
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Carlos_daRoza_GSEC.do
c

Page 1

Candidate: Carlos da Roza (carlos.009)
Track 1: GIAC Security Essentials (GSEC ) v.1.4b
Option 1 – Research on Topics in Information Security
Category: Encryption & VPNs

Mathematical Underpinnings of Asymmetric Cryptography

Abstract

The mathematics of the Diffie-Hellman-Merkle key exchange and of RSA are 
explored.  Constructs and proofs require no more than college-level math and 
concepts can be grasped in entirety.  The intention is to gain an intuitive 
understanding of the mathematical underpinnings that make these 
cryptographic processes work and to demonstrate adeptness with the concepts.  
A short history introduces the paper, and an analysis of the observations of the 
properties and behaviour of the plaintext-to-ciphertext transformations follow. 

Introduction

Mathematics is considered the queen of sciences, and the precursor of analytic 
techniques applied to the physical sciences.  Like any other discipline, most 
elementary truths have long been discovered during the science’s infancy, so 
much so that current research is highly abstracted, obscure and well beyond the 
realm of comprehension of the amateur.  Along comes a series of startling 
discoveries which not only has profound impact on the discipline, but also has 
immediate and wide-ranging effect in the everyday world.

This paper is a personal exploration of the arithmetic and the intuitive concepts 
behind the discoveries leading to modern “retail” cryptography, that is, 
cryptography available to the private individual.  Because the material and 
concepts covered are those of Number Theory and Finite Mathematics at the 
college level, it is quite possible for the author and reader to visualize and 
grapple with the problem as a whole, and to follow the mathematical 
constructions and proofs.

I wanted to get a little bit of the sense of “Aha!” that these mathematicians 
experienced as the revelation of something profound and wonderful dawned 
upon them.  As a candidate submission for GIAC Security Essentials, I hope to 
demonstrate a sufficiently deep understanding of what is actually happening as 
these arithmetical transformations are taking place.

Except for the reference to the recent discovery regarding prime determination, 
much of the reference material refers to events that happened and items that 
were published more than a decade ago – the topic of the paper demands 
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sources of that vintage.  Only the spreadsheet and observations can be 
considered non-derivative from other sources.

Use and Mechanization of Ciphers

The advent of mechanical computing set the tone of the development of  
cryptography and cryptanalysis in the second half of the twentieth century.  The 
brute force capability of these machines made wholesale and routine encryption 
possible, and provided the means to attack these ciphers effectively.  Secret 
keys became unsecret with prolonged use, either because of cribs developed 
from operator error, or just by the volume of source information to work on.  The 
history of cryptanalysis during the Second World War is testament to this 
weakness1.

All codes and ciphers depend on sender and receiver to possess a shared 
secret.  This shared secret key was used to both encrypt and decrypt a 
message.  The operation was symmetric, hence these keys are referred to as 
symmetric keys.  As secret keys became longer, their lives shorter, and the 
necessity for use more frequent, distribution of these keys, particularly by 
electronic means and at a distance, became a greater and greater problem.

Public Key Exchange

It was not until the middle 1970’s when Whitfield Diffie, Martin Hellman, and 
Ralph Merkle devised their key exchange scheme, that the long-held belief that 
it was not possible to exchange secret keys securely without sender and 
receiver meeting was disproved.  Their system is based on the one-way modulo 
function and some of their properties.  Let’s see how this works.

By convention, Alice and Bob are two characters who wish to exchange 
information securely.  Eve is an eavesdropper on Alice and Bob’s public 
exchange.  Alice and Bob publicly agree on values of Y and P (Y<P) for the one-
way function Yx(mod P).  As an example, choose Y=7 and P=11.

Alice Bob

Stage 1 Alice chooses a number, say 3, 
and keeps it secret.
We label her number A.

Bob chooses a number, say 6, 
and keeps it secret.
We label his number B.

Stage 2 Alice puts 3 into the one-way 
function and works out the result 
of 7A(mod 11): 73(mod 11) = 
343(mod 11) = 2

Bob puts 6 into the one-way 
function and works out the result 
of 7B(mod 11): 76(mod 11) = 
117,649(mod 11) = 4
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Stage 3 Alice calls the result of this 
calculation α, and she sends her 
result, 2, to Bob.

Bob calls the result of this 
calculation β, and he sends his 
result, 4, to Alice.

The 
Swap

Ordinarily this would be a crucial moment, because Alice and Bob are 
exchanging information, and therefore this is an opportunity for Eve, a 
third party, to eavesdrop and find out the details of the information.  
However, it runs out that Eve can listen in without it affecting the 
ultimate security of the system.  Alice and Bob could use the same 
line they used to agree on the values for Y and P, and Eve could 
intercept the two numbers that are being exchanged, 2 and 4.  
However, these numbers are not the key, which is why it does not 
matter if Eve knows them.

Stage 4 Alice takes Bob’s result, and 
works out the result of βA(mod 
11): 43(mod 11) =  64(mod 11) = 
9

Bob takes Alice’s result, and 
works out the result of αB(mod 11) 
= 26(mod 11) = 64(mod 11) = 9

The 
Key

Miraculously, Alice and Bob have ended up with the same number, 9.  
This is the key!

(YB(mod P))A(mod P) = (YA(mod P))B(mod P) = (YB)A(mod P) = YAB(mod P)

The problem for Eve is that although it is easy to derive α from A, and β from B, 
it is extremely difficult to derive A from α or B from β for numbers which are very 
large2.

Asymmetric Keys

Although the Diffie-Hellman-Merkle key exchange system established that it is 
possible to exchange secret information without meeting, it was awkward 
because of the need for the exchange to be conversational. Whitfield Diffie 
followed up with a further paper on the concept of asymmetric keys, that is, 
different keys are used to encipher and decipher a message.  So, knowing the 
encryption key was useless to the act of decryption.  This is a significant 
departure from the then common use of symmetric keys where encryption is 
reversible and use the same key.  The asymmetric encryption key was to be 
published, and known as the public key; the decryption key was to be kept 
private. 

In 1977, a different set of researchers, Ronald Rivest, Adi Shamir, and Leonard 
Adleman, working out of MIT, devised a scheme which would meet Whitfield 
Diffie’s criteria.  This was to become the first publicly known form of public key 
cryptography and is known as RSA.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Carlos_daRoza_GSEC.do
c

Page 4

The basis of the scheme is that Bob, who wants to receive secure messages, 
publishes a public key, part of which is a composite number of which only he 
knows the prime factors.  Using several properties of modulus arithmetic and 
theorems of number theory, Bob can derive an encryption key as well as a 
decryption key from these prime factors of which he publishes only the former.

Prime Factorization is an NP problem

Let’s digress for a moment regarding factorization of a composite number.  
The basis of the strength of the public key is that it is considered difficult to find 
the factors of a composite number.  The problem of finding such factors is 
considered belonging to the NP class of problems3, also referred to as 
intractable - that is, there is no known algorithm one can apply to determine 
such factors in polynomial time.  To put it another way, there is no definitive 
procedure to find a solution to this problem in a number of steps which has an 
upper bound expressible as a polynomial function of the length of the composite 
key.

Please note that it is not possible to prove that a problem is NP, just that no 
solution has been found that is P.  Now, mathematics is not static.  Consider 
that in the last decade, Andrew Wiles solved Fermat’s Last Theorem4, a riddle 
that had stumped the world’s mathematicians for centuries.  In the last year, a 
group of mathematicians have proved and developed an algorithm to determine 
whether a number is prime in polynomial time5.  Previously thought to be an NP 
problem, it has now been shown that prime determination is a P class problem.  
Current thought is that this does not invalidate the strength of keys as they are 
based on prime factorization, and that is still intact.  However, it is not at all  
certain that no algorithm will be found that will make prime factorization a 
tractable problem. 

Mechanics of Key Generation and Use in Encryption

Let Bob choose two sufficiently large prime numbers, p and q, and a third 
number e coprime to the product (p-1)(q-1) – two numbers are coprime if they 
share no common factors, i.e. their greatest common divisor is 1.  Let N be the 
product of primes p and q.  Bob publishes e and N in his public key, known to to 
world (including Alice and Eve).  Although the world knows about N, it can 
determine neither p nor q in a reasonable amount of time for sufficiently large N
(given that prime factorization is NP).

Alice uses Bob’s public key in order to encrypt a message to Bob.  Alice uses 
some numerical representation of her plaintext message, broken up into blocks 
(say M) whose value cannot exceed N (the reason will become apparent later), 
and encrypts it by raising it to the power e.  The result is taken modulo N to 
arrive at the ciphertext C.



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

Carlos_daRoza_GSEC.do
c

Page 5

C = Me (mod N)

The exponentiation of M is fairly laborious for larger values of M and e.  
However, e can be broken down into a sum of powers of 2 and a judicious 
selection of e allows comparatively speedy calculation.  That is,

If e = a020 + a121 + … an2n for a finite set (a0, a1,…,an) where ai is 0 or 1

e        (a020 + a121 + … an2n)
Then M  = M

 a020 a121   an2n

= M       * M      * … M

2i+1 (2)(2i)        (2i)2

Since M      = M           = M       , each term is the square of the previous term.  At 
most, √e squarings must be calculated.

By selecting e so that it the power terms of expansion has coefficients mostly 
zero, i.e. most of ai is zero, C can be calculated rapidly.  Selection of e = 216+20

is common6.

Another shortcut:

We want to calculate C = Me mod N.

We note that (ab mod c) = (a mod c)( b mod c) 

For proof, note that both a and b can be expressed as:
a = a1c + a0 for a0 in [0,c)
b = b1c + b0 for b0 in [0,c)
ab = (a1c + a0)(b1c + b0) for a0,b0 in [0,c)

= (a1b1c2 + a1b0c + a0b1c + a0b0) 
= c(a1b1c + a1b0 + a0b1) + a0b0

Hence:
a mod c = (a1c + a0) mod c

= (a1c mod c) + (a0 mod c)
= 0 + (a0 mod c)            since c divides cX

 = a0 mod c
= a0 since a0 is in [0,c)

Similarly:
b mod c = b0

and
ab mod c = a0b0

 Resulting in:
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(ab mod c) = (a mod c)(b mod c)   by substitution

Thus, while calculating (Me mod N), it is possible to substitute any intermediate 
result (i.e. each squaring of the power of 2 expansion of Me ) with its modulo N
value thus simplifying the calculation and keeping it within the computable size 
of the host machine.

By publishing the public key, composed of the exponent e, and the large 
composite number N, Bob now has given Alice and the rest of the world the 
ability to encrypt a plaintext message M into ciphertext C.

Decryption Phase

Bob now receives ciphertext C from Alice.  Using the values e and N in Bob’s 
public key, there is no straightforward method of reversing the encryption other 
than by brute force methods.

The encryption exponential e cannot be used to recover the plaintext M from the 
ciphertext C.  In order to do so, it is necessary to generate a decryption 
exponential d.  Generation of d from e and N without knowing p or q is akin to 
the factorization problem, i.e. intractable.

Digression into Euler’s Phi Function and Euclid’s Algorithm

We’re going to walk into a series of assertions in finite mathematics which will 
result in the generation of the decryption exponential d.

Euler’s phi function7 for a number n, labelled (n) is the number of integers less 
than n which are relatively prime to (i.e. have no common factors with) n.  By 
necessity, (n) < n, and (n) = n-1 when n is prime since the definition of a 
prime number is that it has no factors other than 1 and itself.  Thus all numbers 
less than a prime number n (which number n-1) are relatively prime to n.

Futhermore, is multiplicative, that is, (pq) = (p) (q) when p and q are 
coprime to each other.  Obviously, if p and q are prime numbers, then they are 
coprime to each other.  This means that for prime numbers p and q,

(pq) = (p) (q) = (p-1)(q-1) when p and q are prime.

Also, the phi function number (n) has the property such that for numbers a less 
than n which are relatively prime with n, (a (n) mod n) = 1.  By extension, (a (n)+1

mod n) = a.  This is significant because when you raise a number to a given 
power mod n, it will restore the original number.

Putting this together, we want to find an exponent d, such that
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Cd mod N = M

But

Cd mod N = (Me)d mod N = Med mod N = M (N)+1 mod N = M

if we can find d such that

ed = (N)+1 

Now,

(N)  mod (N) = 0   since everything divides itself, thus
(N)+1 mod (N) = ( (N) mod (N)) + 1 mod (N) = 1

Hence, we are looking for d such that

ed mod (N) = 1

that is, d is the modular inverse of e with respect (N).

Remember that N = pq, a product of primes, so:

(N) = (pq)
= (p) (q)    since is multiplicative
= (p-1)(q-1)    since p and q are primes

So, to restate, we are searching for d such that

ed = 1 mod (p-1)(q-1)

Here, we use an extension of Euclid’s algorithm8 to determine d.  Euclid’s 
algorithm is a method of finding the greatest common divisor (gcd), of two 
positive integers, that is, the largest number which will divide these integers 
evenly.

One of the results based on Euclid’s algorithm is that given two numbers a and 
b, one can derive two coefficients a’ and b’ such that

a’a + b’b = gcd(a,b)

One of the earlier conditions in selecting e, p and q was to make e and (p-1)(q-1) 
relatively prime.  That would make their greatest common divisor one.  So, if we 
make
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a = (p-1)(q-1)
b = e

then a’ and b’ can be calculated so that

a’(p-1)(q-1) + b’e = 1   since e and (p-1)(q-1) are relatively prime

If we take the equality and apply modulus arithmetic on it,

a’(p-1)(q-1) + b’e = 1 mod ((p-1)(q-1))
b’e = 1 mod ((p-1)(q-1)) since ((p-1)(q-1)) divides (a’(p-1)(q-1))

which is the value d (i.e. b’) we were looking for.  We will do an exercise of the 
extension to Euclid’s algorithm will real numbers to establish the method.  
Again, we are looking at

a’a + b’b = gcd(a,b) = 1 a = (p-1)(q-1), b = e

We are searching for b’.

If b’ is negative,

b’b = 1 – a’a
b’b = 1 mod a since a divides a’a
b’b + ab = 1 mod a since a divides ab
(b’+a)b = 1 mod a

Hence, if b’ is negative, just add a to it.  In fact, all b’ mod a works9.

Assuming a > b, express

a = p*b + r where p is the greatest integer which leaves r positive
r = a – p*b r is the remainder or r = a mod b

Express

a = 1*a + 0*b trivial,
b = 0*a + 1*b trivial.

Multiplying the second equation by p and subtracting it from the first gives

a = 1*a + 0*b
b = 0*a + 1*b
r  = 1*a + (-p)
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Repeat the operation with the second pair of equations and continue as such 
until we cannot procede further.  With real numbers, let a = 975 and b = 616
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left side *a *b p 
975 1 0
616 0 1 1
359 1 -1 1
257 -1 2 1
102 2 -3 2

53 -5 8 1
49 7 -11 1

4 -12 19 12
1 151 -239 2
0

Thus 151*975 + (-239*616) = 1

b’ = -239
b’ = -239 mod 975

= 975 – 239
= 736

151*975 + 736*616 = 1 mod 975

Spreadsheet Example

Included below is a spreadsheet which illustrates the encryption and decryption 
process.  When valid values of p, q, e and d are inserted into the spreadsheet, 
plaintext values M (in red) are mapped onto ciphertext values C (in yellow), then 
recovered into plaintext M’ (in green).  Spreadsheet limitations constrain d’s 
value to 254.

 
p q N (p-1)(q-1) e d e*d e*d(mod p-1 q-1) Open M C M'

11 17 187 160 13 37 481 1 Field plaintext c iphertextrecovered
Exponent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 151 2 4 8 16 32 64 128 69 138 89 178 169 151 115 43 86 172 157 127 67
2 2 151 174 94 169 87 47 178 137 117 89 162 152 138 81 76 69 134 38 128 67
3 148 3 9 27 81 56 168 130 16 48 144 58 174 148 70 23 69 20 60 180 166

Observations

While experimenting with small values of p, q, e and d, some properties of the 
encryption and decryption process show up.

First, the values that M can take on must be in [0,N).  Once M reaches N, C 
wraps.  That is, M=0 and M=N wrap to the same value C0, M=1 and M=N+1 
wrap to C1, etc.  Now, although N is normally large, so should the potential 
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values of M.  Because asymmetric encryption is considerably more compute 
intensive than symmetric encryption, a typical security application would do bulk 
encryption with a symmetric key, then encrypt the symmetric key with an 
asymmetric public/private key pair10 (depending on whether authentication of 
source, or message security is desired).  Longer symmetric keys make for better 
security.

The values Mi in [0,N) maps one-to-one onto values Ci also in [0,N), so the 
values of C are just a permutation of M.  C must also map one-on-one to M’.   
When e and (p-1)(q-1) are not coprime, Mi does not map one-to-one onto Ci. 
Mapping one-on-one seems to be a consequence of e being coprime to (p-1)(q-
1), or (pq).  By this reasoning, if e is coprime to (p-1)(q-1), then so must d.

If you chase a train of transformations, that is, starting with M1, determining C1, 
taking M2=C1 and determining C2, and so on, these trains form closed loops 
(e.g., with {p,q,e,d}={11,17,3,27}, 2⇒128⇒138⇒162⇒2.  These trains are of 
length 1 (M=0, M=1), 2 or 4.  A line of inquiry would be to see if these train 
lengths are powers of 2, and why.

M=0 and M=1 are the only values that map onto themselves for all values of e.  

Aftermath

Since the time of the development of RSA, the personal computer revolution has 
taken off.  With it, personal information security has become big business.  Phil 
Zimmerman brought it to the masses with his distribution of PGP (Pretty Good 
Privacy), incorporating RSA and IDEA, PGP’s asymmetric and symmetric 
aspects respectively; this despite patent protection and government 
prosecution11.  Generally, the availability and popularity of personal computing 
spawned rapid development in cryptology along these lines, with fast 
factorization methods and more defensible primes being developed.  The 
tension between cryptology and cryptanalysis continues as it has for hundreds 
of years.  Sometimes the codemakers pull ahead, sometimes the codebreakers.

Conclusions

Being at the cusp of change for which you are the agent of change is something 
few of us have the opportunity to experience.  One can only remotely and 
vicariously imagine the fever that drove Whitfield Diffie that afternoon in 1975, 
and Ronald Rivest during his 1977 overnight travail as they saw their goals 
come within their grasp.  Personally, the walk through the arithmetical 
constructions and proofs was illuminating as the mathematical truths that serve 
as the underpinnings of modern cryptology emerged.  The fact that it all makes 
sense and the arguments can be followed is not a surprise.  Nevertheless, the 
exercise is useful in removing the magic that surrounds this process which is 
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not immediately intuitive.
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