
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

MTA based Virus Scanning with Sun One Messaging and Sophos

David A. Evans
GSEC Practical Assignment
Version 1.4 Option B

Abstract

This case study explains how Sun’s iPlanet Messaging Server 5.2 (iMS 5.2) and
Sophos Anti-Virus Software were configured together in order to stop E-mail
viruses from entering a company network. This was achieved by creating four
Internet facing MTA gateways that handle all incoming and outgoing mail for the
company.

This paper begins with an overview of the messaging environment before the
MTA was put in place. Next details on the MTA placement and design are
covered. Following this instruction on how to configure iPlanet Messaging and
Sophos together are given. Finally I conclude with details on a custom reporting
system I developed which provides graphical statistical charts in daily, weekly
and monthly views.

Scenario Overview

Here I attempt to paint a picture of the messaging environment before the
implementation of the virus scanning solution detailed in this paper. I also
explain where it fits into a larger project that had the objective to strengthen
messaging security for the entire company.

The global company houses over 300 internal mail servers that serve
approximately 60,000 users worldwide. Currently anti-virus (AV) software is
deployed at the desktop level and on a few select internal mail servers. The
company Internet firewalls allow unmonitored SMTP traffic (port 25) inbound to
all 300 internal mail servers and there are no restrictions on outbound SMTP
traffic. The company’s security team is faced with the daunting task of assuring
all 300 internal mail servers, which run a variety of mail server software, on
various operating systems are up to date with the latest patches and are
configured securely. When the latest fast spreading virus or worm hits the
Internet the frantic task of pushing out the latest virus definition files to all 60,000
users begins.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The company security policy states all mail servers should:

• Not accept message attachments that have certain file extensions (such
as .exe .vbs etc…)

• Scan E-mail for viruses
• Not relay messages for IP addresses that are not listed as trusted on the

company’s security website

It is unknown to what degree or how many of the servers are in accordance with
this policy.

Review of the before snapshot

The goal of the new message architecture design was to address several
security issues outlined above. The external exposure of over three hundred
mail servers is a risk. Especially in an environment were there is constant
personal change and the servers are geographically distributed all over the
world. By making the server not directly accessible from the Internet we are still
exposed to the very real internal threat but we reduce our risk from the external
threats. In addition it provides four points where all external message traffic
flows this gives much greater control to enforce messaging policy.

Product Selection

Several different products were evaluated for the purpose of this project but
eventually iPlanet Messaging was selected for its interoperability with LDAP and
based on in house experience with the product. Future phases of this project will
include configuring the iPlanet MTA servers to operate with the corporate LDAP
directory. As the MTA servers receive an incoming message they will do an
LDAP query against the corporate directory, which will validate that there is an
actual account before accepting the message into the Company network.

When selecting the Anti-virus product it was important to choose a different
company other than Mac Fee, which is the software deployed at the desktop
level for virus protection. The reasoning behind this was to have two separate
companies that provide virus definition files used to detect message viruses and
protect our users. This gives us two separate sources to which we rely a pond
for virus protection. This follows the defense in depth strategy, which is a core
concept in many areas of information security.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

MTA Placement and Design

To give explanation where the iPlanet/Sophos anti-virus design was used I begin
with the high-level overall architectural design of the project. Four MTAs were
built and placed in different geographical regions of the world. Having more than
one MTA gateway not only serves better to handle the current and future
demands of the companies mail traffic but also provides a level of fault tolerance.
For example if one MTA is made inaccessible by perhaps a type of denial of
service attack, RFC 2821 states:

To provide reliable mail transmission, the SMTP client MUST be able to
try (and retry) each of the relevant addresses in this list in order,
until a delivery attempt succeeds. However, there MAY also be a
configurable limit on the number of alternate addresses that can be
tried. In any case, the SMTP client SHOULD try at least two addresses.

1 RFC 2921, p. 60

So if one MTA is not reachable all RFC compliant mail servers should attempt
another MX record listed before marking the message undeliverable. In order for
this to work all DNS records were changed for all internal domains to list the four
MTA servers as domain handling MX records. If the sending server fails to
connect to an MTA silenced by the denial of service attack or network outage it
will simply attempt another MTA servers. Here is an example of the MX records
listed for a sample company domain.

subdomain.company.com mail is handled (pri=100) by mta01.company.com
subdomain.company.com mail is handled (pri=100) by mta02.company.com
subdomain.company.com mail is handled (pri=100) by mta03.company.com
subdomain.company.com mail is handled (pri=100) by mta04company.com
Figure 1 Example of the MX records for subdomain.company.com after the MTA
implementation

Notice the internal mail server that hosts the domain subdomain.company.com is
no longer visible from the outside world. All mail will now be routed to one of the
four MTA servers and static routes defined on the MTA servers will direct mail to
the correct internal mail server. This design allows us to change the firewall rules
from allowing port 25 traffic inbound from 300 servers to four and completely
close port 25 access outbound with the exception of the four MTA servers. By
not allowing anyone external to the company to connect to port 25 across the
internal mail severs we greatly reduce the risk of becoming a victim of the latest
sendmail or exchange buffer overflow exploit by reducing our exposure to
external threats. Before we can limit SMTP traffic outbound to the four MTA
servers all internal mail servers must make configuration changes to list the
nearest MTA server as a smart host.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Figure 2 Image showing the placement of the MTA in relation to the company firewalls and

the Internet

At this point I would like to bring up the fact that a better design perhaps would
be to place the MTA servers off an Internet border firewall interface in a DMZ.
With the restrictive firewall rules this would limit the damage that could be done if
someone gained unauthorized access to one of the MTA servers. This was not
done during this project for internal reasons.

Details of building the Virus-Scanning, Spam-blocking MTA

Each of the MTAs were built on Sun Fire V880s running Solaris 8. After the disk
raids were configured the OS hardened was harden. The servers were hardened
using a custom company YASSP script; more information on YASSP can be
found here http://www.yassp.org/. Next iPlanet Messaging server was installed.
The installation is fairly straight forward, the installation guide can be found here:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://docs.sun.com/source/816-6014-10/index.html

After installing the Messaging software Sophos Anti Virus was installed.
Installation instructions for Sophos a can be found here:

 http://www.sophos.com/sophos/docs/eng/instguid/unix_ien.pdf

NOTE: During the installation process it is important to check all file and directory
permissions and to assure they are owned by the username the mail sever runs as.

Once the Sophos software has been installed the next step is to configure iPlanet
to use Sophos to scan its message traffic. Before we do this we must introduce
the concept of iPlanet messaging channels. It is important to understand the
concept of channels and how the message server uses them. For a good
explanation of the term I refer to the iMS 5.2 Administration guide.

The channel is the fundamental MTA component that processes a
message. A channel represents a connection with another computer
system or group of systems. The actual hardware connection or
software transport or both may vary widely from one channel to the
next.

Channels perform the following functions:

• Transmit messages to remote systems, deleting them from their
queue after they are sent.

• Accept messages from remote systems, placing them in the
appropriate channel queues.

• Deliver messages to the local message store.
• Deliver messages to programs for special processing.

Messages are enqueued by channels on the way into the MTA and
dequeued on the way out. Typically, a message enters via one
channel and leaves by another. A channel might dequeue a message,
process the message, or enqueue the message to another MTA channel

1 iPlanet Administration Guide, p. 101.
http://docs.sun.com/source/816-6009-10/mtacncpt.htm#22760

There are two default channels that accept all mail received by the MTA and they
are:

• tcp_local
• tcp_intranet

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

All messages that are defined as internal to the MTA (as specified in the
mappings file) will first be queued to the tcp_intranet channel and all others --
considered external-- will be queued to the tcp_intranet channel. IPlanet
determines whether a message is arriving from internal or external by definitions
defined in the mappings file. The default location for the mappings file is:

server_root/msg-instance/imta/config/mappings

In the mappings file you can specify which IP address that the server will relay
mail for. This IP range is also used to determine what the server considers
internal messages. Below is the section of the mappings file that defines this:

INTERNAL_IP

 $(192.168.228.0/24) $Y
 $(192.168.229.0/24) $Y
 $(192.168.230.0/24) $Y
 $(192.168.231.0/24) $Y
 $(192.168.115.0/24) $Y
 $(192.168.114.0/24) $Y
 $(192.168.116.0/24) $Y
 $(192.168.117.0/24) $Y
 $(192.168.118.0/24) $Y
 $(192.168.119.0/24) $Y
 127.0.0.1 $Y
 * $N

A common security mistake made by mail administrators is to configure the
server to relay for anyone, hence making the server an open-relay. Spammers
commonly exploit this configuration by sending large amounts of unsolicited
messages through severs with this configuration in attempt to avoid the
repercussions of sending spam. Not only will this activity drain your servers
resources but it also may cause your server to end up on a spam prevention
black list such as the MAPS RSS list (http://work-rss.mail-abuse.org/rss/). To
ensure your server is not configured as an open relay include the following after
defining which IP address you will relay for.

 * $N

This says if the IP address did not match any of the above cases do not relay
messages for it.

This will prevent messages arriving from the Internet from being relayed back out
to the Internet. In PMDF terms this prevents messages from taking the channel
path tcp_local -> tcp_local. This does not necessarily protect you from
spammers relaying messages through your MTA. The default iPlanet
configuration allows messages through in the following format
somebody@xyz.com@subdomain.company.com. With some mail servers you
may find that the server will accept this message and strip the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

@subdomain.company.com from the message then send the message to
somebody@xyz.com. If you have an internal mail server that exhibits this
behavior then there will exist a way to relay messages through your companies
mail system. Below is a graph showing such a possible scenario.

Figure 3: Example showing the relaying of mail through the MTA gateway

This was discovered during the implementation of the MTA servers and was
actually exploited by an external source. To prevent this a few rules need to be
added to the iPlanet mappings file. These go in the section below the keyword:
ORIG_SEND_ACCESS

 tcp_local|*|*|*$%*.company.com@* tcp_local|$0|$1|$2@$4$R
 tcp_local|*|*|*$%comany.com@* tcp_local|$0|$1|$2@3R
 tcp_local|*|*|*$%*.comany.com$%*@* tcp_local|$0|$1|$2@$5$R
 tcp_local|*|*|*$%comany.com$%*@* tcp_local|$0|$1|$2@$4$R
 tcp_local|*|*|*$%*.*@* $NRelaying$ not$ permitted
 tcp_local|*|*|*.*!*@* $NRelaying$ not$ permitted
 tcp_local|*|*|"*@*"@comany.com $NRelaying$ not$ permitted
 tcp_local|*|*|"*@*"@*.comany.com $NRelaying$ not$ permitted
 tcp_local|*|*|@*:"*@*"@comany.com $NRelaying$ not$ permitted
 tcp_local|*|*|@*:"*@*"@*.comany.com $NRelaying$ not$ permitted
 tcp_local|*|*|@*:*@*.comany.com $Y
 tcp_local|*|*|@*:*@comany.com $Y
 tcp_local|*|*|@*:*@* $NRelaying$ not$ permitted

Reference: http://www.innosoft.com/app-notes/relay.html

Notice in the rule set above we are blocking messages formatted with the % @
email address format as well as others.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Virus Scanning

With iMS 5.2 the virus scanning is invoked from the conversion channel. Here
are two sentences taken from the iPlanet Administration 5.2 guide that give some
insight to what the conversion channel is and does.

“The conversion channel allows you to perform arbitrary body part-by-body part
processing on specified messages flowing through the MTA.”

“This is a default channel that is created in the MTA configuration file and can be
used as is with no modification.”
1 iPlanet Administration Guide, p. 278.
http://docs.sun.com/source/816-6009-10/channel2.htm#42159

Below is a block diagram that shows the path an external message takes as it
passes through the MTA.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Figure 4: Image showing an example path an external message would take as it

passes through the MTAs channels

We can specify which attachments are to be scanned with another configuration
file, which is simply called conversions. The default location of this file is
server_root/msg-instance/imta/conversions. In this file we specify the criteria for
the types of message attachments we want to scan. Here is a simple example of
the entry you would include if you wanted to scan all message attachments of
MIME type application.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

!
! Message parts which have a MIME-type of "APPLICATION/octet-stream",
! should be processed by the "multiscan.sh" command.
!
in-channel=*; in-type=application; in-subtype=*;
 parameter-symbol-0=NAME; parameter-copy-0=*;
 dparameter-symbol-0=FILENAME; dparameter-copy-0=*;
 message-header-file=2; original-header-file=1;
 override-header-file=1; override-option-file=1;
 command="/server_root/msg-instance/imta/bin/multiscan.sh"

There are two things to mention here. One is comment lines are specified by
beginning with the “!” character. Second is the last line.

command="/server_root/msg-instance/imta/bin/multiscan.sh"

With this line we are stating all messages that match the criteria specified by the
first line should be processed by the script multiscan.sh. This leads us to the
next section with explains what this script is and how it is used to marry iPlanet
and Sophos.

Multiscan.sh

The multiscan.sh is a shell script that gives instructions on what tests are to be
preformed against the selected message attachment. The multiscan.sh script
contains several function calls; the actual functions are defined in the script
ScriptFunctions. Anthony Waldron wrote these scripts while he worked at
Innosoft International. Innosoft was acquired by Sun but before the acquisition
Innosoft sold their PDMF product to Process software, which is where you can
find the two scripts.

http://www.process.com/techsupport/pmdf/conversion/library/multiscan.sh

http://www.process.com/techsupport/pmdf/conversion/library/scriptfunctions

To configure the script to run the Sophos sweep command against the selected
message attachments simply uncomment the line that contains sophos_sweep.
The virus scan directory (VSCANDIR) should be set to a directory in which you
want to keep the virus scan reports. Each time a message is found to be virus
infected Sophos outputs a report. Shown below is the section of the multiscan.sh
script where you define the shell variable VSCANDIR.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Prep for a sophos sweep.

VSCANDIR="/pmdf/log/VIRUS"
RECORD_FILE="${VSCANDIR}/VirusScan-${REFERENCE_ID}"
DIAGNOSTIC_MSG="Possible Virus Detected"
ERROR_POINTER_URL="http://www.duhmayne.eju/email/viruses.html"

 #===>>># sophos_sweep
#^^^^^^^^ Uncomment if you wish to launch sophos_sweep

After every sub routine call in multiscan.sh there is an IF statement that tests to
see if the variable RED_FLAG was set in the function call. This variable is set to
1 if the sweep command finds the attachment positive for a virus infection. After
the function sophos_sweep has been called the IF statement checks to see if the
message contained a virus. If it is true a number of function calls may be called.
The default provides functions perform the following:

• Create a virus report of the infected message and place this in the
directory defined by the variable VSCANDIR

• Bounce the entire message
• Replace the infected attachment with a substitute note
• Mark the message as held
• Silently delete the infected attachment

Here is an example where we have configured the script to create a virus report
and then substitute the virus-infected attachment with a subsitue.txt file. The text
message included in the substitute.txt message is defined in the scriptfunctions
file.

if [$RED_FLAG -eq 1]
then
 write_record # Log the MIME information of this message part
 substitute_part # Replace affected part with a substitute note.
 #force_delete # Delete the current message part.
 #force_bounce # Bounce the entire message.
 #force_hold # Mark the message as .HELD
 exit
fi

Although these are the only functions offered by default it is fairly easy to
customize the script to include your own subroutine that performs an action on a
message that is not included here.

If you have installed sweep in the default location of /usr/local/ and the ide files in
the directory /usr/local/ide/ then no modifications are needed to scriptfunctions.
Else modify the lines LD_LIBRARY_PATH and SAV_IDE to match your
installation.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

sophos_sweep () {
 LD_LIBRARY_PATH=/usr/local/sweep/lib
 SAV_IDE=/usr/local/sweep/ide
 export LD_LIBRARY_PATH SAV_IDE
 CONVERTER_COMMAND="/usr/local/sweep/bin/sweep -sc -ss"
 ${CONVERTER_COMMAND} $INPUT_FILE >${RECORD_FILE}.scan 2>&1
 RETURN_STATUS=$?
 if [$RETURN_STATUS -eq 3]
 then
 RED_FLAG=1
 else
 rm -f ${RECORD_FILE}.scan
 fi
}

In the multiscan.sh script you can also configure it to perform other tests against
the message. Here we could have another virus scanner product also scan the
message. Arguments for this were made in a paper posted in the Sans reading
room titled “One Virus Engine Is Not Enough: The Case for Maximizing Network
Protection with Multiple Anti-virus Scanners”.

A lot of companies security policies today state that their servers should reject
messages that contain attachments ending in certain extensions such as .vbs or
.exe. This is often in attempt to protect their users from malware. To do this with
multiscan locate the sub routine call suffix_scan in the multiscan.sh script and
configure it as the example below.

Prep for a suffix scan

RECORD_DIR="${SERVER_ROOT}/log/scan"
RECORD_FILE="${RECORD_DIR}/MyScan-${REFERENCE_ID}"
DIAGNOSTIC_MSG="A potentially executable attachment was found in this
email."
ERROR_POINTER_URL="http://security.com/

if you wish to launch this type of scan
 suffix_scan .exe .src .vbs

See if the FLAG was changed after the converter was 'launch'ed

if [$RED_FLAG -eq 1]
then
 write_record # Log the MIME information of this message part
substitute_part # Replace affected part with a substitute note.
force_delete # Delete the current message part.
send_email
 force_bounce # Bounce the entire message
force_hold # Mark the message as .HELD
 exit
fi

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

In the above example we cause the MTA to bounce all message back to the
recipient if they contain an attachment that contains the extension .exe, .src or
.vbs.

We have now gone over how iPlanet/Sophos were configured together to scan
viruses and reject messages based on extensions. After the server has been
built and Sophos configured and put in production we may find all of our work in
vain if the Antivirus definition files are not regularly updated. In the next section
we go over how to configure the server to automatically update these virus
definitions.

Procedures for automating the updating of Sophos software

Sophos anti-virus consists of a command line utility called sweep. As with most
virus scanning software there are two main parts to sweep, the virus-scanning
engine and the virus definition files. As it is crucial to stay up to date with the
latest version of each I will explain one solution to automate this process.

Sophos does two things that make this possible. One they make their newly
published versions of the virus engine and definition files available from their web
site. Second they provide a subscription-based mailing list, which sends an
email indicating when the new versions of their software are available. A few
software packages are required to be installed on the system for this to work.

The GNU Wget package, which can be found here:
 http://wget.sunsite.dk/

and the GNU grep which can be found here:
http://www.gnu.org/software/grep/grep.html

With the availability of wget and grep we are able to create shell scripts that will
download the latest software updates from the Sophos web site and proceed with
the installation when invoked. Included below is the source to a script that will
update the virus engine when called. Both of the scripts below were originally
obtained from a Sophos Sales engineer some small modifications were made.
Sophos redesigned their web site and the location of where their software
updates were kept so the scripts were adjusted.

#!/bin/bash

file2get="solaris.sparc.tar.Z"
#file2get="linux.intel.libc6.tar.Z"
#uzipdfile="linux.intel.libc6.tar"
uzipdfile="solaris.sparc.tar"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

sav_install_dir="/usr/local/sweep/sav"
ide_install_dir="/usr/local/sweep/ide"
sav_directory="sav-install"
PATH=/usr/local/bin:/bin:/sbin:/usr/local/sweep; export PATH
LD_LIBRARY_PATH=/usr/local/sweep/lib; export LD_LIBRARY_PATH
tmpdir="/tmp/sav"
WGET='/usr/local/wget/bin/wget -C off'
if [! -d $tmpdir]; then
 echo "No temp directory"
 echo "Creating temp dir"
 mkdir $tmpdir
 echo "Created temp dir"
fi
user="Username given by Sophos"
passwd="Password given by Sophos"

echo "Checking installed version of sweep..."
get_cur_ver=`sweep -v | sed -e '/[Pp]roduct [Vv]ersion/!d'`
cur_ver=`echo $get_cur_ver | sed -e 's/[^0-9]//g'`
echo "Current version of SAV running is $cur_ver"

cd $tmpdir

$WGET --http-user=$user --http-passwd=$passwd
http://downloads.sophos.com/sophos/products/full/$file2get
uncompress $file2get
tar -xvf $uzipdfile

if [-d $tmpdir/$sav_directory]; then
 web_ver=`ls $tmpdir/$sav_directory/*dat | sed -e 's/[^0-9]//g'`
 echo $web_ver
else
 echo "Could not download/untar the current web version SAV"
fi

if ["$web_ver" -gt "$cur_ver"]; then
 echo "SAV running on your system is outdated"
 mv $ide_install_dir/*.ide $ide_install_dir/archive/
 sh $tmpdir/$sav_directory/install.sh -v -ni -d /usr/local/sweep
 sleep 5
 ksh /usr/local/sweep/bin/getide
else
 echo "The current version of SAV installed on your system is up to
date"
fi
cd /tmp
if [-d $tmpdir]; then
 rm -rf $tmpdir
fi

Notice if the script finds that it has downloaded a newer virus engine than the one
installed it performs the installation and then calls a script called getide. This
script is defined below and when called downloads and installs the latest IDE
files released on the Sophos web site. Below is the source to this script.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

#!/bin/ksh

Sample shell script to download and update IDE files
Relies on environment variable SAV_IDE being set
This should usually point to /usr/sav or /usr/local/sav
depending on how you have installed sav on your system

SAV_IDE=/usr/local/sweep/ide

Put your username and password for the Sophos site here

sav_user="Username given by Sophos"
sav_pw="Password given by Sophos"

Change the following line to point to local copy of wget, or change
all
three if you want to use something other that wget that can get a
file
from a web site and dump it to a file
WGET='/usr/local/wget/bin/wget -C off'

Change this line to show where SAV is installed

#sav_install_root=/usr/local
sav_install_root=/usr/local/sweep

This script doesn't know where sweep is
SWEEP="$sav_install_root/bin/sweep"
LD_LIBRARY_PATH="$sav_install_root/lib";export LD_LIBRARY_PATH

tmpdir='/tmp/ides'
gotfile="$tmpdir/ides.zip"
#geturl='http://www.sophos.com.au/downloads/ide'
geturl='http://www.sophos.com/downloads/ide'

if [$SAV_IDE] ; then
 idedir=$SAV_IDE
else
 echo "SAV_IDE not defined - don't know where to put ides"
 exit
fi

echo $idedir
if [! -d "$idedir"] ; then
 echo "Target IDE dir $idedir doesn't exist - creating it"
 mkdir $idedir
fi

if [-e "$tmpdir"] ; then
 rm -Rf "$tmpdir"
fi

mkdir "$tmpdir"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

echo "sweep is `which $SWEEP`"

if ["$1"] ; then
 filename="$geturl/$1_ides.zip"
else
 filename="$geturl/`$SWEEP -v | \
 sed -e '/[Pp]roduct [Vv]ersion/!d' -e 's/[^0-9]//g'`_ides.zip"
fi

echo "Getting $filename into $gotfile"
$WGET -O "$gotfile" "$filename"

if [-f "$gotfile"] ; then
 echo Extracting IDEs
 cd "$tmpdir"
 unzip "$gotfile"
 if [$? -eq 0] ; then
 echo Extraction successful
 echo $idedir
 echo `ls $idedir/*.ide`
 echo These files will be deleted
 rm -f $idedir/*.ide
 mv *.ide $idedir/
 else
 echo File not really a zip
cat < "$gotfile"
 fi
else
 echo No file downloaded
fi

cd
rm -Rf "$tmpdir"

Note that when updating Sophos identity files if new ones are available we must
remove all of the old IDE files and install a complete new set and not just add the
newly created IDE files that appear on the web site. This is important, as often
the old IDE files have been updated.

Now that we have a working script that will pull down the latest Sophos Anit-Virus
software and proceed with the installation of this software when run, we need to
customize a solution that will execute this script when ever an update or new
virus identity files are released.

One way of keeping up to date is to simply create a cron job that runs the script
every four hours. This gives us a four-hour window where the MTA may not be
up to date with the latest virus identity files. This may or may not be an
acceptable risk for your organization.

In a discussion with another iPlanet administrator I learned of another solution,
which reduces this risk by updating to the latest IDE files as soon as Sophos

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

announce their availability by email. This is where the Sophos product mailing
list comes into play. Here are the steps to make it work

• Subscribe to Sophos mailing list, ie. subscribed-user@pseudo.domain.

• In your dns server: setup an MX record for pseudo.domain.com to point to
your mail server

• In imta.cnf make the following definition:

 pseudo.domain $U%pseudo.domain@pipe-daemon

• In pipe_option:
 subscribed-user@pseudo.domain=/your/script/here/xxx %s

You can read more about the pipe channel in the iPlanet Administration guide.

Reporting

Overview

The purpose of the MTA virus reporting system is to provide a web accessible
report on the current MTA operations. The report presents a series of graphs
and tables based on the virus detect activities of the MTA servers. All of the
source code used to create the graphs is included.

These graphs are recreated on a daily bases allowing management to view
recent virus trends in the company mail. In order to create these graphs software
package called Gdchart 0.94b was used. This package provides a rich C library
that allows us to create graphs based on MTA virus detect data. The output of
these graphs is in the standard GIF format which allowing anyone with a web
browser to view them.

Web page for gdchart : http://www.fred.net/brv/chart/
Download area for the software: http://www.fred.net/brv/chart/gdchart0.94b.tar.gz

Data Collection

In order to get a one-line record of each virus infected message detected by the
MTA the logger command is used in the ScriptFunctions.sh script mention
previously. This script contains the functions that are called by the multiscan.sh
script. We need to create a particular function that is only called when a virus
infected messages is found, this is where will place our one-liner logger
command. The multiscan.sh script contains an IF statement just below the
function call to run the Sophos sweep command against the respective
attachment. If this test results in a positive virus detect the sub routines in the IF

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

statement are performed. In order to have a unique subroutine that is only used
with the virus scan case and not say for other possible test such as the checking
of the file extension we create a new subroutine.

First make a copy of the subroutine code for write_record within the
ScriptFunctions.sh script and give it a unique name, such as
write_record_vir_detect. Then add the custom logger command, which will push
a log entry to syslog whenever a virus is detected.

Logger command:
/usr/bin/logger -p mail.alert -t iMS $VIRUS_NAME virus found and dealt

The $VIRUS_NAME variable contains the virus name that was detected in the
attachment. You can modify your syslog.conf file to direct these logs into a
separate file if you wish or just grep them out from the system syslog.

The log entries will appear as follows in the log file:

Sep 8 16:45:44 mta.company.com iMS: [ID 702911 mail.alert] W32/Klez-H virus
found and dealt

Now we have a date, time and virus name for the logged virus detect. A simple
way to get a tally of the number of virus detects for each day is do use the
following combination of commands.

#> grep “virus found” /var/adm/syslog | wc -l

Or if you have configured these message to go to a separate file such as
/var/adm/virus_detects you can use:

#> wc –l /var/adm/virus_detects

This assumes you have configured your syslog.conf to direct these messages to
the file /var/adm/virus_detects and this log is rolled over each day. The below
script takes this number and writes it along with the date to a log file. This log file
is written with the most recent date listed at the top.

#!/usr/bin/perl –w
Written by David Evans

$date=` date +%Y%m%d`;
$output_file=”/usr/local/data_files/vir_data.dat”;
$mta_dir=”/var/adm/”;
$virfile=”virus_detects”;

$VIR_HITS = `wc -l mta_dirvirfile`;
We want to separate and grab only the number

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

@virsplit=split(/\s+/, $VIR_HITS);
 $VIR = $virsplit[1];

Write data to output_file in comma seperated format. If the output file exist it is overwritten.

open READIN, "$output_file" or die "Can't open $output_file: $!\n";
while (<READIN>) {
 push(@lines, $_);
}

$new_line = "$date,$VIR \n";
close READIN or die "Can't close FILE: $!\n";

my @lines = reverse @lines;
push(@lines,$new_line);
@lines = reverse @lines;

Here we make a copy of the old file before writing to it
copy("/usr/local/scripts/vir_rbl_file.dat","/usr/local/scripts/vir_rbl_file.dat.old");

open OUTPUT, ">$output_file" or die "Can't open $output_file: $!\n";
foreach(@lines){
 print OUTPUT $_ ;
}
close OUTPUT or die "Can't close FILE: $!\n";

The log file looks like this:
20020908, 1248
20020907, 1321
20020906, 1157
…

Finally this script is run from a cron job nightly.

Graph Creation

With the data file in comma-separated format we can easily read this data from a
small C program, which will use the data to generate the graphs. The gdchart
package includes several example programs and the all the options are
explained on the web site http://www.fred.net/brv/chart/. Here is an example
program that was used to generate the following graph.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

* ---
MTA project
Written by David Evans March 25, 2002

This program creates a bar chart of the number of
Virus infected messages handled by the mta servers for
The past seven days
--- */
#include <stdio.h>
#include <values.h>
#include <stdlib.h>
#include "gdc.h"
#include "gdchart.h"

main()
{
 int num_points = 7;
 int i;
 float data[20];
 int num[29];
 char lbls[10][10];
 FILE *fl = fopen("/usr/local/data_files/vir_data.dat”; ", "r");

 /* ----- set some data ----- */
 float a[7] ; //= {6368,5332,5195,5269};
 /* ----- X labels ----- */
 char *t[7]; //= { "NAMMTA01", "EURMTA01", "EURMTA02",
"FEAMTA01","cgad","dfad","dfads"};
 /* ----- data set colors (RGB) ----- */
 unsigned long sc[7] = { 0xFF0000, 0xFF0000, 0xFF0000, 0xFF0000, 0xFF0000, 0xFF0000,
0xFF0000 };
 FILE *fp = fopen("/var/www/graphs/past7_vir.gif", "wb");

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 GDC_BGColor = 0xFFFFFFL; /* backgound color (white) */
 GDC_LineColor = 0x000000L; /* line color (black) */
 GDC_ExtColor = sc; //&(sc[0]); /* assign set colors */
 GDC_bar_width = 60; /* (%) */
 GDC_title = "Virus infected messages over the past 7 days";
 GDC_ytitle = "Number of Messages ";
 GDC_xtitle = "Dates";
 GDC_stack_type = GDC_STACK_BESIDE;
/*
 num[1] = Total Messages recived by all four MTA Servers
 num[2] = Total Messages Reject by RBL on all four MTA Servers
*/

 for(i=num_points; i >= 0;i--) {
 fscanf(fl, "%[,̂],%f\n",lbls[i],&data[I]);
}

fclose(fl);
t[0] = lbls[1];
t[1] = lbls[2];
t[2] = lbls[3];
t[3] = lbls[4];
t[4] = lbls[5];
t[5] = lbls[6];
t[6] = lbls[7];

a[0] = data[1];
a[1] = data[2];
a[2] = data[3];
a[3] = data[4];
a[4] = data[5];
a[5] = data[6];
a[6] = data[7];
 /* ----- call to the library ----- */
 out_graph(400, 350, /* short width, height */
 fp, /* FILE* open FILE pointer */
 GDC_3DBAR, /* GDC_CHART_T chart type */
 7, /* int number of points per data set */
 t, /* char*[] array of X labels */
 1, /* int number of data sets */
 a); /* float[] data set 1 */
fclose(fp);
 exit(0);
}

Compiling Notes: Here are the commands to compile the above program using
gcc. This assumes the program source is in the directory gdchart0.94b/ was
installed. The default location is /usr/local/gdchart0.94b/

gcc -Igd1.3 -c past7_vir.c
gcc -o past7_vir gdc.o gdchart.o price_conv.o past7_vir.o -Lgd1.3 -lgd -lm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

With the gif image written to /var/www/graphs/past7_vir.gif and this program ran
from cron job nightly you can display this graph from a static HTML page. Each
time this program is ran it will over write the existing graph and be refreshed with
the new data.

One final note in order to process the virus detect data file and create a top ten
list of virus detects the following can be used:
grep "virus found" /usr/local/data_files/vir_data.dat |awk -F] '{print $2}' |awk '{print $1}'|sort -n
|uniq -c |sort -nr |head -10 > /usr/local/data_files/virus_top10.dat

This creates the file /usr/local/data_files/virus_top10.dat which looks like this:

 834 W32/Klez-H
 115 W32/Sircam-A
 38 W32/Magistr-B
 21 W32/Yaha-E
 4 W32/Magistr-A
 2 XM97/Laroux-NW
 2 W95/CIH-10xx
 2 W32/Klez-E
 2 W32/Fix2001
 1 WM97/Thus-T

With PHP server side scripting you can dynamically create a table and display
this in the reporting page. Here is an example of such a PHP script.

<?php

// Declare the log file
$input_file = file('/usr/local/data_files/virus_top10.dat');

// Go through each line of the log file
for ($k=0; $k<=count($input_file)-1; $k++) {
 $fields = split("\t",$input_file[$k]);
 print "<tr>";
 print"<td bgcolor=\"#00FFFF\">$fields[1]</td>";
 print"<td bgcolor=\"#00FFFF\">Virus found </td>";
 print"<td bgcolor=\"#00FFFF\">$fields[0]</td>";
 print"</tr>";
} // ends for loop

?>

The table appears in the next section.

Conclusion

After implementing this solution on any given day we are seeing over 1000 virus
detection per day and at the height of the Klez outbreak in 2002 over 2000

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

messages were detected in one day. For example here were the top 10 number
of virus detects for August 14, 2002.

Virus Name DESCRIPTION Number Of Detects
W32/Klez-H Virus found 1262
W32/Sircam-A Virus found 128
W32/Flcss Virus found 121
W32/Magistr-B Virus found 40
W32/Klez-E Virus found 19
W32/Yaha-E Virus found 8
W95/CIH-10xx Virus found 6
W32/Yaha-D Virus found 5
W95/Spaces Virus found 3
W32/Yaha-A Virus found 3

Our external message server exposure was reduced from hundreds of servers to
four and our organization now has a much better handle on its messaging
environment.

References

Sun Docs. “iPlanet Messaging Administration Guide" http://docs.sun.com/source/816-6009-
10/contents.htm(Aug. 14, 2002).

Sun Docs. “iPlanet Messaging Reference Manual" http://docs.sun.com/source/816-6020-
10/contents.htm(Aug. 14, 2002).

Sophos Unix Installation Guide, http://www.sophos.com/sophos/docs/eng/instguid/unix_ien.pdf
(Aug. 12, 2002).

RFC 2821, http://www.ietf.org/rfc/rfc2821.txt (Aug. 12, 2002).

Location of wget software, http://wget.sunsite.dk/ (Aug. 12, 2002).

Location of gdchart software, http://www.fred.net/brv/chart/ (Sep. 8, 2002).

Location of YASSP, http://www.yassp.org/ (Sep 2, 2002).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Location of GNU grep, http://www.gnu.org/software/grep/grep.html (Aug. 11, 2002)

MAPS RSS Website, http://work-rss.mail-abuse.org/rss/ (Aug. 12, 2002).

