trojans and Worms:
check Happy99 `grep \ 119$ /tmp/linksys.log|wc -l` '= 0'
check NetTaxi `grep \ 142$ /tmp/linksys.log|wc -l` '= 0'
check Incognito `grep \ 420$ /tmp/linksys.log|wc -l` '= 0'
check 666 `grep \ 666$ /tmp/linksys.log|wc -l` '= 0'
check Millenium-Worm `grep \ 1338$ /tmp/linksys.log|wc -l` '= 0'
check SocketsdeTroie `grep \ 5001$ /tmp/linksys.log|wc -l` '= 0'
check NetBus-Worm `grep \ 6666$ /tmp/linksys.log|wc -l` '= 0'
check SubZero `grep \ 15382$ /tmp/linksys.log|wc -l` '= 0'
check SubSeven `grep \ 16959$ /tmp/linksys.log|wc -l` '= 0'
check Millenium `grep \ 20000$ /tmp/linksys.log|wc -l` '= 0'
check NetTrojan `grep \ 29104$ /tmp/linksys.log|wc -l` '= 0'
check Back-Oriface `grep \ 31337$ /tmp/linksys.log|wc -l` '= 0'
check NetSpy `grep \ 31339$ /tmp/linksys.log|wc -l` '= 0'
echo

SNMP devices can be accessed with commands such as snmpwalk. The IETF
(Internet Engineering Task Force) has a working group for configuration
management with SNMP (simple network management protocol) called
snmpconf (http://www.ietf.org/html.charters/snmpconf-charter.html) which “will
create a Best Current Practices” document which outlines the most effective
methods for using the SNMP Framework to accomplish configuration
management.”

echo Router interface1 snmp:
check index `snmpwalk router public interfaces.ifTable.ifEntry.ifIndex.1

|cut -d" " -f3` '= 1'
check descr `snmpwalk router public interfaces.ifTable.ifEntry.ifDescr.1

|cut -d" " -f3` '= K32_MAC'
check type `snmpwalk router public interfaces.ifTable.ifEntry.ifType.1 |cut -

d" " -f3` '= ethernetCsmacd(6)'
check mtu `snmpwalk router public interfaces.ifTable.ifEntry.ifMtu.1|cut -

d" " -f3` '= 1500'
check gauge32 s̀nmpwalk router public interfaces.ifTable.ifEntry.ifSpeed.1 |cut -d" " -f4̀

'= 10000000'
check physaddress s̀nmpwalk router public interfaces.ifTable.ifEntry.ifPhysAddress.1 |cut -

d" " -f3̀ '= 12:34:56:78:9a:bc'
check adminstatus s̀nmpwalk router public interfaces.ifTable.ifEntry.ifAdminStatus.1 |cut -

d" " -f3̀ '= up(1)'
check operstatus ̀ snmpwalk router public interfaces.ifTable.ifEntry.ifOperStatus.1 |cut -d"

" -f3̀ '= up(1)'
echo

echo Router interface2 snmp:
check index `snmpwalk router public interfaces.ifTable.ifEntry.ifIndex.2

|cut -d" " -f3` '= 2'
check descr `snmpwalk router public interfaces.ifTable.ifEntry.ifDescr.2

|cut -d" " -f3` '= NE2000'
check type `snmpwalk router public interfaces.ifTable.ifEntry.ifType.2 |cut -

d" " -f3` '= ethernetCsmacd(6)'

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.17

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

check mtu `snmpwalk router public interfaces.ifTable.ifEntry.ifMtu.2|cut -
d" " -f3` '= 1492'

check gauge32 s̀nmpwalk router public interfaces.ifTable.ifEntry.ifSpeed.2 |cut -d" " -f4̀
'= 10000000'

check physaddress s̀nmpwalk router public interfaces.ifTable.ifEntry.ifPhysAddress.2 |cut -
d" " -f3̀ '= 12:34:56:78:9a:bb'

check adminstatus s̀nmpwalk router public interfaces.ifTable.ifEntry.ifAdminStatus.2 |cut -
d" " -f3̀ '= up(1)'

check operstatus ̀ snmpwalk router public interfaces.ifTable.ifEntry.ifOperStatus.2 |cut -d"
" -f3̀ '= up(1)'

echo

Unauthorized servers on the network can be detected with the nmap command or
other port scanners. The nmap home page (http://www.insecure.org/nmap/index.html)
describes nmap as “an open source utility for network exploration or security
auditing” which can detect hosts, services, OS version, firewall filters, and
“dozens of other characteristics.”

echo Portscan:
check pc1:ftp `nmap -p21 pc1|grep open|wc -l` '= 0'
check pc2:ftp `nmap -p21 pc2|grep open|wc -l` '= 0'
check pc3:ftp `nmap -p21 pc3|grep open|wc -l` '= 0'
check pc4:ftp `nmap -p21 pc4|grep open|wc -l` '= 0'
check pc5:ftp `nmap -p21 pc5|grep open|wc -l` '= 0'
check pc1:ssh `nmap -p22 pc1|grep open|wc -l` '= 0'
check pc2:ssh `nmap -p22 pc2|grep open|wc -l` '= 0'
check pc3:ssh `nmap -p22 pc3|grep open|wc -l` '= 0'
check pc4:ssh `nmap -p22 pc4|grep open|wc -l` '= 0'
check pc5:ssh `nmap -p22 pc5|grep open|wc -l` '= 0'
check pc1:telnet `nmap -p23 pc1|grep open|wc -l` '= 0'
check pc2:telnet `nmap -p23 pc2|grep open|wc -l` '= 0'
check pc3:telnet `nmap -p23 pc3|grep open|wc -l` '= 0'
check pc4:telnet `nmap -p23 pc4|grep open|wc -l` '= 0'
check pc5:telnet `nmap -p23 pc5|grep open|wc -l` '= 0'
check pc1:smtp `nmap -p25 pc1|grep open|wc -l` '= 0'
check pc2:smtp `nmap -p25 pc2|grep open|wc -l` '= 0'
check pc3:smtp `nmap -p25 pc3|grep open|wc -l` '= 0'
check pc4:smtp `nmap -p25 pc4|grep open|wc -l` '= 0'
check pc5:smtp `nmap -p25 pc5|grep open|wc -l` '= 0'
echo

Specific version levels of software products can be monitored
using the netcat command to query specif ic ports on remote
machines and interpreting the results. The Debian package for
netcat (http://packages.debian.org/testing/net/netcat.html) describes netcat as
“a simple Unix utility which reads and writes data across network connections
using TCP or UDP protocol.” The package also notes that “it is designed to be a
reliable ‘back-end’ tool that can be used directly or easily driven by other
programs and scripts.” It is a “feature-rich network debugging and exploration
tool, since it can create almost any kind of connection….” Note that in the
example, the commands inside the reverse-quotes (`…`) might return a null
value, so the entire thing is enclosed in double-quotes ("…") so that there isn’t a
missing parameter for the subroutine call. It wouldn’t hurt to do this on all check
subroutine calls if it is not clear when it is needed.

echo SSH-versions:
check pc1-ssh-version "`echo QUIT|netcat -w1 pc1 22|head –1`" '= SSH-1.99-

OpenSSH_3.4p1'
check pc2-ssh-version "`echo QUIT|netcat -w1 pc2 22|head –1`" '= SSH-1.99-

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.18

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

OpenSSH_3.4p1'
check pc3-ssh-version "`echo QUIT|netcat -w1 pc3 22|head -1`" '= SSH-1.99-

OpenSSH_3.4p1'
check pc4-ssh-version "`echo QUIT|netcat -w1 pc4 22|head -1`" '= SSH-1.99-

OpenSSH_3.4p1'
check pc5-ssh-version "`echo QUIT|netcat -w1 pc5 22|head –1`" '= SSH-1.99-

OpenSSH_3.4p1'
echo

Log analysis can be performed by using simple Linux commands to parse logs
for items of interest. The /var/log directory contains the primary “messages” file.
The cups subdirectory contains printer logs if the server is using the Common
Linux Printing System. The httpd subdirectory contains various web logs if the
server is running a website. The ippl subdirectory contains IP protocol logs if the
server is running it. The ircd subdirectory contains irc logs if the server is
running an irc chat room. The news subdirectory contains news logs if the
server is relaying usenet news. There are many combinations of events that can
be extracted from these various log files, and they will be different for every site.
Here are some various examples of log monitoring:

echo Log Monitoring:
check keyboarderrors `grep keyboard /var/log/messages|wc -l` '=

0’
check ssherrors `grep sshd /var/log/messages|wc –l` '= 0'
check newprinters `grep New\ printer /var/log/cups/error_log|wc -l`

'= 0'
echo

Logging can also be achieved by simply recording results with timestamps into
a file. This has already been demonstrated in the report script. The grep
command can extract specific types of log entries to produce various specific
logs. The following commands show what can be extracted from the report.log
file that is created by the report script:

grep router report.log # log of router status records
grep pc1 report.log # log of pc1 status records
grep user-cpu report.log # log of user cpu usage
grep diskspace report.log # log of disk space usage
grep www/index.html report.log # log of website changes
grep finger report.log # log of finger attempts
grep Millenium-worm report.log # log of Millenium worm activity
grep :ftp report.log # log of unauthorized ftp servers
grep ssh-version report.log# log of ssh version levels

Conclusions9.

This should be enough information for security professionals to start creating
their own generic reusable Linux scripts. Basic Linux scripting can be used to
create tools quickly and easily with little cost. It is important to remember to
always make scripts reusable and generic. Otherwise, they will have to be
rebuilt from scratch every time. The more maintainable a script is, the more
likely it is to be adapted to changing requirements and ported to new
environments. More advanced scripting languages are available than the bash

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.19

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

shell script used in this paper, but it is important to consider how widely
available they may be in future environments.

It is suggested that all security professionals maintain their own reusable library
of Linux scripts. Not only will these speed up future projects, but they will also
provide a consistency and quality across all projects. Any good ideas that are
implemented into the script can be reused on later projects. Minor details or
enhancements will not be forgotten. Having one’s own resources can
distinguish a professional from other practitioners who all have the same
toolsets. These resources can also enable allow the professional to remain fully
functional in an environment that is lacking in tools. This allows the security
professional to operate independently and effectively without having to rely on
the provisions of others.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.20

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

Appendix A: Complete Example Script

#!/bin/bash
"report" script to report network status

red=`tput setaf 1` # bright red text
yellow=`tput setaf 3` # bright yellow text
green=`tput setaf 2` # dim green text
blue=`tput setaf 4` # bright blue text
purple=`tput setaf 5` # bright magenta text
cyan=`tput setaf 6` # bright cyan text
normal=`tput sgr0` # normal text

pingtest() {
ping=`ping -c3 $1 | tail -2`
loss=`echo $ping | cut -d"," -f3 | cut -d" " -f2`
delay=`echo $ping | cut -d"=" -f2 | cut -d"." -f1`
arp=`arp $1|tail -1|cut -c34-50`
if ["${arp:2:1}${arp:5:1}${arp:8:1}${arp:11:1}${arp:14:1}" != ":::::"] ; then

arp="$2"
fi

if ["$arp" != "$2"] ; then
echo -n $purple$1$normal' ' # responding with wrong hardware
echo `date` $1 is responding with wrong hardware >>report.log

elif ["$loss" = "100%"] ; then
echo -n red1$normal' ' # not responding at all
echo `date` $1 is not responding at all >>report.log

elif ["$loss" != "0%"] ; then
echo -n $yellow$1$normal' ' # responding with packet loss
echo `date` $1 is responding with packet loss >>report.log

else
if ["$delay" -lt 100] ; then

echo -n $green$1$normal' ' # not responding slow
echo `date` $1 is not slow >>report.log

else
echo -n $blue$1$normal' ' # responding slow
echo `date` $1 is slow >>report.log

fi
fi

}

check() {
if ["$2" != "" -a "$2" $3] ; then

echo -n $green$1$normal' ' # expected result
else

echo -n red1$normal' ' # unexpected results
echo `date` $1 was not $3 >>report.log

fi
}

echo Server configuration:
check hostname `hostname -s` '= server'
check domain `hostname -d` '= domain.com'
check ipaddress `hostname -i|cut -d" " -f1` '= 192.168.1.254'
check gateway `netstat -nr|grep ^0.0.0.0|cut -c17-27` '= 192.168.1.1'
echo

echo Server performance:
check user-cpu `vmstat 1 2|tail -1|cut -c69-71` '-lt 50'
check system-cpu `vmstat 1 2|tail -1|cut -c73-75` '-lt 50'
check idle-cpu `vmstat 1 2|tail -1|cut -c77-79` '-gt 50'
check diskspace `df | head -2|tail -1|cut -c52-54` '-lt 90'
echo

echo Availability of Services:
check afp-over-tcp `netstat -ltu|grep afpovertcp|wc -l` '-gt 0'

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.21

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

check internet-printer `netstat -ltu|grep ipp|wc -l` '-gt 0'
check ssh `netstat -ltu|grep ssh|wc -l` '-gt 0'
check syslog `netstat -ltu|grep syslog|wc -l` '-gt 0'
echo

echo Availability of Machines:
pingtest router 12:34:56:78:9a:bc
pingtest pc1 12:34:56:78:9a:bd
pingtest pc2 12:34:56:78:9a:be
pingtest pc3 12:34:56:78:9a:bf
pingtest pc4 12:34:56:78:9a:c1
pingtest pc5 12:34:56:78:9a:c2
pingtest server 12:34:56:78:9a:c3
echo

echo Integrity of Files:
check hostsfile ̀ md5sum /etc/hosts|grep d673d19596a31509157b5c89c3ca11ec |wc -l̀ '= 1'
check passwd ̀ md5sum /etc/passwd|grep ccad8e19f9c3ba3e56876723c92f314c |wc -l̀ '= 1'
check inetd.conf ̀ md5sum /etc/inetd.conf|grep 398b450e5322855cc503f9ebc5a0444a |wc -l̀ '= 1'
echo

echo Integrity of Website:
check www/index.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= 0d60f6cd602d1e7eb31c4e57df8a6bac'
check www/home.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= b705be7b7ca33e0a169a2fe0f5cc3a08'
check www/header.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= 4de3b88cb46e24193cca011c152ace79'
check www/footer.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= 105a15e76cb75ea74a3e50745aaf20d0'
check www/menu.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= 945d1b1ab846a1f5cbd3a6064be2b413'
check www/search.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= 88253e672ec15b86e2278a9f879d9562'
check www/page1.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= 8969a68b5ea7521831c1bf76e2e58c84'
check www/page2.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= dd9a044aa4762cdab4b4ebe8508693d9'
check www/page3.html `lynx -reload -dump http://192.168.1.253 2>&1 |md5sum

|cut -d" " -f1` '= 92372dc46db0fec87fbf8c779ffd792d'
echo

echo Incoming attempts:
lynx –auth user:password –dump http://192.168.1.1/inLogTable.htm > /tmp/linksys.log 2>&1
check telnet `grep \ 23$ /tmp/linksys.log|wc -l` '= 0'
check ftp `grep \ 21$ /tmp/linksys.log|wc -l` '= 0'
check ssh `grep \ 22$ /tmp/linksys.log|wc -l` '= 0'
check smtp `grep \ 25$ /tmp/linksys.log|wc -l` '= 0'
check dns `grep \ 53$ /tmp/linksys.log|wc -l` '= 0'
check tftp `grep \ 69$ /tmp/linksys.log|wc -l` '= 0'
check finger `grep \ 79$ /tmp/linksys.log|wc -l` '= 0'
check http `grep \ 80$ /tmp/linksys.log|wc -l` '= 0'
check pop2 `grep \ 109$ /tmp/linksys.log|wc -l` '= 0'
check pop3 `grep \ 110$ /tmp/linksys.log|wc -l` '= 0'
check rpc `grep \ 111$ /tmp/linksys.log|wc -l` '= 0'
check nntp `grep \ 119$ /tmp/linksys.log|wc -l` '= 0'
check ntp `grep \ 123$ /tmp/linksys.log|wc -l` '= 0'
check imap `grep \ 143$ /tmp/linksys.log|wc -l` '= 0'
check netbios-name `grep \ 137$ /tmp/linksys.log|wc -l` '= 0'
check netbios-datagram `grep \ 138$ /tmp/linksys.log|wc -l` '= 0'
check netbios-session `grep \ 139$ /tmp/linksys.log|wc -l` '= 0'
check snmp `grep \ 161$ /tmp/linksys.log|wc -l` '= 0'
check snmptrap `grep \ 162$ /tmp/linksys.log|wc -l` '= 0'
check bgp `grep \ 179$ /tmp/linksys.log|wc -l` '= 0'
check ldap `grep \ 389$ /tmp/linksys.log|wc -l` '= 0'
check ssl `grep \ 443$ /tmp/linksys.log|wc -l` '= 0'
check rexec `grep \ 512$ /tmp/linksys.log|wc -l` '= 0'
check rlogin `grep \ 513$ /tmp/linksys.log|wc -l` '= 0'
check rshell `grep \ 514$ /tmp/linksys.log|wc -l` '= 0'
check lpd `grep \ 515$ /tmp/linksys.log|wc -l` '= 0'
check kazaa `grep \ 1214$ /tmp/linksys.log|wc -l` '= 0'

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.22

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

check ms-sql `grep \ 1433$ /tmp/linksys.log|wc -l` '= 0'
check nfs `grep \ 2049$ /tmp/linksys.log|wc -l` '= 0'
check lockd `grep \ 4045$ /tmp/linksys.log|wc -l` '= 0'
check x-windows `grep \ 6000$ /tmp/linksys.log|wc -l` '= 0'
check gnutella `grep \ 6349$ /tmp/linksys.log|wc -l` '= 0'
check proxy `grep \ 8080$ /tmp/linksys.log|wc -l` '= 0'

echo

echo Incoming Trojans and Worms:
check Happy99 `grep \ 119$ /tmp/linksys.log|wc -l` '= 0'
check NetTaxi `grep \ 142$ /tmp/linksys.log|wc -l` '= 0'
check Incognito `grep \ 420$ /tmp/linksys.log|wc -l` '= 0'
check 666 `grep \ 666$ /tmp/linksys.log|wc -l` '= 0'
check Millenium-Worm `grep \ 1338$ /tmp/linksys.log|wc -l` '= 0'
check SocketsdeTroie `grep \ 5001$ /tmp/linksys.log|wc -l` '= 0'
check NetBus-Worm `grep \ 6666$ /tmp/linksys.log|wc -l` '= 0'
check SubZero `grep \ 15382$ /tmp/linksys.log|wc -l` '= 0'
check SubSeven `grep \ 16959$ /tmp/linksys.log|wc -l` '= 0'
check Millenium `grep \ 20000$ /tmp/linksys.log|wc -l` '= 0'
check NetTrojan `grep \ 29104$ /tmp/linksys.log|wc -l` '= 0'
check Back-Oriface `grep \ 31337$ /tmp/linksys.log|wc -l` '= 0'
check NetSpy `grep \ 31339$ /tmp/linksys.log|wc -l` '= 0'
echo

echo Router interface1 snmp:
check index `snmpwalk router public interfaces.ifTable.ifEntry.ifIndex.1

|cut -d" " -f3` '= 1'
check descr `snmpwalk router public interfaces.ifTable.ifEntry.ifDescr.1

|cut -d" " -f3` '= K32_MAC'
check type `snmpwalk router public interfaces.ifTable.ifEntry.ifType.1 |cut -

d" " -f3` '= ethernetCsmacd(6)'
check mtu `snmpwalk router public interfaces.ifTable.ifEntry.ifMtu.1|cut -

d" " -f3` '= 1500'
check gauge32 s̀nmpwalk router public interfaces.ifTable.ifEntry.ifSpeed.1 |cut -d" " -f4̀

'= 10000000'
check physaddress s̀nmpwalk router public interfaces.ifTable.ifEntry.ifPhysAddress.1 |cut -

d" " -f3̀ '= 12:34:56:78:9a:bc'
check adminstatus s̀nmpwalk router public interfaces.ifTable.ifEntry.ifAdminStatus.1 |cut -

d" " -f3̀ '= up(1)'
check operstatus ̀ snmpwalk router public interfaces.ifTable.ifEntry.ifOperStatus.1 |cut -d"

" -f3̀ '= up(1)'
echo

echo Router interface2 snmp:
check index `snmpwalk router public interfaces.ifTable.ifEntry.ifIndex.2

|cut -d" " -f3` '= 2'
check descr `snmpwalk router public interfaces.ifTable.ifEntry.ifDescr.2

|cut -d" " -f3` '= NE2000'
check type `snmpwalk router public interfaces.ifTable.ifEntry.ifType.2 |cut -

d" " -f3` '= ethernetCsmacd(6)'
check mtu `snmpwalk router public interfaces.ifTable.ifEntry.ifMtu.2|cut -

d" " -f3` '= 1492'
check gauge32 s̀nmpwalk router public interfaces.ifTable.ifEntry.ifSpeed.2 |cut -d" " -f4̀

'= 10000000'
check physaddress s̀nmpwalk router public interfaces.ifTable.ifEntry.ifPhysAddress.2 |cut -

d" " -f3̀ '= 12:34:56:78:9a:bb'
check adminstatus s̀nmpwalk router public interfaces.ifTable.ifEntry.ifAdminStatus.2 |cut -

d" " -f3̀ '= up(1)'
check operstatus ̀ snmpwalk router public interfaces.ifTable.ifEntry.ifOperStatus.2 |cut -d"

" -f3̀ '= up(1)'
echo

echo Portscan:
check pc1:ftp `nmap -p21 pc1|grep open|wc -l` '= 0'
check pc2:ftp `nmap -p21 pc2|grep open|wc -l` '= 0'
check pc3:ftp `nmap -p21 pc3|grep open|wc -l` '= 0'
check pc4:ftp `nmap -p21 pc4|grep open|wc -l` '= 0'
check pc5:ftp `nmap -p21 pc5|grep open|wc -l` '= 0'
check pc1:ssh `nmap -p22 pc1|grep open|wc -l` '= 0'
check pc2:ssh `nmap -p22 pc2|grep open|wc -l` '= 0'

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.23

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

check pc3:ssh `nmap -p22 pc3|grep open|wc -l` '= 0'
check pc4:ssh `nmap -p22 pc4|grep open|wc -l` '= 0'
check pc5:ssh `nmap -p22 pc5|grep open|wc -l` '= 0'
check pc1:telnet `nmap -p23 pc1|grep open|wc -l` '= 0'
check pc2:telnet `nmap -p23 pc2|grep open|wc -l` '= 0'
check pc3:telnet `nmap -p23 pc3|grep open|wc -l` '= 0'
check pc4:telnet `nmap -p23 pc4|grep open|wc -l` '= 0'
check pc5:telnet `nmap -p23 pc5|grep open|wc -l` '= 0'
check pc1:smtp `nmap -p25 pc1|grep open|wc -l` '= 0'
check pc2:smtp `nmap -p25 pc2|grep open|wc -l` '= 0'
check pc3:smtp `nmap -p25 pc3|grep open|wc -l` '= 0'
check pc4:smtp `nmap -p25 pc4|grep open|wc -l` '= 0'
check pc5:smtp `nmap -p25 pc5|grep open|wc -l` '= 0'
echo

echo SSH-versions:
check pc1-ssh-version "`echo QUIT|netcat -w1 pc1 22|head –1`" '= SSH-1.99-

OpenSSH_3.4p1'
check pc2-ssh-version "`echo QUIT|netcat -w1 pc2 22|head –1`" '= SSH-1.99-

OpenSSH_3.4p1'
check pc3-ssh-version "`echo QUIT|netcat -w1 pc3 22|head -1`" '= SSH-1.99-

OpenSSH_3.4p1'
check pc4-ssh-version "`echo QUIT|netcat -w1 pc4 22|head -1`" '= SSH-1.99-

OpenSSH_3.4p1'
check pc5-ssh-version "`echo QUIT|netcat -w1 pc5 22|head –1`" '= SSH-1.99-

OpenSSH_3.4p1'
echo

echo Log Monitoring:
check keyboarderrors `grep keyboard /var/log/messages|wc -l` '= 0'
check ssherrors `grep sshd /var/log/messages|wc -l` '= 0'
check newprinters `grep New\ printer /var/log/cups/error_log|wc -l` '= 0'
echo

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.24

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

Appendix B: Complete Example Output

Server configuration:
hostname domain ipaddress gateway

Server performance:
user-cpu system-cpu idle-cpu diskspace

Availability of Services:
afp-over-tcp internet-printer ssh syslog

Availability of Machines:
router PC1 pc2 pc3 pc4 pc5 server

Integrity of Files:
hostsfile passwd inetd.conf

Integrity of Website:
www/index.html www/home.html www/header.html www/footer.html www/menu.html
www/search.html www/page1.html www/page2.html www/page2.html

Incoming attempts:
telnet ftp ssh smtp dns tftp finger http pop2 pop3 rpc nntp ntp imap netbios-
name netbios-datagram netbios-session snmp snmptrap bgp ldap ssl rexec rlogin
rshell lpd kazaa ms-sql nfs lockd x-windows gnutella proxy

Incoming Trojans and Worms:
Happy99 NetTaxi Incognito 666 Millenium-Worm SocketsdeTroie NetBus-Worm
SubZero SubSeven Millenium NetTrojan Back-Oriface NetSpy

Router interface1 snmp:
index descr type mtu gauge32 physaddress adminstatus operstatus

Router interface2 snmp:
index descr type mtu gauge32 physaddress adminstatus operstatus

Portscan:
pc1:ftp pc2:ftp pc3:ftp pc4:ftp pc5:ftp
pc1:ssh pc2:ssh pc3:ssh pc4:ssh pc5:ssh
pc1:telnet pc2:telnet pc3:telnet pc4:telnet pc5:telnet
pc1:smtp pc2:smtp pc3:smtp pc4:smtp pc5:smtp

SSH-versions:
pc1-ssh-version pc2-ssh-version pc3-ssh-version pc4-ssh-version pc5-ssh-version

Log Monitoring:
keyboarderrors ssherrors newprinters

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.25

Using Unix Scripting to Monitor Security GSEC Practical Requirements (v.1.4)
Harvey Newstrom August 23, 2002

Appendix C: References

Cooper, Mendel. “Why Shell Programming?” Advanced Bash-Scripting Guide.
Version 1.5. 13 July 2002. URL: http://mirrors.sunsite.dk/ldp/LDP/abs/html/why-
shell.html (23 Aug 2002).

Foster, Decklin. “Package: netcat 1.10-22” Debian Project. 18 Aug 2002.
URL: http://packages.debian.org/testing/net/netcat.html (23 Aug 2002).

Fyodor. “Introduction” Nmap Free Security Scanner. 10 Aug 2002. URL:
http://www.insecure.org/nmap/index.html (23 Aug 2002).

Internet Engineering Task Force. “Description of Working Group” Configuration
Management with SNMP (snmpconf) Charter. 21 May 2002. URL:
http://www.ietf.org/html.charters/snmpconf-charter.html (23 Aug 2002).

Internet Software Consortium. “Preface” Lynx User’s Guide. Version 2.8.3. July 2001.
URL: http://lynx.isc.org/release/lynx2-8-3/lynx_help/Lynx_users_guide.html (23
Aug 2002).

Parker, Steve. “Philosophy” Shell Scripting Tutorial. 9 April 2002. URL:
http://steve-parker.org/sh/philosophy.shtml (23 Aug 2002).

Rivest, R. “Executive Summary” The MD5 Message-Digest Algorithm. RFC-
1321. April 1992. URL: http://www.rfc-editor.org/rfc/rfc1321.txt (23 Aug 2002).

SearchSecur i t y . “Por t Scan” Def in i t i ons . 31 Ju ly 2001 . URL:
http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci214054,00.html (23
Aug 2002).

Sheer, Paul. “What are Unix systems for? What can Linux do?” Linux: Rute
User’s Tutorial and Exposition. URL: http://rute.sourceforge.net/node51.html (23
Aug 2002).

Vamosi, Robert. “Will 2002 be the Year of the Trojan Horse?” Security Watch. 6
February 2002. URL: http://hwreviews.netscape.com/techtrends/0-6014-8-
8724341-1.html (23 Aug 2002).

