
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Implementing Router ACLs As Part of A Layered Security Strategy
A Step By Step Case Study

Practical Assignment (Version 1.4, Option 2) for the GSEC Certification
By J.T. Hsieh
October 10, 2002

TABLE OF CONTENTS

INTRODUCTION ..2

BEFORE SNAPSHOT - COMPANY SECURITY CULTURE2
BEFORE SNAPSHOT – NETWORK AND SYSTEM ENVIRONMENT:................3

BEFORE SNAPSHOT - RISK ASSESSMENT AND LAYER SECURITY4
DURING SNAPSHOT – UNDERSTANDING ACL TYPES7
DURING SNAPSHOT – MATCHING FEATURES TO NEEDS.............................8
DURING SNAPSHOT – ACL APPLICATION CONSIDERATIONS10

DURING SNAPSHOT – CAPTURING TRAFFIC REQUIREMENTS:14
USING SNIFFERS TO CAPTURE TRAFFIC REQUIREMENTS.......................................15
STEPS FOR TRACE ANALYSIS:...17
TRACE ANALYSIS RESULTS...20
USING PERMIT-ANY STATEMENTS ...22

AFTER SNAPSHOT – STEP IN THE RIGHT DIRECTION.................................23

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 2 of 24

Introduction
This paper details the step-by-step process of implementing Access Control Lists
(ACLs) during a company-wide project to implement global ERP and CRM
systems. ACLs were included in the project (Project Overhaul) as part of a
strategy to build layered security, or defense-in-depth, into the new system
infrastructure. As the GSEC course material pointed out, effective security must
be part of the system design rather than an afterthought.

To provide proper context, our Before Snapshots will describe the company’s
security culture, network and systems environment, risk assessment, as well as
the layered security strategy for Project Overhaul. These Before Snapshots will
help our readers better understand some of the decisions we made to balance
the many conflicting priorities of Project Overhaul while implementing ACLs.

Next, our During Snapshots will provide a step-by-step discussion of our ACL
implementation, including our approach, tools, procedures, and sample ACL
statements.

Finally, our After Snapshot will discuss our successes and our opportunities for
future improvement. Through our discussions, we hope to provide a realistic
picture of the battles that must be fought, negotiations that must be won, and
compromises that must be made when attempting to improve the overall security
posture of a Fortune 500 company.

Before Snapshot - Company Security Culture
The Security team reports to an IT Manager who has three more layers of
management above him before reaching the CIO. From an organizational
standpoint, we are a far cry from the generally recommended structure where a
CSO or CISO has responsibility for security across the enterprise and reports
directly to the CEO or at least the CIO. Senior Management’s lack of interest in
security is clearly manifested in such an organizational structure.

Other characteristics of the company’s security culture include:
• Security is viewed as an IT function, one that is not critical to the company.
• Security policies are narrowly focused, out of date, and almost universally

ignored.
• Information assets are not classified and labeled according to sensitivity. The

company as a whole does not have a good understanding of the value of its
information assets or the threats to such assets.

• Project teams are always under tremendous pressure to deliver systems on
aggressive time schedules. Project Overhaul was no exception; its schedule
was so aggressive that project teams started building the infrastructure even
before all the requirements were identified. This caused many complications
as the project progressed.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 3 of 24

• System developers are not required to include the Security team in initial
system designs. Security is often brought in at the end after the infrastructure
has already been built.

• The CEO established a company-wide goal to get “the gunk out,” meaning cut
costs aggressively. Budgets and resources were tight everywhere; however,
security was especially impacted due to the company’s view that security is a
cost with questionable returns on investment.

All of the above factors contributed to an environment where security is often
placed last on the list priorities.

Before Snapshot – Network and System Environment:
Although the company deployed strong Internet-facing controls (firewalls, DMZ,
proxy servers, and secured portal gateway), the internal network was traditionally
viewed as a trusted network with few internal controls. Prior to Project Overhaul,
the network was essentially one flat network consisting of Token Ring LANs
interconnected by an ATM backbone. Users were not separated from servers,
and the network was not fully switched. Also, there were no ACLs on internal
routers, no system monitoring, and no intrusion detection systems of any kind.

In other words, the company was relying on a “hard perimeter, soft center”
approach to network security. The internal network, however, also included
branch office networks from all over the world. Although some policies have
been developed to secure the perimeter, they were not well communicated or
enforced. There were many known instances of external traffic traversing the
company’s internal network. Such unauthorized traffic provides strong indication
of the existence of backdoors (modems, wireless access points, remote users
with broadband connections but no personal firewalls, etc.) into the company’s
internal network.

The result was a network where anyone with access, including unauthorized
users coming in through unknown backdoors, can sniff for information such as
usernames and passwords. Malicious users can also spoof legitimate IP
addresses, hijack sessions, or perpetrate man in the middle attacks. Since there
was no system monitoring or intrusion detection, any compromise would likely go
unnoticed unless it caused a major disruption.

Concurrent with the launch of Project Overhaul, the company decided to migrate
its internal network to Ethernet. The new Ethernet network inherited the Token
Ring network’s flat landscape with user workstations and servers still residing on
a few big virtual LANs (VLANs). Although much of the new network was now
switched, the network retained many of the vulnerabilities of the old Token Ring
network. After the migration, the network was also plagued with severe
broadcast storms that often slowed the network down to a crawl. Each time a
server or workstation came up on the network, it would send ARP and other

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 4 of 24

types of broadcasts throughout its large VLAN. Each broadcast message must
be processed by every host attached to the VLAN. This problem was further
exacerbated by newly installed, malfunctioning failover NICs that repeatedly
switched back and forth between the clustered NICs, sending out broadcasts
each time a switch occurred.

The risk of compromise is further increased by the lack of consistent
configuration management for hosts and network devices. The company does
not have mandatory processes for maintaining standard system configurations.
Systems are built differently each time and are often not patched to eliminate
known vulnerabilities. Unix and Windows hosts as well as Cisco routers were
configured with vulnerable services.

Before Snapshot - Risk Assessment And Layer Security
During the design phase of Project Delta, the Security team performed a risk
assessment and concluded that the existing system infrastructure cannot provide
adequate security and reliability for a mission critical system. The result of the
assessment is presented below:

Risk Element Assessment
Asset Value Mission Critical

(Scale: Mission Critical, Important, Useful, Non-essential)

Single point of failure with potential for seriously disrupting
the company’s business processes on a global scale.

System
Vulnerabilities

High
(Scale: High, Medium, Low)

There are no standard processes to ensure hosts are
properly configured. The vulnerabilities of improperly
configured hosts and network devices are well
documented and publicized. Automated hacker tools and
malicious codes to exploit known vulnerabilities are readily
available and require little technical expertise to use.

Probability of
Threats

High
(Scale: High, Medium, Low)

The company’s increasingly open network (accessible to
brokers, field offices, sales offices, plants, business
partners, contractors, remote users, etc.) means increased
threat that a legitimate but unethical user can exploit
vulnerabilities in The company’s systems. The company’s
internal network is also vulnerable to unauthorized access.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 5 of 24

Risk Element Assessment
Overall
Assessment

High Risk to Mission Critical Assets
Such a high risk exposure requires strong controls to
minimize the possibility of major losses.

The above assessment is based on the concept that risk only exists when real
threats can exploit actual vulnerabilities to adversely impact valued assets. We
purposely kept the assessment result simple for ease of communication.

GSEC’s Day Two material describes risk as a function of threat and
vulnerabilities. Although it could be argued that threat inherently includes the
idea of asset value, we decided to separately discuss asset value to emphasize
the mission critical nature of Project Overhaul’s systems.

The Security Team was successful in getting approval for a strategy to improve
the overall security of Project Overhaul’s system infrastructure. The strategy
called for the implementation of the following security layers into the
infrastructure:

• Data Security Layer – Data will be classified and labeled. Owners and

custodians will be assigned. Security measures will be commensurate with
the data classification.

• User Awareness and Security Policies – Information security policies will
be updated and expanded as required. Company-wide user awareness
programs will communicate approved policies to all employees and, when
appropriate, to business partners.

• Physical Security – Servers, desktops, and laptops will be secured with
appropriate measures.

• Network Security – Project Overhaul servers will be located in their own
private VLANs protected by ACLs. Both NIDS and HIDS will monitor network
for unauthorized activities.

• Application Security – User access will be limited to what is authorized.
• Operating System Security – Configuration standards will be developed and

applied to all servers and network devices. Symantec’s Enterprise Security
Manager (ESM) and other monitoring tools will be deployed to ensure servers
and network devices comply with configuration standards.

The above security layers were designed to work together synergistically, each
layer compensating for weaknesses in other layers. Consequently, although
each layer may not be completely effective by itself, all the layers work together
to improve overall effectiveness.

The benefit of this defense-in-depth approach is well presented by Peter Tippett
in his Information Security Magazine article on “synergistic security.” [i] Tippett
points out that “any single control that’s 99 percent effective would cripple” a
business’ productivity. He suggests that a better way is to layer together more

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 6 of 24

user-friendly controls, which may be less effective by themselves, but just as or
even more effective as a whole.

To illustrate this, Tippett uses the statistical theory called Baye’s Theorem,
“which describes a ‘new’ probability (control effectiveness) given a ‘prior’
probability... If one control is 80 percent effective, then it fails one out of five
times. Two controls, each 80 percent effective, together will fail one out of 25
times. Three 80 percent effective controls, operating together, will fail one out of
125 times. In other words, they will succeed with a likelihood of 99.2 percent.”

We developed the diagram below to help senior management appreciate the
power of layered, synergistic security:

Power of Synergy

Illustration of effectiveness:
Baye’s Statistical Theorem:

50% x 20% x 20% = 2%

User
Awareness
Fail Rate

Network
Control

Fail Rate

Server
Control

Fail Rate

Overall Fail Rate
of Synergistic

Controls

Although we were happy to win approval for our layered security strategy, we
knew implementation would not be easy. The company culture still required that
we obtain consensus from each of the project teams affected by the strategy,
including Unix sysadmins, Windows administrators, Network engineers, and all
the application teams.

This security-by-consensus approach turned out to be extremely difficult to
practice. We had to repeatedly educate and negotiate, going back to the drawing
board again and again to come up with the controls for each of the security
layers in our strategy.

Due to conflicting priorities, resources constraints, and extremely aggressive
deadlines, this security-by-consensus approach made it impossible to fully
implement our layer security strategy. We had to settle for the highest impact
controls that could be practically implemented under the high-pressure
environment.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 7 of 24

During Snapshot – Understanding ACL Types
The first step in our ACL implementation was to understand the type of ACLs
available to us. Day 2 of the GSEC material mentioned three basic types of
ACLs: Standard, Extended, and Reflective. Other types of ACLs are also
available for our Cisco Catalyst 6509 Switches (6509 Switches). These switches
run on hybrid software: Catalyst OS Version 6.3(5) on the Supervisor Engine and
IOS Version 12.1(3a)E4 on the Multilayer Switch Feature Card (MSFC). The
MSFC provides the 6509 Switches with router functions.

As described in Chapter 23 of Cisco’s “Catalyst 6500 Series IOS Software
Configuration Guide,” [ii] the other ACL types not mentioned in the GSEC
material and applicable to our discussion are:

MAC Address-Based Traffic Blocking
The 6509 Switches can be configured to block all traffic to and from a
MAC address in a specified VLAN.

VLAN Access Control Lists (VACLs)
The above referenced IOS Configuration Guide explains that “VACLs can
provide access control for all packets that are bridged within a VLAN or
that are routed into or out of a VLAN or, with releases 12.1(13)E or later, a
WAN interface. Unlike regular Cisco IOS standard or extended ACLs that
are configured on router interfaces only and are applied on routed packets
only, VACLs apply to all packets and can be applied to any VLAN or WAN
interface. VACLS are processed in hardware. VACLs use Cisco IOS
ACLs. VACLs ignore any Cisco IOS ACL fields that are not supported in
hardware.

“You can configure VACLs for IP, IPX, and MAC-Layer traffic. VACLs
applied to WAN interfaces support only IP traffic.

“When you configure a VACL and apply it to a VLAN, all packets entering
the VLAN are checked against this VACL. If you apply a VACL to the
VLAN and an ACL to a routed interface in the VLAN, a packet coming in to
the VLAN is first checked against the VACL and, if permitted, is then
checked against the input ACL before it is handled by the routed interface.
When the packet is routed to another VLAN, it is first checked against the
output ACL applied to the routed interface and, if permitted, the VACL
configured for the destination VLAN is applied. If a VACL is configured for
a packet type and a packet of that type does not match the VACL, the
default action is deny.”

VACLs and CBACs (see below) cannot be applied to the same interface.

Context-Based Access Control (CBAC)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 8 of 24

According to the “Cisco IOS Security Configuration Guide,”[iii] “CBAC
intelligently filters TCP and UDP packets based on application-layer
protocol session information. You can configure CBAC to permit specified
TCP and UDP traffic through a firewall only when the connection is
initiated from within the network you want to protect. CBAC can inspect
traffic for sessions that originate from either side of the firewall, and CBAC
can be used for intranet, extranet, and Internet perimeters of your network.

“Without CBAC, traffic filtering is limited to access list implementations that
examine packets at the network layer, or at most, the transport layer.
However, CBAC examines not only network layer and transport layer
information but also examines the application-layer protocol information
(such as FTP connection information) to learn about the state of the
session. This allows support of protocols that involve multiple channels
created as a result of negotiations in the control channel. Most of the
multimedia protocols as well as some other protocols (such as FTP, RPC,
and SQL*Net) involve multiple channels.”

CBAC provide stateful inspection, but is only available as part of the Cisco
IOS Firewall option. Each CBAC statement also uses up a small amount
of the router’s memory. Cisco recommends judicious use of CBAC to
avoid exhausting the router’s memory resources.

During Snapshot – Matching Features to Needs
To help the reader understand our choice of ACL types, we will next describe the
system landscape for Project Overhaul and explain our objectives for ACLs.

The network hardware used by Project Overhaul consists of five 6509 Switches:

• Two core switches with MSFCs to provide load balancing, failover-enabled
routing and switching.

• Three switches without MSFCs to provide the required switching among
the numerous servers. These switches do not provide routing functions.

The infrastructure design for the ERP system includes the following elements:

• Unix servers running Sun Solaris 8
• Each server is attached to three VLANs:

o Client - for client (user) traffic,
o Data - for system to system (interface) traffic, and
o Backup - for backup traffic.

• Three separate system environments:
o Development (Dev),
o Quality Assurance (QA), and
o Production (Prod)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 9 of 24

The three environments share one Backup VLAN, so there is a total of seven
VLANs for the ERP system.

The infrastructure for the CRM system is similar and includes:

• Unix servers running Solaris 8
• Windows servers running Windows NT
• Each server is also attached to three VLANs:

o Public – for all traffic from outside the CRM VLANs except backup
o Private – non-routed VLAN dedicated for server-to-server traffic

between the CRM servers on the same VLAN.
o Backup – for backup traffic

• Three separate system environments:
o Development (Dev),
o Quality Assurance (QA), and
o Production (Prod)

There are a total of nine VLANs for the CRM system.

Although we would like to see ACLs implemented through out the company’s
network, the scope of our ACL work for Project Overhaul was realistically limited
to the protection of the above 16 VLANs. We later eliminated from scope the
CRM Dev VLANs because the environment was so dynamic and the costs
outweighed the benefits.

The Backup Team also decided that the Unix-based backup system would have
an interface to the ERP Backup VLAN to improve performance. This effectively
made the backup system into a backdoor around whatever ACLs we implement.
To better control access to this backdoor, we required the Backup Team to
implement RSA’s SecurID on the backup system. SecurID requires users to use
one-time passwords provided by a token. We will also monitor the system’s
configuration via ESM for changes, including the addition of users or services.

Our main objective for the ACLs is to filter the traffic going into the VLANs within
our scope; however, we also decided to filter the traffic coming from these
VLANs to prevent backdoors and other means of circumventing network controls.
We did not view these dedicated VLANs as “trusted.”

After carefully considering our requirements, we decided on implementing
extended ACLs for the following reasons:

1. We needed to filter on protocol and ports, so standard ACLs and MAC
address-based filtering were ruled out.

2. We did not need to filter all packets, only routed packets, so we decided
against VACLs. Deploying VACLs would mean extra work since we would
have to configure them in all five 6509 switches. With extended ACLs, we

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 10 of 24

only needed to concern ourselves with the two core switches with routing
functions.

3. Since we wanted to filter both inbound and outbound traffic, we also
decided against reflective ACLs. According to Cisco’s IOS Security
Configuration Guide, reflective ACLs work best when applied to only one
direction.

4. CBACs were attractive especially for multi-port protocols such as RPC
and for UDP packets; however, we did not have any budget for the
implementation of the IOS Firewall option. There were also some
concerns over the processing overhead imposed by CBACs.

During Snapshot – ACL Application Considerations
Extended ACLs provide filtering on the network layer (IP addresses) and on the
application layer (ports). The syntax for extended ACLs can be broken down to
the following nine elements (based on the diagram “Anatomy of An Access List”
from Peter Morrissey’s article on “Demystifying Cisco Access Control Lists.” [iv]):

Element 1 2 3 4 5 6 7 8 9
access-list 100 permit tcp 10.8.0.0 0.0.0.127 10.20.20.0 0.0.0.255 eq 23
access-list 120 deny icmp host 192.168.33.45 192.168.50.0 0.0.0.255 echo-reply
ip access-list
extended v10in

permit ip any any

Element

No.
ACL Element Required

Optional
Description and Remarks

1 access-list (100-199)

ip access-list
extended <name>

Required Extended ACLs can be named or numbered.

Numbered: Every extended access list has a
number from 100 to 199, which identifies the
list in two places: 1) when building the ACL,
each statement belonging to the ACL must be
labeled with the same number; 2) when
applying the ACL to a router interface, it is
referenced by its ACL number.

Named: a name can be used instead of
numbers using the alternative command
syntax. The name must only use
alphanumeric characters.

2 deny
permit
remark

Required A permit or deny rule must be applied to every
statement in the ACL.

Remark is ignored by the router and is used
for clarifying remarks.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 11 of 24

Element
No.

ACL Element Required
Optional

Description and Remarks

3 ICMP
IP
OSPF
TCP
UDP

Required A protocol must be specified. Beside those
listed here, other protocols can also be
specified; we only listed the ones pertinent to
our discussion here.

4 xxx.xxx.xxx.xxx.
any
host xxx.xxx.xxx.xxx

Required Source IP address. Every statement must
specify a source IP address. Any will match
any address; while host denotes a single IP
address.

5 xxx.xxx.xxx.xxx Optional if
any or host
specified
above

Source wildcard mask. The wildcard mask is
written as the inverse of the source IP address
subnet mask. For example,
• a source ip address range with a

255.255.255.0 subnet mask would
require a wildcard mask of 0.0.0.255

• 255.255.255.128 would need 0.0.0.127
• 255.255.255.192 would need 0.0.0.63
• 255.255.255.224 would need 0.0.0.31
• 255.255.248.0 would need 0.0.7.255

If host was specified in element 4, there is
an implicit wildcard mask of 0.0.0.0, and it is
not necessary to explicitly specify the mask.

6 xxx.xxx.xxx.xxx.
any
host xxx.xxx.xxx.xxx

Required Destination IP address. Every statement must
have a destination IP address. Syntax is the
same as for the source IP address (element
4).

7 xxx.xxx.xxx.xxx Optional if
any or host
specified
above

Destination wildcard mask. Syntax is the
same as for the source wildcard mask
(element 5).

8 eq
gt
lt
neq
range <n> <n>

optional Not applicable if IP, ICMP, or OSPF was
specified in element 3.

For TCP and UDP, the following functions are
available:
eq = equal
gt = greater than
lt = less than
neq = not equal
range = all ports from the first specified

number to the second, inclusive. For
example, range 21 23 means ports
21, 22, 23.

9 <0-65535>
<named protocols>

optional If filtering on TCP or UDP ports is desired,
specify the port numbers here. Alternatively,
well known ports can be specified by the
application name (e.g., telnet, ftp, ftp-data,
http, etc.) For range, specify the range as
two numbers separate by a space.

For ICMP, specify the type either by number
or by protocol name (e.g., echo, echo-reply).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 12 of 24

Cisco IOS also allows port specifications (elements 8 and 9) to precede
destination address specifications (elements 6 and 7). Thus,

access-list 100 permit tcp any any eq ftp-data

can also be written as:

access-list 100 permit tcp any eq ftp-data any

Some have argued that the latter syntax results in faster processing by the router
because unauthorized packets will be dropped faster; however, we have not
found strong evidence to prove this assertion. We did discover that the latter
syntax is preferable when applied to ftp-data. This will be discussed in detail in
the next section on capturing traffic requirements.

Once we understood the functionality of extended ACLs, we had to decide where
to apply them. From the standpoint of efficiency and resource utilization, the best
way to apply extended ACLs is to filter the inbound interfaces. As explained by
the GSEC material, with inbound ACLs, the router filters packets before the
routing logic, saving network bandwidth and router processing cycles. Outbound
ACLs filter packets after the routing logic, wasting the network bandwidth and
processing cycles required to deliver the packet to the outbound interface before
it is dropped.

To illustrate this difference, I expanded the diagram from the GSEC Material into
the following two diagrams:

Routing Logic

OUT IN

IN OUT

ETH0

ETH1

Routing Logic

OUT IN

IN OUT

ETH2

ETH3

VLAN 10 VLAN 20

BACKPANE or BACKBONE

INBOUND ACLs

Inbound ACL
drops denied
traffic BEFORE
routing the
packet, saving
CPU cycles and
network
bandwidth.

Inbound ACL
drops denied
traffic BEFORE
routing the
packet, saving
CPU cycles and
network
bandwidth.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 13 of 24

Routing Logic

OUT IN

IN OUT

ETH0

ETH1

Routing Logic

OUT IN

IN OUT

ETH2

ETH3

VLAN 10 VLAN 20

BACKPANE or BACKBONE

OUTBOUND ACLs

Outbound ACL
drops denied
traffic AFTER
routing the
packet, wasting
CPU cycles and
network
bandwidth.

Outbound ACL
drops denied
traffic AFTER
routing the
packet, wasting
CPU cycles and
network
bandwidth.

To provide the control desired, ACLs would need to be applied to ALL inbound
interfaces on ALL routers connected to the company network. Although this is a
desirable goal, there just was no practical way to accomplish such a feat in the
time frame allotted and with the resources available. Consequently, we had to
settle for applying ACLs to both the inbound and the outbound interfaces for the
10 VLANs remaining in our scope. Twenty ACLs were needed as shown in the
table below:

No. VLAN Interface Environment
1 VLAN 10 Inbound ERP Dev – Client
2 VLAN 11 Inbound ERP Dev – Data
3 VLAN 20 Inbound ERP QA – Client
4 VLAN 21 Inbound ERP QA – Data
5 VLAN 30 Inbound ERP Prd – Client
6 VLAN 31 Inbound ERP Prd – Data
7 VLAN 40 Inbound CRM QA – Pub
8 VLAN 41 Inbound CRM QA – Bkp
9 VLAN 50 Inbound CRM Prd – Pub

10 VLAN 51 Inbound CRM Prd – Bkp
11 VLAN 10 Outbound ERP Dev – Client
12 VLAN 11 Outbound ERP Dev – Data
13 VLAN 20 Outbound ERP QA – Client
14 VLAN 21 Outbound ERP QA – Data
15 VLAN 30 Outbound ERP Prd – Client
16 VLAN 31 Outbound ERP Prd – Data
17 VLAN 40 Outbound CRM QA – Pub
18 VLAN 41 Outbound CRM QA – Bkp
19 VLAN 50 Outbound CRM Prd – Pub
20 VLAN 51 Outbound CRM Prd – Bkp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 14 of 24

During Snapshot – Capturing Traffic Requirements:
We had settled on an approach for applying ACLs. Now, we needed to
determine what traffic to permit and what traffic to block. Getting a good set of
traffic requirements to build our ACLs turned out to be the greatest challenge of
this project. This was due to the following factors:

• The application teams and the system administrators could not provide us
with a clear set of requirements for their servers and applications. From
our first initial network traces, we quickly saw that the requirements
provided us were woefully incomplete.

• We repeatedly discovered that the system landscape was not being built
according to design. By the time we facilitated the correction that could be
made, we were starting QA integration testing. Unfortunately, the
misconfigured ERP Dev environment had become so critical to the
progress of the project, it could not be touched until some indefinite future
time after Project Overhaul’s Go-Live.

• System and application requirements changed continuously, even during
QA. In attempts to make up for lost time, many temporary configuration
changes were made to shortcut QA testing. This situation made it
impossible to lock down the traffic requirements for our ACLs.

To further add to the challenge, we were told that the burn rate for Project
Overhaul was millions of dollar per MONTH, so we were told our most important
priority is to avoid causing any major disruptions as we build and apply our ACLs.
The vice-president of IT, in charge of Project Overhaul’s infrastructure, personally
made it clear to us that any major disruptions means we will do without ACLs at
least until after Project Overhaul’s Go-Live.

We understood that to mean we will do without ACLs indefinitely since there are
two more phases of Project Overhaul scheduled for the next few years. This
would mean the company’s mission critical systems would not be adequately
protected for a prolonged period. This was not an acceptable situation, and the
Security team decided that we would implement ACLs even if only partially
effective for the following reasons:

• Partial protection is still better than no protection, especially in a layered
security approach. Holes in our ACL controls can be mitigated by other
security measures such as configuration monitoring and IDS.

• We needed to get the company acclimated to ACLs. Much of the
resistance to our efforts is due to the lack of experience with ACLs.

• As the company gets more comfortable with ACLs and as the
infrastructure stabilizes, we can gradually tighten the control to improve
effectiveness.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 15 of 24

• We want ACLs to be part of the development environment for Phase 2
and Phase 3 to force development teams to work out ACL requirement as
they progressed.

To meeting the challenge of building ACLs without clear and stable requirements,
we adopted the following implementing strategy:

1. We placed sniffers in Project Overhaul VLANs and used the traces to get
a better understanding of the network traffic requirements.

2. Requirements were documented and ACLs developed to match the traffic
identified from our traces.

3. “Permit-any” statements were temporarily placed at the bottom of each
ACL so we can identify any missed traffic requirements without causing
disruptions.

4. As the environments stabilized and as we slowly ferreted out the required
ports and address ranges, we eliminated the permit-any statements one
by one to the extent practical.

Each of the above steps is discussed in detail below.

Using Sniffers to Capture Traffic Requirements
Since we did not have a budget for implementing ACLs, we used free, open
source sniffers. We also built six Redhat Linux 7.2 laptops because we found
Linux provided many more tools and much better flexibility than Windows 2000
(W2K).

Below is a list of sniffers that we tested and our experience with them:

Ethereal for Windows – We had difficulty using the Windows version of
Ethereal on our company’s standard W2K images. It would cause W2K’s
IP stack to stop working, requiring that we delete and reinstall the TCP/IP
protocol in the Network Connections settings. This may be due to the
custom, frozen Registry settings in our company’s standard W2K image.

Ethereal for Linux (Redhat 7.2) – Ethereal on Linux is a powerful packet
analysis tool with many features for analyzing the various layers of a
TCP/IP Ethernet packet. The X-Windows GUI is easy to use and read.
The downside is Ethereal consumes lots of system resources. A 15-
minute trace on a busy 100MB Ethernet network could easily fill up a 100
MB file. Unfortunately, on our IBM T-20 laptop (Pentium III, 900 MHz, 256
MB Ram), Ethereal had difficulty dealing with files bigger than 20MB. It
would cause the hard disk to thrash. Read filtering stops working, and
printing and scrolling slows to a crawl. Outputting a flat text file is also a
cumbersome process and painfully slow for any file larger than 20 MB.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 16 of 24

Tethereal (Linux) – This is a non-gui version of Ethereal that does not
require X-Windows to run. Outputting is similar to TCPdump except the
program will translate ports into protocol names based on IANA port
listings. This made Tethereal more difficult to use for capturing port
numbers and IP addresses.

TCPDump (Linux) – This is the sniffer we finally chose for our network
traces. We learned how to read the output from the GSEC Day 1 material.
With TCPDump and appropriate capture filters, we can run the trace all
day, parse the captured data using Linux shell commands such as sort
and grep, and quickly isolate the unique sockets (port and address
combinations) for identifying traffic requirements.

Analyzing the millions of packet we captured was tedious and arduous.
Below are steps we gradually developed to facilitate the analysis. These
steps worked even for trace files as large as 10GB. Our descriptions assume
knowledge of the following common Linux commands:

Shell Command Function
|
(shift and \ key)

Pipe. Takes the output of the previous command and
sends it as input to the following command

>
(shift and . key)

Redirect. Takes the output of previous command and
writes it to specified file.

Cat Output file listed.
Grep Searches a file for a given pattern. Useful options

include:

-v Inverse match, reject lines matching pattern

-w Match whole word. Specified pattern must not be

preceded or followed by an alphanumeric
character.

-f Pattern specified in the following file. One pattern
per line.

Sort Sort a file based on specified criteria. Useful options
include:

-k n,n specifies the beginning and ending fields to be

used as sorting criteria.

-u eliminates all duplicate occurrences of the fields
specified by -k.

-o output result to file named.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 17 of 24

Steps for Trace Analysis:

Step 1. We first spanned the target VLAN to an accessible switch port on the

core switches. This caused all VLAN traffic to route to that switch
port. The 6509 Switches only allowed us to span two VLANs per
switch.

We configured our Linux laptops with three interfaces: two to sniff on
the span ports and one to allow remote access. This made it easy to
remotely setup, monitor, and change captures.

Step 2. On our Linux laptops, we used the following options when capturing
packets with TCPDump:

-nnttttl -nn specifies that all IP addresses and port numbers remain

in numerical format.

-tttt causes TCPDump to output the date and the time.

-l buffers the output to facilitate piping to another command.

-F This option uses a named file as the capture filter.

To eliminate intra-VLAN traffic, we would launch two sessions of
TCPDump. The first one used the following filter file (assuming we
are sniffing VLAN 20 with IP address 10.8.0.0/26):

v20in.filter:
 ip and not net 224.0.0.0/8 and not dst net 10.8.0.0/26

(This filter captures only inbound IP traffic and filters out HSRP
packets used for failover operation of the core 6509 Switches.)

The second session used a second filter file:

v20out.filter:
ip and not net 224.0.0.0/8 and not src net 10.8.0.0/26

(This filter captures only outbound IP traffic and filters out HSRP
packets.)

Step 3. To further reduce the size of the trace files, we piped the TCPDump
output to the following grep command:

grep –vwf grepack

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 18 of 24

grepack is a text file with the following lines (text in parentheses are
our clarifying remarks and not part of the file):

ack (matches the ACK flag)
R (matches the RESET flag)
P (matches the PUSH flag)
ok (the last four lines matches packets for established NFS)
nfs
proc
null

The above grep command eliminated all packets from established
TCP connections. In our experience, this often reduced the size of
the trace file by some 80%.

Step 4. We then redirected the grep output to a flat text file and used the tail

command to view the output as it is written to the file. So the
complete TCPDump command looks like this:

tcpdump –nnttttl –F v20in.filter –i eth1 |grep –vwf grepack >v20in.txt & tail –f v20in.txt
tcpdump –nnttttl –F v20out.filter –i eth1 |grep –vwf grepack >v20out.txt & tail –f v20in.txt

After entering the commands above, the screen will scroll through the
tail records of the trace file as they are written (almost real time –
there is a slight delay for the buffer to fill up).

Using the above method, we found that we could keep the TCPDump
sessions going for days without filling up our hard disk. Below is a
sample of the output for the inbound trace:

09/24/2002 21:40:14.281815 10.8.0.10.60762 > 10.8.10.10.32773: udp 96 (DF)
09/26/2002 17:33:13.608003 10.8.0.10.630 > 10.8.10.10.2049: S 105513541:105513541(0) win 24820 <nop,nop,sackOK,mss 1460> (DF)

Notice the TCP packet only has the SYN flag. The date and the time
fields are useful for chronological analysis after combining the two
trace files (inbound and outbound).

Step 5. Once we finished capturing our trace files, we used the following sort

command to combine the inbound and outbound trace files while
simultaneously eliminating duplicate combinations of addresses and
ports (sockets):

sort –k 3,6 –u –o v20-uniq.txt *.txt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 19 of 24

The result of the above command is the file v20-uniq.txt, which will
only contain unique combinations of fields 3 through 6 of the trace
file. From the above sample, the reader can see fields 3 through 5
records the socket combination while field 6 records the protocol.

Step 6. Initially, we reviewed the entire file of unique sockets to get a feel for
the traffic patterns. We found importing the text file into Microsoft
Excel facilitated our review.

Once we started understanding the traffic patterns, we captured the
requirements in an Excel spreadsheet like the one below:

Applied
Interface Source Address Dest Address

udp
port tcp port Services

v101-in any any established all TCP
v101-in any 224.0.0.0/8 1985 hsrp
v101-in any 224.0.0.0/8 Ospf
v101-in v101-10.8.10.0/24 v33-10.8.33.0/24 3300 RFC
v101-in v101-10.8.10.0/24 v201 - 10.8.0.0/25 any any all
v101-in v101-10.8.10.0/24 v111-10.8.20.0/25 any any all
v101-in v101-10.8.10.0/24 svrdsd (10.8.64.179) 2049 nfsd(cots)
v101-in v101-10.8.10.0/24 svrdsd (10.8.64.179) 111 nfs-rpc
v101-in v101-10.8.10.0/24 svrdsd (10.8.64.179) >32000 nfs-rpc
v101-in v101-10.8.10.0/24 any 21-23 ftp-ssh-telnet
v101-in v101-10.8.10.0/24 any 22 ssh

Step 7. As we captured the traffic requirements, we also started compiling a
file for use in filtering out packets that match already known
requirements. We will call this file greplist. For each requirement
captured and verified, we would attempt to develop an entry for it in
greplist. The table below shows a sample entry in greplist for the
fourth requirement shown in the spreadsheet above.

The first three lines do not need entries because packets matching
these lines were already filtered out during capture.

Greplist Entry Remarks

10.8.10[.].*[.].*>.*10.8.33[.].*[.]3300: Grep interprets a period “.” as a
wild card for any one character.
The [] causes grep to interpret
the period literally.

To use the greplist, we modified our use of the sort command from
Step 5 as follows:

sort –k 3,6 –u *.txt |grep –vwf greplist >v20-done.txt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 20 of 24

With the above command we not only eliminated duplicate sockets,
we also filtered out packets matching known requirements. The
resulting file v20-done.txt should contain mostly packets that require
further investigation.

Trace Analysis Results
Most application traffic patterns were straight forward, boiling down to the
identification of IP addresses and destination ports. However, four situations
required special consideration. These are: 1) FTP, 2) NFS, 3) other applications
that requires a wide range of dynamic ports, and 4) secure use of telnet and
FTP.

First, let us consider the situation with FTP. There are two modes of FTP:
active and passive. An excellent explanation of the traffic patterns for these two
modes can be found in Jay Ribak’s article “Active FTP vs. Passive FTP, A
Definitive Explanation.” [v]

In the active mode, the following traffic pattern occurs:

1. A client launches a connection to the server’s port 21. The source port on
the client is a randomly chosen, unused port above 1024 (dynamic port).
For this discussion, let’s say port 2000.

2. The server will respond from port 21 to the client’s dynamic port (2000) to
establish the connection. Authentication takes place via this connection.

3. When the authenticated user starts a file transfer (get, put, mget, mput,
etc.), the server will initiate a new connection from its port 20 targeting the
next port number above the dynamic port used to establish the initial
connection with port 21. In this case, the target port would be 2001;
however, it could be any port greater than 1024 depending on which
dynamic port was randomly chosen in step 1.

The above traffic pattern would require ACLs to permit all TCP ports above 1024
to be opened to the server. In the case of Project Overhaul’s systems, the
application teams require the ability to FTP from the ERP and CRM servers to a
wide range of IP addresses outside of their VLANs. Without some sort of
stateful inspection, we would have to open all TCP ports above 1024 to the
same wide range of IP addresses to enable FTP transfers. This practically
renders the outbound ACLs useless.

The traffic pattern for passive FTP is not much better:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 21 of 24

1. Again, a client launches a connection from a dynamic port (2000 in this
case) to the server’s port 21.

2. As in active mode, the server will respond from port 21 to the client’s
dynamic port (2000) to establish the connection.

3. When the authenticated user starts a file transfer, the client this time will
initiate a new connection from one port higher (2001) than the dynamic
port used in step 1. The target port for this new connection is another
randomly selected dynamic port greater than 1024.

The passive mode traffic pattern requires ACLs to permit all TCP ports above
1024 to be opened the client. For Project Overhaul, this practically renders the
inbound ACLs useless.

Fortunately, our tests show that ACL statements written using the name ftp-data
seem to provide stateful inspection in the 6509 Switch. However, the syntax of
the ACL statement must be as follows:

 access-list 100 permit tcp any eq ftp-data any

Ftp-data must be specified before the destination address. In our experience,
the above statement permits both active and passive FTP data transfers. If the
statement is written in the alternative syntax as shown below, both active and
passive FTP fails.

 access-list 100 permit tcp any any eq ftp-data

Besides FTP, NFS on Sun Solaris is another application that uses multiple ports
to establish connections. From our network traces, we found that NFS requires
Sun remote procedure calls (RPC). This means the NFS client needs access to
the following ports on the NFS server: 2049 tcp, 111 UDP, and a static UDP port
somewhere higher than 32000. The last port is configured by the sysadmin.
Unfortunately, we found that the port chosen is not consistently configured
across the ERP or CRM servers. Consequently, our ACLs had to permit all
UDP ports greater than 32000.

The NFS server, on the other hand, requires access to the all UDP ports greater
than 1024 on the client. This is because when the client initiates a RPC call, it
randomly chooses a dynamic UDP port as the source port.

Other applications also require a wide range of ports to be open to them. These
include DNS, our third party event monitoring system, and trusted hosts used by
the Unix team to perform maintenance tasks. The servers that support these
applications become backdoors around our ACLs.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 22 of 24

To better control access to these backdoors around our ACLs, we will require
SecurID to be implemented on these applications servers. We also require
SecurID authentication for all telnet and FTP sessions to any of the ERP or CRM
Unix servers.

Using Permit-Any Statements
Once we felt confident we had captured most of the traffic requirements, we built
our ACLs and prepared them for implementation. To ensure that we do not
cause any disruptions, we placed a number of permit-any statements at the
bottom of each ACL. These permit-any statements look like this:

access-list 129 permit ip 192.168.94.0 0.0.0.255 any
access-list 129 permit ip 10.8.10.0 0.0.0.127 any
access-list 129 permit ip 10.8.20.0 0.0.0.127 any
access-list 129 permit ip 10.8.0.0 0.0.0.127 any
access-list 129 permit ip 192.168.33.128 0.0.0.63 any
access-list 129 permit ip 192.168.45.0 0.0.0.63 any
access-list 129 permit ip 192.168.45.64 0.0.0.63 any
access-list 129 permit ip 192.168.36.0 0.0.0.127 any
access-list 129 permit ip 192.168.41.64 0.0.0.63 any
access-list 129 permit ip 192.168.64.0 0.0.7.255 any
access-list 129 permit ip any any log

Each of the statements, except the last one, represented a discrete segment of
our internal network. The last one represents the world outside of our internal
network. The statements are listed in order of threat, with the bottom statement
representing the highest threat. As shown above, the last statement is being
logged to see what hits it. In the 6509 Switches, approximately every 10th
packet that hits a logged statement will be written to system log. The packets
that hit the last statement represent either missed traffic requirements or
unauthorized traffic.

Once a missing traffic requirement is identified, we add a statement to the ACL to
match it. This prevents the same packets to hit the bottom statement again. We
continue this process until no more missing requirements are logged. The
bottom statement is then removed and the next statement is logged.

We used this process to finalize the ACLs for all network segments outside of our
data center. We were very happy to report that we did not cause any major
disruptions as we tightened the ACLs. The remaining permit-any statements are
only for our server VLANs. As I write this, Project Overhaul’s infrastructure is still
undergoing change. Go-Live is 54 days away. We will wait for the environment
to stabilize before we attempt to remove any more permit-any statements.
Meanwhile, we feel we have at least provided ACL protection against our
greatest threats.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 23 of 24

After Snapshot – Step In the Right Direction
Although we did not fully achieve the objectives of our layered security strategy,
we consider our ACL work to be a success for the following reasons:

1. We proved to the company that we could implement ACLs and ACLs do
indeed bring benefits. The network is more stable. End-user access to the
ERP and CRM servers has been limited to only what is required.
Developers and system administrator have a much clearer understanding
of the traffic patterns for their systems. In addition, we showed we could
quickly fix the few minor issues that did arise.

2. ACLs are fulfilling their required functions as part of a layered security
strategy. ACLs are mitigating weaknesses in the other layers, while the
other layers cover weaknesses in the ACLs. We believe we are achieving
the synergistic effects described by Baye’s Theorem mentioned above.

3. Our education and negotiation efforts have raised the overall security
consciousness of our IT organization. We expect our Phase 2 and 3 work
will require much less time spent on education, negotiations, and network
traces to capture traffic requirements.

4. The ACL team has also earned the respect of the other infrastructure
teams. We are being consulted more often and earlier in the project cycle.
Our experience with network monitoring has proven to be useful in helping
other teams troubleshoot issues. We feel we have established a good
working relationship that can be leveraged to continue improving the
overall security posture of the company.

The compromises we were forced to make, not only with the ACLs but also with
the other layers of our security strategy, highlighted the fact that we still have a
long way to go. Our experience motivates us to work even harder on educating
upper management on the importance of security and the role they should play to
move us away from our very ineffective security-by-consensus culture.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 24 of 24

i Tippett, Peter. “Defense-In-Breadth—How To Reduce Risk Using ‘Synergistic

Security.’” www.infosecuritymag.com. February 2002.
URL: http://www.infosecuritymag.com/2002/feb/columns_executive.shtml

ii Cisco Systems. “Catalyst 6500 Series IOS Software Configuration Guide.”

www.cisco.com. October 3, 2002.
URL: http://www.cisco.com/univercd/cc/td/doc/product/lan/cat6000/12_1e/swconfig/secure.pdf

iii Cisco Systems. “Cisco IOS Security Configuration Guide.” www.cisco.com.

September 15, 2002.
URL: http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121cgcr/secur_c/scprt3/scdcbac.pdf

iv Morrissey, Peter. “Demystifying Cisco Access Control Lists.”

www.networkcomputing.com. April 15, 1998.
URL: http://www.networkcomputing.com/907/907ws1.html

v Ribak, Jay. “Active FTP vs. Passive FTP, a Definitive Explanation.”

www.slacksite.com. August 10, 2001.
URL: http://slacksite.com/other/ftp.html

