
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Distributed Systems Security 1

Distributed Systems Security: Java, CORBA, and COM+

April L. Moreno

GSEC v.1.4b

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Distributed Systems Security 2

Abstract

Security can have varying levels of difficulty for implementation. One factor in
determining the difficulty is the number and distribution of the systems. With
distributed systems architecture, there are different nodes and resources. One
major issue with distributed systems is application security. There is the
question of how security is handled in distributed applications, and how the
client handles applications coming from an unknown source. The purpose of
this paper is to examine three popular architectures for distributed systems
applications and their security implications. The architectures analyzed are Java
by Sun, CORBA by the OMG, and COM+ from Microsoft. Outstanding issues
and future areas for research are considered.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Distributed Systems Security 3

Distributed Systems Security

Security can have varying levels of difficulty for implementation. One
factor in determining the difficulty is the number and distribution of the systems.
When only individual systems need to be protected, such as one computer with
all files residing locally and with no need to connect to any outside resources,
security is not as complex as with distributed systems. With distributed
systems architecture, there are different nodes and resources. One major issue
with distributed systems is application security. There is the question of how
security is handled in distributed applications, and how the client handles
applications coming from an unknown source. The purpose of this paper is to
examine three popular architectures for distributed systems applications and
their security implications. The architectures analyzed are Java by Sun, CORBA
by the OMG, and COM+ from Microsoft. It is extremely important for developers
to consider the security implications when designing distributed applications, as
many of these applications offer access to crucial resources: financial, medical,
and military information, just to name a few. This paper will not address
authentication controls, physical protection of the systems, patches, firewalls,
network protocols, etc, as they are beyond the scope of the paper.

Java

The Java architecture for distributed systems computing was designed
taking security requirements into consideration. Developers need to create
programs that are executed on remote distributed systems. An architecture
needed to be put in place, however, that would not leave these systems
vulnerable to malicious code. This was accomplished through the Java
architecture. The source code is written and then converted to byte code and is
stored as a class file, which is interpreted by the Java Virtual Machine (JVM) on
the client. Class loaders then load any additional classes that are needed by
the applications.

Several security checks are put between the remote server distributing
the program, and the client executing it, such as the “sandbox” security model,
the byte code verifier, the applet class loader, the security manager, and through
other security measures that can be implemented through Java’s security APIs.

Sandbox Security Model

In a distributed architecture, the end users would ultimately be
responsible for determining which applets to run on their systems. Most of
these users would not be able to determine whether a particular applet should
be trusted or not. In order to have all applets run in a protected environment, the
sandbox security model was developed. Applets that run from a remote site
would be permitted only limited access to the system, while code run locally
would have full access.

If the applet is signed and trusted, then it can run with full local system

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Distributed Systems Security 4

access. Permissions can be set by a security policy that allow the administrator
to define how the applets should be run.

Byte
Code
Verifier

The
byte
code
verifier
looks at
the
class
files
that are
to be
execute
d and
analyze
s them
based
on
specific
checks.
The
code
will be

verified by three or four passes (MageLang Institute, 1998) depending on
whether or not any methods are invoked. Gollmann (2001) states that some of
the checks performed are to ensure that the proper format is used for the class,
to prevent stack overflow, to maintain type integrity, to verify that the data does
not change between types, and that no illegal references to other classes are
made. Hartel and Moreau (2001) further state that the byte code verifier ensures
that jumps do not lead to illegal instructions, that method signatures are valid,
access control, initialization of objects, and that “subroutines used to implement
exceptions and synchronized statements are used in FIFO order” (p. 520).

Applet Class Loader

As a Java application is executed, additional classes may be called.
These classes are not loaded until they are needed. When they are called the
applet class loader is responsible for loading the specified applets. Classes in
Java are organized by name spaces, and each class loader is responsible for
one name space. The class loaders are therefore responsible to protect the
integrity of the classes in its name space (Gollmann, 2001). Java has built-in

Figure 1 - Java model

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Distributed Systems Security 5

classes that reside locally, however, that are loaded automatically without any
security checks. The path to these classes is indicated by the CLASSPATH
environment variable.

Security Manager

When writing applications, developers often wish to protect variables and
methods from being modified by classes that do not belong to the group of
classes they have written. In order to create this division, classes are grouped
into packages. When a variable or method is declared in a class, it can be
private (access only through same class), protected (access through class or
subclass), public (any class can access), or they may chose not to use any of
the former, in which case only classes within the same package will have
access. Depending on the package that a class belongs to, the class will have
different access to the other classes in the package, so security could be
compromised if an unauthorized class attaches itself to the package. The
security manager makes sure that only classes that actually belong to the
package in question are able to declare themselves in this package. The
security settings are configured through a security policy.

Browsers and applet viewers have a security manager, but by default
Java applications do not (Sun Microsystems, n/d). Java has provided
developers the means to create their own security manager. To create it, the
developer must create a subclass of the SecurityManager class, and override
whichever methods are necessary to implement the required security. For
example, the developer may decide to impose a stricter policy for reading and
writing files. This could be attained through overriding the read and write
methods already defined in the superclass.

API Security

Java offers further security through several security APIs. Among the
different APIs provided, the developer can make use of signed applets, digital
signatures, message digests, and key management. When an applet is signed
it is given full access to the system as if it were run locally. As mentioned in the
section on the security manager, the security policy defines what permissions
are given to an application or applet when executed. The default Java Runtime
Environment provides digital signatures, message digests, and key
management, and encryption can be implemented through the Java
Cryptography Extension (JCE).

Outstanding Issues

As with any system, whether it has been designed around security or not,
the Java distributed architecture contains several outstanding security problems.
One problem is with the CLASSPATH system environment variable. As
mentioned previously, the CLASSPATH variable is used to determine the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Distributed Systems Security 6

location of the built-in Java system classes. If the CLASSPATH variable is
altered, it could point to a set of altered classes that may execute what the
original classes intended, but also insert malicious code. The code would be
executed, and the user may not notice any difference in the behavior of the
application (Golmann, 2001).

Wheeler, Conyers, Luo, and Xiong (2001) found that there are several
Java vulnerabilities if a computer serving Java applications is either
compromised from the inside, or if an attacker is able to compromise an
account on the server. They note that many of these vulnerabilities exist either
because of code that provides backwards compatibility, or because of decisions
made to increase the ease of implementation. In other words, the vulnerabilities
are due to design choices rather than software defects. First they found that
“many critical components of the Java environment are only protected by the
underlying operating system’s access control mechanisms” (p. 65). System
administrators may not be aware of the loose access controls, and critical
components could be compromised, such as the keystore and system classes.
If the keystore is compromised then signed files could be spoofed, and if the
classes are modified, malicious code could be inserted. Wheeler et al. further
note the ease of reverse-engineering of class files, which would allow an
attacker to obtain the original source code. They note that there are tools for
obfuscation, but suggest in their work that further obfuscation would be
necessary for a higher level of security.

As discussed earlier, a security policy can be set to limit the access of
applications or applets to the local system. Wheeler et al. discuss that the
permissions, although fine-grained, can only be applied to a directory or JAR
file. They state, “this is insufficient, except for the most rudimentary system” (p.
66). Permissions applied to the entire directory or JAR file, which violates the
principle of least-privilege. They suggest finer permissions that could extend
down to the class level. The security policy can also be either modified or
overwritten completely through the use of the “java.security.policy” option from
the command line, negating any work put into the creation of the security policy.
This behavior can be turned off, but is not by default – an example of
vulnerabilities being introduced for the sake of ease of implementation. They
suggest that the class loader should verify that an extended security manager is
loaded prior to loading any classes.

Hassler and Then (1998) discuss the possibility of using applets to
perform “a degradation of service attack” (p. 120). Security policies can be
created, and are usually part of the browser, to limit the access given to Java
applets. They show in their research, however, that this does not prevent the
applet from consuming sensitive resources such as CPU and memory. They
suggest the implementation of a special applet that would allow other applets to
be controlled, and note at the end of their work that the HotJava browser
included this, but was found to be insufficient. One must wonder, however, if an
average user would have the knowledge necessary to identify that a Java applet
is creating the degradation of service, and how to stop it.

Finally, an outstanding issue is that of auditing. A major component of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Distributed Systems Security 7

security systems is the ability to audit. Hartel and Moreau (2001) state that
there is no known work presently being done to implement auditing capabilities
in Java.

CORBA

CORBA (Common Object Request Broker Architecture), created by the
Object Management Group (OMG), is based on the fact that developers are not
be able to agree on common language, such as Java, or on a common
operating system. Therefore, there is a need to have a security layer between
applications and the operating system. The Object Management Group (n/d, ¶3)
states that a CORBA application “from any vendor, on almost any computer,
operating system, programming language, and network, can interoperate with a
CORBA-based program from the same or another vendor, on almost any other
computer, operating system, programming language, and network.”

General Architecture

CORBA-based applications interact with objects. Object-oriented
languages may have several instances of an object, or a legacy application may
have a wrapper making it one object. In order for objects to interact with each
other, and for users to interact with the objects, an Interface Definition Language
(IDL) is created for each type of object. Information is passed to the IDL, which
in turn brokers it to the correct object, which interprets the information, and
sends any requested information back to the caller through the IDL.
Standardized mappings for C, C++, Java, COBOL, Smalltalk, Ada, Lisp, Python,
and IDLscript have been created (Object Management Group, n/d). Each object
instance has a unique entry in the Object Request Broker (ORB) which handles
requests between objects and between user and objects.

Objects with similar security requirements are grouped into domains, and
a security policy is applied to the domain, which is enforced by the ORB.
Communication between ORBs is handled by “ bridges, gateways, and inter-
ORB protocols like the General Inter-ORB protocol (GIOP) and the Internet Inter-
ORB Protocol (IIOP)” (Gollmann, 2001, p. 182).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Distributed Systems Security 8

There
are
several
different
security
aspects
that are
covered
in the
CORBA
specific
ation.
The
Object
Manage
ment
Group
(2002)
specify
key
security
features
of
CORBA
includin

g: Identification and authentication, authorization and access control, security
auditing, non-repudiation, and administration.

Identification and Authentication

Identification and authentication deal with verifying that the user really is
who they claim to be. A user (or a system) will authenticate, for example using
a password – the user or system is referred to as the principal. This is used as
a means for accountability, for access to objects with different permissions, for
identification of the principal sending information, for controlling access to
different objects, message signing, and usage charging for object
implementation (Chimadia, 1998, Object Management Group, 2002).

Authorization and Access Control

As users are authenticated, the applications will use those credentials to
access other objects through the ORB, where the CORBA security service
operates. A security policy defines what objects the principal has been given
access to and through the policy’s implementation at the ORB level, access is
either granted or denied.

Figure 2 - CORBA model

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Distributed Systems Security 9

Security Auditing

A key component to security is auditing. Auditing enables the
administrator to detect intrusions, attempted intrusions, or other security
anomalies. It also allows the administrators to verify that the security policies
are working as expected. There are two types of auditing in CORBA: system
and application. Which events are to be logged is determined by the respective
audit policies. System policies could include the logging of events such as the
authentication of principals, when privileges change, whether the invocation of
an object was successful or not, and events relating to administration. This
audit is automatically enforced for all applications, which is especially helpful in
the case of applications that are not security-aware. The application-level
auditing could be specific to the application, such as the auditing of specific
transactions.

Non-Repudiation

Non-repudiation services in CORBA ensure that the principal is held
accountable for their actions. Evidence is maintained that will either prove or
disprove a particular action. CORBA provides for non-repudiation of creation
and non-repudiation of receipt, the former proving whether or not a principal
created a message, and the latter whether or not a principal received the
message. Unlike auditing, however, this service is only available to applications
that are aware of and write to this service.

Administration

Security is administered in CORBA through the use of domains, which
refer to the scope or boundaries of the items being examined, grouped by some
commonality. There are three security domains: security policy domains,
security environment domains, and security technology domains. Within
security policy domains, certain items must be administered: the domains
themselves, the members of the domain, and the policies associated with the
domains. The environment domains refer to the “characteristics of the
environment and which objects are members of the domain” (Object
Management Group, 2002, p. 2-27). Since this is specific to the environment,
they do not provide management interfaces. Finally technology domain
administration may refer to establishing and maintaining the security services,
the trusts between the different domain, and any other entities such as
principals and keys, that would be within the scope.

Outstanding Issues

Xingshe and Xiadong (2000) note that is there is inconsistency among
the different security models for the applications being integrated through

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Distributed Systems Security 10

CORBA, there may be an opportunity for an intruder to compromise the
architecture’s security.

Koutsogiannakis and Chang (2002) state that “a Corba implementation is
labor- and resource-intensive” (p.41). The more a developer has to learn about
an architecture to create a secure system, the more security problems may be
introduced due to that lack of understanding. The architecture’s complexity in
itself can make security more difficult to ensure.

Gollmann (2001) shows that security is based on all requests being
brokered through the ORB. It “does not guarantee that the ORB cannot be
bypassed and that the data used by CORBA’s security services are properly
protected” (2001, P. 184). Further, the fact that non-repudiation is not at the
ORB level, and has to be implemented at the application level, can weaken the
security. In other words, there is no proof that the ORB actually carried out the
request on an object – non-repudiation is only at the application level, which
must be taken into consideration.

COM+

The third architecture that is often mentioned in discussions of distributed
systems application security is Microsoft’s COM+ architecture. COM+
represents the next generation in Microsoft’s history of distributed architectures.

General Architecture

Previous distributed systems architecture called for two-tier programming.
The client would run software that would allow it to connect to other back-end
systems, such as SQL databases. This was found to be problematic, so the
architecture progressed to multi-tier, or n-tier application development. In this
architecture, the clients would run an application that would connect to a server
with COM+ services running. This server would in turn connect to the back-end
servers. This offered many benefits, such as sharing of resources on the COM+
server, and limited updating of clients. As with Java, interface-based
programming was implemented. Various languages can use the COM+
architecture, such as C++, Visual Basic, Java, Delphi, and COBOL (Pattison,
2000).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Distributed Systems Security 11

COM+
includes
automat
ic
security.
With
COM+
automat
ic
security,
the
develop
er can
leave
security
out of
the

components they create. This makes the code easier to write and maintain, it is
easier to design security at a higher level and throughout an entire application,
and it facilitates the configuration of a security policy. The developer can also
build upon these automatic security features. Some of the options they have at
their disposal include: role-based security, impersonation and delegation, and
software restriction policies.

Role-Based Security

Role-based security, an automatic service of COM+, can be extended in
order to construct and enforce access policies. The security is not placed in the
component itself, but implemented rather on a method-by-method basis. Role-
based security can be implemented either as declarative or programmatically
(“COM+ Security Programming, Part 1”, 2001). In declarative security,
permissions can be set on components much the same way that permissions
are set on files within the Windows NT operating system. This has the
advantage of allowing security to be administered and configured without having
to recompile code. This also frees the component developer from concerning
themselves with writing security into the components themselves.

If the permissions need to be more granular than at the component level,
then role-based security must be implemented programmatically. In order for
COM+ to authorize a client to access some resource, it must determine who the
client is, through the authentication service. There are several authentication
options, but the higher the level of security, the bigger the performance hits,
which needs to be taken into consideration.

Impersonation and Delegation

Figure 3 - COM+ Model (Pattison, 2000, p.24)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Distributed Systems Security 12

When a client accesses a resource, often the server that the client is
connecting to needs to retrieve information with the client’s credentials, ensuring
that the client can only access information that it has been granted rights to.
This is done in COM+ through impersonation. In the case of distributed
systems, delegation would be more frequently used. Delegation refers to the
impersonation of a client over the network. For example, if a client is running an
application that makes a call to the COM+ middleware server, and it in turn
needed to access a SQL database, delegation would be used.

Software Restriction Policies

Introduced with the release of Windows XP is the proactive framework of
software restriction policies. A similar architecture as discussed in the section
on Java security is used. Trusted code is given unrestricted access to the local
system, where unknown (untrusted) code is limited to a sandbox where the
access is restricted. The access is determined by setting one of two trust levels:
unrestricted and disallowed. Unrestricted will allow the code to execute up to
the limits given to the user executing the code, whereas disallowed is restricted
to the sandbox. As with role-based security, software restriction policies can
either be set through a graphical user interface (GUI) or programmatically
(Microsoft, 2002).

Outstanding Issues

The first outstanding issue that is evident as current research is analyzed
is the marked absence of evaluation of the COM+ architecture and its current
security problems. Microsoft is often criticized for security problems, but it is
difficult to find solid research detailing what problems may exist in the COM+
architecture.

Further, it does not appear that Microsoft’s sandbox allows granular
enough permissions. Only two levels of trust can be configured, which would
appear to be inadequate for most implementations.

Future Research

There are several areas that warrant additional research in order to further
distributed systems application security. The first area that should be explored
is that of Java auditing. Hartel and Moreau (2001) write that there is currently no
work being done to implement auditing in Java. This is a major part of securing
systems that should be investigated further.

Hartel and Moreau (2001) stat that there have been many investigations
into the specifications of a subset of the language, but a “unifying frameworks
that help understand interactions between components” is still needed (p. 530).
They state that a complete understanding of the language and specifications are
needed to implement better security. They also suggest that tools are needed to
work on and analyze the byte code of a program, as the original source code

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Distributed Systems Security 13

may not be available.
An area of further research for the CORBA architecture is simply

watching the industry, how it implements this framework, and analyzing the
implementations for further security enhancements. CORBA is a new
framework and there has not been a very high level of implementation. With
any new system, there is a learning curve for the developer community, and
additional security problems will be found along the way.

Although many compare Java and CORBA to COM+ in their research,
and regard COM+ as a viable solution for distributed systems security,
(Chizmadia, 1998, Emmerich & Kaveh, 2002, and Pattison, 2000), not a lot of
research has been conducted on it. Additional research should be completed to
further understand the security implications of COM+, comparing it thoroughly to
Java and CORBA in order to assist the industry in deciding which architecture to
implement.

Finally, as with any architecture, there is the continuous battle between
ease of implementation, backwards compatibility, and security. It is extremely
difficult, if not impossible, to find the ideal balance, but additional research
should be conducted in an attempt to at least arm the developer community with
the knowledge necessary to make an educated decision.

Conclusions

The three most common distributed systems application architectures are
Java, CORBA, and COM+. Each of these architectures has its strengths and
weaknesses. When deciding which to employ, different aspects that need to be
considered. First, the security of the architecture must be considered. Java has
several published security vulnerabilities, but knowing what they are is half the
battle towards finding a remedy. CORBA does not appear to have many, but it
also has not been as widely implemented as Java, so the vulnerabilities may yet
be discovered. Security for COM+ may be inconclusive as there is not a wealth
of information on it. The difficulty of implementation must also be considered. If
the system is overly complex, security problems may exist due to
implementation problems. If the architecture is too simple however, there may
not be enough flexibility to create the necessary security configurations. Finally,
the environment needs to be taken into consideration. Koutsogiannakis &
Chang (2002), among others, recommend Java when the systems that need to
communicate are primarily Java-based, COM if the environment is mostly
Microsoft based in order to take advantage of close integration with the other
Microsoft products, and CORBA as a general implementation.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Distributed Systems Security 14

References
Chizmadia, D. (1998). A quick tour of the CORBA security service. Retrieved

August 27, 2002, from http://www.itsecurity.com/papers/corbasec.htm
COM+ security programming, part 1: declarative role-based security. (2001,

June 11). Retrieved August 28, 2002, from
http://www.itworld.com/nl/windows_sec/06112001/

COM+ security programming, part 2: programmatic role-based security. (2001,
June 18). Retrieved August 28, 2002, from
http://www.itworld.com/nl/windows_sec/06182001/

Emmerich, W., & Kaveh, N. (2002). Component technologies: Java Beans,
COM, CORBA, RMI, EJB and the CORBA component model. Software
Engineering, 691-692.

Gollmann, D. (2001). Computer security. West Sussex, England: John Wiley &
Sons Ltd.

Gong, Li. (1997). Java security: present and future. IEEE Micro, 17, 14-19.
Hartel, P., & Moreau, L. (2001). Formalizing the safety of Java, the Java virtual

machine, and Java card. ACM Computing Surveys, 33, 517-558.
Hassler, V., & Then, O. (1998). Controlling applets’ behavior in a browser.

Computer Security Applications Conference, 120-125.
Koutsogiannakis, G., & G. Chang, J. M. (2002). Java distributed object models:

an alternative to Corba? IT Professional, 4, 41-47.
MageLang Institute. (1998). Fundamentals of Java security. Retrieved

September 4, 2002, from
http://developer.java.sun.com/developer/onlineTraining/Security/Fundame
ntals/Security.html

Microsoft. (2002, August). COM+ security concepts. Retrieved August 28, 2002,
from http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cossdk/htm/pgservices_security_4fw3.asp

Object Management Group. (n/d). CORBA basics. Retrieved August 21, 2002,
from http://www.omg.org/gettingstarted/corbafaq.htm

Object Management Group. (2002, March). Security service specification,
version 1.8. Retrieved September 6, 2002, from http://www.omg.org/cgi-
bin/doc?formal/2002-03-11

Pattison, T. (2000, February). COM+ overview for Microsoft Visual Basic
programmers. DevelopMentor, Retrieved September 6, 2002, from
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dncomser/html/complus4vb.asp

Sun Microsystems (n/d). Trail: security in Java 2 SDK 1.2. Retrieved September
4, 2002, from
http://java.sun.com/docs/books/tutorial/security1.2/index.html

Wheeler, D. M., Conyers, A., Luo, J., & Xiong, A. (2001). Java security
extensions for a java server in a hostile environment. Computer Security
Conference, 64-73.

Xingshe, Z., & Xiaodong, Li. (2000). Design and implementation of CORBA security
service. Technology of Object-Oriented Languages and Systems, 140-145.

