
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Creating a Secure n-tier DCOM Implementation
Pranav Jhumkhawala
July 23, 2002
GSEC v1.4, option 1

Abstract

While DCOM offers the capability of developing n-tier applications that are
flexible and scalable, it also poses several challenges to the developer, security
being the most significant, and often the overlooked one. By using the underlying
security features of DCOM and other technologies such as firewall and Windows
security, it is possible to have a secure and manageable DCOM implementation
that serves the business and customer needs.

This paper provides an overview of DCOM security principles and discusses the
security considerations that need to be taken into account while implementing a
typical DCOM installation. Various components that make up the multi-tier
DCOM implementation, such as MTS, Firewall configuration and so on, are
discussed at an appropriate level of detail. Where applicable, the paper makes
recommendations regarding what settings should be used in order to have a
secure DCOM implementation.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Creating a secure n-tier DCOM Implementation

1 Introduction

Present day business applications, especially web applications, are designed as
multi-tier (n-tier) client server applications. This type of architecture is popular
because it allows true separation of data layer, business logic layer and
presentation layer, making each of those layers more manageable. Popularity of
this type of architecture gave rise to software systems based on distributed
objects, such as Common Object Request Broker Architecture (CORBA),
Remote Method Invocation (RMI) and Distributed Component Object Model
(DCOM). These technologies have grown quite significantly in terms of
functionality and efficiency over the last few years. Application server
technologies such as Enterprise Java Beans (EJB) and Microsoft Transaction
Server (MTS) are becoming more and more popular. These application server
technologies provide features such as component pooling, database connection
management, object persistence etc.

Security is an important aspect that needs to be taken into consideration in any
architecture. The issue is more significant in case of architecture described
above because the components that are hosted by these application servers
typically contain sensitive business logic and proper definition of who can invoke
the components and where and how can the information travel is essential.

The technologies mentioned above provide, in their own peculiar way, tools and
configuration options to secure the components that are hosted by these
application servers and the underlying distributed object technology provides
ways of securing the communication between application servers, database
servers and web servers.

DCOM model is developed by Microsoft. Support for Distributed COM was made
available with first release of Windows NT 4, around August 1995. DCOM is built
based on Remote Procedure Call mechanism, which is an industry standard.
DCOM has several requirements, which are not present when one looks at just
the COM compliant objects. One of the most significant one is, of course,
security. In order to satisfy this requirement Windows provides a robust security
layer that integrates seamlessly with COM and allows authentication and
authorization of accesses to remote server processes.

2 Understanding DCOM Security Policies

DCOM has an extensible and customizable security framework built in which
allows the deployment of security. DCOM security addresses four different
aspects of security

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Access security: Who can call an object?
This caters to the need of distributed application to protect objects against
unauthorized access. Depending on the business requirements, the components
can be accessed by only predefined users, or can be invoked by any user, but
may not be able to access all the features. The component security can be
configured to allow appropriate access at deployment time. Additionally, security
can be implemented programmatically (within component itself) to grant or deny
access at component or even at individual method level.

Launch security: Who can create a new object in a new process?
Once a user has access to the server hosting the COM components, that user
can potentially invoke any component on that server. Therefore it is important to
secure the components so that unauthorized users cannot create components
they are not supposed to. By very nature of this security issue, this has to be
handled not programmatically, as the fact that someone can execute the program
is a security breach in itself, which could be exploited to launch a denial of
service attack. The COM libraries perform a special validation when the object
create request is received. The privilege information stored in the registry about
the object is utilized to determine if the launch request is authorized.

Identity: Who is the owner of the object itself?
In COM, the object performs actions on behalf of the caller. In other words the
object assumes the identity of the caller. Based on the privileges of the caller, the
object may or may not be able to perform certain function. This works well in a
situation where there’s only one user accessing the component. However, a
more realistic scenario is where a number of users who may invoke that
component. In this case, the objects and users as well as the resources
accessed by the object will need to be configured with same privileges. The
problem is that if these are too restrictive, then users may not be able to access
all features uniformly, and if it is to permissive, it can pose security threat.
Additionally Internet applications do not assign a dedicated user account for
every user, therefore identifying users may not be possible. The identity security
setting can be set to one of the three listed below in DCOM.

Run as activator – The component is created using the identity of the caller. This
is the default setting. Disadvantage is that if different clients invoke the same
object on the server, different processes will be created for each client, which
could have adverse effect on the component’s performance.

Run as interactive user – Component is created using the identity of currently
logged on user on the server. This means that for object to be created
successfully, a user with proper authority will have to be logged on the server
otherwise the creation will fail.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Run as “This” user – A user account is specified under whose identity the
components will be created. This account can be a non-interactive account.
Typically this account is part of MTS Trusted Impersonator group.

Connection policy:

This can be further classified in three categories –

1. Integrity - can someone alter the communicated message?
2. Privacy – are others allowed to see the communication besides the caller?
3. Authentication – how much can the object trust the caller?

3 DCOM Security Policies Implementation

In DCOM, authentication, data integrity and privacy are all wrapped up in a single
property called the Authentication Level. The authentication levels can be set on
a per-application (component) basis or they can be set as a default setting for the
server, which will be inherited by all the components hosted on that server.

There are seven authentication levels of DCOM. Security will increase as the
level increases, however, there’s added performance cost that may need to be
considered. Additionally, since the authentication levels are set in the hierarchy
where higher levels are based upon the lower levels, the strength as well as
weaknesses of the lower levels are inherited in the higher ones. In other words, if
say the Level 2 authentication has certain vulnerability, setting authentication
level to Level 7 does not necessarily get rid of the said vulnerability.

The DCOM authentication levels are –

Level 1 – No Authentication: Least secure. Allows client to connect and invoke
components on the server without requiring validating the remote application.

Level 2- Connect Authentication: Client is validated when the connection is
made to the server. If using Windows 2000, and if the client machines are also
Windows 2000 servers, Kerberos can be used as the authentication methods.
Otherwise in an NT environment authentication will be done using the NTLM
protocol. Note that in this level of authentication, subsequent packets are not
authenticated.

Level 3 – Default Authentication: Authentication is done using the underlying
security architecture of the operating system. This is same as Connect
Authentication, since in Windows, currently there is only one security
architecture.

Level 4 – Call-level Authentication: Authentication is made every time the
client invokes a method in the server object. It is important to remember here that

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

authentication of each method call by the client does not necessary require the
client to enter the user id and password for each of those calls. The remote
machine can cache the password. Calls are broken into multiple packets and
only one of the packets contains the authentication information. Due to this,
during a hijacking attack, the rest of the packets can still be replaced with
malicious information. Even the packet containing the authentication information
can also be modified or replaced.

Level 5 – Packet-level Authentication: Each packet will be authenticated.
While it fixes the problem of call-level authentication wherein packets not
containing authentication information can be replaced or modified, it still does not
prevent the packets with authentication information from being modified or
replaced.

Level 6 – Packet Integrity-level Authentication: In this level, a checksum is
added to each packet to ensure integrity of the packets and prevent modification
or replacing of packets. Sophisticated user can still read the data flowing through
the network. If information being passed is highly sensitive, this authentication
level may not be sufficient.

Level 7 – Packet Privacy-level Authentication: Builds on the previous level of
authentication by encrypting all data contained in packets. The data is protected
and packet tempering can be prevented as long as the encryption algorithm
being used is robust.

4 Using DCOM Configuration utility (DCOMCNFG.EXE)

The DCOM Configuration utility allows users to set many of the security settings
of the DCOM applications on the server.

The utility consists of three main tabs –

1. Applications
2. Default Properties
3. Default Security

Applications Tab

The Applications tab lists all the objects that are available on this machine and
can be launched. More details of each of these objects are available by selecting
the Properties option. Here one can verify which server (remote or local) the
object is hosted as well as identity of the user under which this component will
run. Following settings are available in the properties option for each object:

General – provides general information about the object.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Location – determines where the DCOM object will be executed.
Security – here, user can configure access, launch and configure permissions
for the selected object. Note that these settings will be specific to each object. If
no settings are specified here, the default settings as described under
explanation for other tabs will come into effect.
Identity – specifies account that will be used to launch this object. There are four
choices available –

1. The Interactive user – that is the current logged on user
2. The Launching user – user account that initiated the object.
3. This user – specify a user account that will be always used to launch the

object.
4. The System account – object will be launched using security context of the

System account.

Default Properties Tab

In this tab, the global settings for entire machine with respect DCOM
configuration and behavior are managed. Users can enable or disable DCOM on
the machine by checking or clearing the “Enable Distributed COM on This
Computer” option.

It is also here that a user will set the Default Authentication Level for DCOM
communications. The authentication levels of DCOM are explained in the
previous section. The default authentication level is “Level 5 – Packet-level
Authentication”.

Default Security Tab

There are three options under Default Security Tab –

1. Default Access Permission - This value determines the users and groups that

can access an object when no other access permissions are provided.
2. Default Launch Permission - This value determines the users and groups that

can launch an object when no other access permissions are provided.
3. Default Configuration Permission - This value determines the users and

groups that may read or modify configuration information for DCOM
applications. This also includes which users and groups will have permission
to install new DCOM servers.

5 Configuring and implementing remote objects

With the background of how DCOM security works as discussed above, let’s now
look into the configuration and implementation of remote objects that use DCOM
technology. The COM components can be developed using Microsoft Visual C++

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

and Microsoft Visual Basic. Other Microsoft development languages such as
Microsoft Visual J++ as well as C-Sharp can also be used to develop COM
components. Of these, Visual Basic is arguably the easiest language to develop
COM components.

DCOM deployment architecture can vary significantly from one installation to
another based on organization’s needs and requirements for business rules as
well as security policies. The following architecture is selected for the purpose of
this discussion because, while it is no way a standard implementation, it covers
components that allow discussion of majority of the issues surrounding DCOM
security implementation. The architecture for the discussion is as follows:

• We have One (or more than one) COM DLLs developed in Visual Basic.
• These DLL(s) are deployed within one package in Microsoft Transaction

Server (MTS).
• The MTS server is located inside the firewall and outside users have no

access to this server.
• The client is a Web server located in the DMZ running IIS.
• The package is remotely deployed on the DMZ Web server.
• The communication between the Web server and the MTS server is

performed through the firewall.
• All the servers are Windows NT 4.0 servers and they are set up as stand

alone servers.

5.1 Configuring MTS Package

First of all, we need to enable authorization checking for the package.

1. Select the package you wish to configure.
2. On the Action menu, click Properties and select Security tab.
3. Check the Enable Authorization Checking check box. This is the default

setting for MTS Packages.

Now, configure this package to run under identity of a specific user. If you have
not already done so, create a user account and make that user account part of
MTS Trusted Impersonator group. This is the user account under whose identity
the components will be run. The same user id/password combination will need to
be created on the client machine as well. This is necessary because in our
example, we have a peer-to-peer relationship between the client and the server
and no Domain authentication is available. The other option to make this work is
to turn off the DCOM authentication, but by doing this, security is compromised.

Once you have created this account, you can set the MTS package to run under
the identity of this user.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1. Select the package whose identity you wish to change.
2. On the Action menu, click Properties and select Identity tab.
3. Select the This user option and enter the user domain followed by a

backslash (\), user name (one you created for this purpose), and password for
the Windows NT user account.

After performing the above tasks, stop the package server processes by
selecting the package, right clicking, and selecting Shut Down option. You can
also shut down all packages at one time by selecting My Computer and choosing
Shut Down Server Processes option from the Action menu.

Next step is to export the package to create client executables that will be run on
the client machine to install the remote components on the client.

1. Select the package you want to export in the left pane of the Explorer.
2. On the Action menu, click Export. You can also right-click and select the

Export option.
3. In the Export Package dialog box, enter or browse for the package file to

create. The component files will be copied to the same directory as the
package file.

4. If you want to include any roles that you have identified for the package, click
the Save Windows NT user ids associated with roles checkbox.

5. Click Export.

The destination folder that you selected will contain a package file (with the .pak
extension) containing information about the components and roles (if any)
included in the original package, and copies the associated component files to
the same directory in which the package file was created. Only component DLLs
are copied. Package locks against changes or deleting will be exported with the
package.

5.2 Configuring the client

As mentioned earlier, we will need to create a user account on the client machine
that is defined by the same user id and password as the account under whose
identity the components are configured to run. Create this account as appropriate
and make it part of MTS Trusted Impersonator group.

Run the client executable file created by exporting package on the MTS server
machine. This will create necessary registry entries on the client machine for the
components. These settings can be verified using DCOM Configuration utility
provided with Windows. We will discuss later how to use this utility to configure
security settings.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

5.3 Configuring DCOM to work across firewall

DCOM, while communicating across firewall, assigns one TCP port and one UDP
port at run time to each process serving DCOM objects. While this feature of
DCOM has it’s own advantages and benefits, one disadvantage is that it is
difficult to configure DCOM with firewall since at the run time, DCOM could
potentially use any port between port number 1024 to port number 65535. Of
course, it is possible to configure firewall to allow DCOM to communicate for this
range of ports, but it creates a security hole. Therefore, on the server hosting the
COM components certain settings must be done to restrict this range of firewall
ports. But before that, we must configure DCOM to use TCP only, to avoid
exposing firewall to unnecessary security risks that are coupled with using UDP.
To do this, using regedt32.exe, move “NCACN_IP_TCP” value to the top of the
list in the DCOM Protocols named value of the
HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc registry key. A side-note not
related to security here is that the same change should be made on the client
machine as well in order to avoid 30-45 seconds delay when connecting to TCP
only servers.

Restricting Range of TCP Ports

These settings must be done on server machines only. Using regedt32.exe,
create the HKEY_LOCAL_MACHINE\Software\Microsoft\Rpc\Internet registry
key. Add following key values to the newly added key.

Name Type Value
Ports REG_MULTI_SZ Specify one port range

per line. For example:
1500-2000
5141

PortsInternetAvailable REG_SZ Y (always)
UseInternetPorts REG_SZ Y

Value of “Y” in the UseInternetPorts key indicates that the DCOM application will
use the ports listed under Ports key. The value of “N” in that key indicates that
the DCOM application will not use the ports listed under Ports key. For additional
security, set the UseInternetPorts value to “N” and make the DCOM application
ask for permission to be accessible through the port range specified
programmatically.

Configuring Firewall

The firewall should be configured as follows:

1. Deny all incoming traffic to the server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

2. Allow incoming traffic on TCP port 135 between the DMZ Client machine and
the MTS server machine.

3. Allow incoming traffic on TCP port range specified in the registry settings as
described above between the DMZ client machine and the MTS server
machine.

6 Create a Trust Relationship

In our setup architecture we need to establish authentication between two stand-
alone servers. Since these two servers are stand-alone, they are part of two
different domains. Therefore even though we created same user account on both
the client machine and the server machine, DCOM still cannot authenticate the
user. This is because when the client machine passes the user’s identity to the
server, the identity is client_machine_name\user_name. On the server side,
however, the identity is server_machine_name\user_name. Due to this, the two
will not match and the authentication will fail. In order to alleviate this problem,
we must setup a Trust relationship between the client machine and the server
machine.

Trust relationship is a link between two different domains, where one domain
trusts the users from the other domain. To create the trusted relationship –

1. Make sure you are logged onto the server machine.
2. From User Manager for Domains, choose Select Domain from the User

menu. Type “Client Machine”.
3. From the Policy menu, choose Trust Relationship. Choose Add and type

“Server Machine”. Enter a password that you will use on Server Machine to
trust Client Machine. Server Machine should now be listed under “Permitted
to Trust” this Domain. Close the Trust Relationship dialog box.

4. From the User menu choose Select Domain and type “Server Machine”.
5. From the Policy menu, choose Trust Relationship. Add “Client Machine” and

use the same password you used in Step 4.

A dialog box appears notifying you, "Trust relationship with Client Machine
successfully established."

7 Conclusion

Microsoft’s DCOM/COM+ architecture allows implementation of secure n-tier
architecture. The architecture also as significant amount of flexibility built in. Most
of the security features can be implemented either by using utilities such as
Microsoft Management Control or DCOM Configuration utility, or it can be
implemented programmatically by using available security APIs. The
DCOM/COM+ architecture integrates seamlessly with the windows security and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

provides ways to integrate with other security components such as firewalls,
cross-domain authentication etc.

Having said that, being transparent and flexible to the developers, DCOM/COM+
security is often overlooked or poorly implemented. Due consideration must be
given to the security aspects when designing the n-tier DCOM application.
Depending on the business needs, appropriate authentication level should be set
and firewall rules should be defined. It is also important to execute a thorough
system performance testing since security implementation definitely have an
impact on the performance of the system.

8 References

Microsoft Systems Journal. “The COM+ Security Model Gets You out of the
Security Programming Business.” November 1999. URL:
http://www.microsoft.com/msj/defaultframe.asp?page=/msj/1199/comsecurity/co
msecurity.htm&nav=/msj/1199/newnav.htm (September 2, 2002)

Shohoud, Yasser. “Programming COM+ Security.” May 2000. URL:
http://www.devx.com/upload/free/features/vcdj/2000/05may00/mt0500/mt0500.as
p (September 2, 2002)

IT World.com. “COM+ Security Programming, Part 1: Declarative Role-Based
Security.” June 2001. URL: http://www.itworld.com/nl/windows_sec/06112001/
(September 2, 2002)

IT World.com. “COM+ Security Programming, Part 2: Programmatic Role-Based
Security.” June 2001. URL: http://www.itworld.com/nl/windows_sec/06182001/
(September 2, 2002)

Nelson, Michael. “Using Distributed COM With Firewalls.” March 1999. URL:
http://www.microsoft.com/com/wpaper/dcomfw.asp (September 2, 2002)

Microsoft Corporation. “Q176799 INFO: Using DCOM Config (DCOMCNFG.EXE)
on Windows NT.” January 2001. URL:
http://support.microsoft.com/default.aspx?scid=kb;[LN];Q176799 (September 2,
2002)

Pattison, Ted. “Programming Distributed Applications with COM and Microsoft
Visual Basic 6.0.” Microsoft Press, 1998.

Viega, John; McGraw, Gary. “Building Secure Software.” Addison Wesley, 2002.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Hostman, Marcus; Kirtland, Mary “DCOM Architecture.” July 1997. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndcom/html/msdn_dcomarch.asp (September 2, 2002)

Microsoft Corporation. “Enabling MTS Package Security.” August 2002. URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/mts/install_9kvt.asp (September 2, 2002)

