
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Making Your Network Safe for Databases
Duane Winner
July 21, 2002
GIAC Security Essentials Certification Practical Assignment -- version 1.4

Introduction

Databases are critical components of an information infrastructure today. It is
doubtful that you will ever encounter a commercial web site that does not
communicate with a database server behind the scenes. And it is almost certain
that any e-commerce site or any other web site that collects information from
visitors stores information in a back-end database server.

The problem with databases however, is that they may be easily overlooked
when security procedures are implemented. Often, the focus is targeted towards
securing the web server and little thought goes into how the database may be
vulnerable because all of the ‘front-end’ security has been implemented. But
databases usually contain a company’s most valuable information assets, and if
compromised, could wreak havoc. While much press is given to denial-of-
service attacks and web-site defacements, attacks on database servers can
result in even more severe consequences than just a public relations problem or
lost revenue because of downtime. To illustrate this point, below are some
examples of several high-profile organizations that have had their databases
compromised over the past few years.

If you are charged with administering a network that contains a database server,
there are a number of steps you can take to help protect the data from being
compromised. Properly configured, you can help prevent your organization’s
information assets from falling into the wrong hands.

If it could happen to them…

Over the past few years, there have been many documented cases of
organizations that have reported their databases compromised. In most cases,
the theft of data has resulted in more than just embarrassment. At best, a
company will lose time and money due to expenses occurred from conducting
forensics to determine the extent of the theft. Companies have been
blackmailed, or threatened with blackmail, and in some cases, have had to
discontinue providing services to consumers due to lack of confidence in the
system. Depending on the sensitivity of the data that is stolen, companies could
face damaging lawsuits.

In December 2000, Egghead.com, a computer products retailer, announced that
its customer database may have been compromised and that up to 3.7 million
credit card accounts may have been stolen [1]. Egghead later claimed that its

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

customers’ credit cards were not compromised, but the investigation to
determine the extent of the breach cost millions [2].

Nearly a year previously, an intruder thought to be from Russia and known as
“Maxus” attempted to blackmail cdUniverse, an online music retailer, after he
exploited a security hole on their web site and stole credit card information from
the database. He posted thousands of users’ credit card details on the Internet
after his extortion demands were refused [3]. To see a copy of the credit card
black market website that Maxus ran, visit
http://databases.about.com/gi/dynamic/offsite.htm?site=http://www.pc%2Dradio.
com/maxus.htm.

In November 2001, Playboy.com was hacked, and intruders stole the credit card
information of visitors, and proved it by sending threatening email messages to
the customers that displayed all of their credit card information [4].

It was announced in the spring of 2001 that 98,000 people had their credit card
information compromised when criminals broke into Bibliofind, division of
Amazon.com that assisted users in locating rare and out-of-print books. To
make matters worse, they managed to maintain their free access to the
database for 4 months before being discovered [5]. As a result, Bibliofind ended
up refraining from acting as a financial transaction service for its clients, and
instead continued as a matching service only [6].

The FBI reported in March of 2001 that over 40 banking and retailer’s web sites
were attacked and compromised by Russian and Ukrainian hackers. Blackmail
was usually involved after the theft of credit cards [7].

At two different times during 2001, Indiana University’s computers were hacked
and private individual information was stolen, including social security numbers
and addresses [8].

James Middleton reported for vnunet.com in January of 2002 that Evans Data, a
U.S. market research firm, conducted a study and found that 10 percent of
databases had been compromised during 2001, based on 750 companies
surveyed. Over forty percent of banking and financial services “reported
incidences of unauthorized access and data corruption, while 18 per cent of
medical/healthcare and telecoms firms reported similar breaches.” [9]

All of these incidents illustrate that databases are treated as treasures for
hackers to steal. While denial-of-service attacks and web site defacements can
be very costly to a company that relies on e-commerce for revenue, these sorts
of attacks provide very little financial incentive to hackers. Database theft, on the
other hand, can be quite lucrative for an enterprising hacker who doesn’t get
caught. Once they steal the data, as illustrated in a few examples above,
hackers may attempt to blackmail a company by threatening to post customers’

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

credit cards online.

But another even more disturbing development has begun to gain publicity,
which is organized cyber-crime. There is a growing black market for stolen
credit card numbers, just as there has been with physical cards. Only now
hackers can sell their stolen ‘goods’ online and make a profit without having to
physically snatch a purse or break into a glove box.

If you think these incidents are anomalies that gained a lot of publicity because
the companies are high profile, just take a look at
http://isc.incidents.org/port_details.html and enter the default port for whichever
database you are running. The biggest target is Microsoft SQL Server. On some
days there are over half a million reports of attacks upon servers running
Microsoft’s database products. Not even coming close are other databases, but
there have been days when there have been over 600 reported attempts on
MySQL databases. And if you punch in their respective port numbers on
incidents.org, you will see that Sybase and Oracle are not exempt, either.

Following are some guidelines that should be followed if you are implementing
a database-driven web site. They start with most simple and work their way up
to the most paranoid. If you find yourself in a situation where you cannot
implement every one of these guidelines, at least attempt to implement as much
as possible. Most of these guidelines are relatively inexpensive and easy to
implement, and should be seriously considered if your organization covets the
security and confidentiality of it’s data.

1: Give the database server and the web server their own hardware

One of the biggest mistakes that can be made when implementing a web site
with a back-end database is to install the database server on the same box as
the web server. While there may be a seemingly good argument for doing so,
the risks should always outweigh the advantages. It may be done for
convenience, lack of resources to procure a separate server for the database, or
for performance reasons.

Whether it is full-fledged database application, like Microsoft SQL Server,
Sybase or Oracle, or just a Microsoft Access database, if a hacker gains control
of your web server, then they will also have access to your database resources.
And a special note should be made regarding Microsoft Access. Many web sites
use Microsoft Access databases. Considering the security flaws found in
Microsoft’s Internet Information Server (IIS) recently, and how worms like Nimda
and Code Red could open a back door and provide administrator privileges and
file system access to the entire server, special care should be given to using
Microsoft Access, which is essentially a flat file, and could be easily stolen if
somebody broke into the web server.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The bottom line is if a hacker breaks into the web server, then they will have
access to your database. If the cost of purchasing a separate computer for your
database outweighs the risks and consequences if your data is stolen, then by
all means, go ahead and put the web server and the database server on the
same box.

Some may also argue that desirable performance is obtained by co-locating the
web server on the database server on the same computer. But this argument is
doesn’t hold much water when considering bandwidth models. Most internal
network segments operate (at the very least) 10Mb per second; more commonly
at 100Mb. Gigabit service is even available. So consider that while most Internet
connections operate at less than 10Mb per second, your web server should have
much more available bandwidth to perform fast queries. If there is to be a
bottleneck, it is more likely to occur between the browser client and the web
server rather than the web server and the database server [10].

2: Don’t put the database server in the DMZ

Chances are that you have a demilitarized zone (DMZ) configured for your web
server and any other resources that you need to make available for public
access. It may seem logical at first to just install your database server in the
DMZ and trust your firewall to prevent attacks against it. If you configure your
firewall to only allow certain traffic to hosts that you want to be public, and drop
any traffic directed towards the database server, then you may feel confident
that your database is safe.

But are you positive that the database server is 100% safe from other servers in
your DMZ? Just because the firewall is configured to drop packets directed
towards the database server, the reality is that some forms of outside traffic are
being allowed into your DMZ. Are you confident that your mail server is so
secure that it could not be compromised and used as a launch pad to attack
your database server? Depending on the size of your company, you may not
have control over all of the servers in your DMZ, so you may be relying on basic
trust that the administrators of the mail servers, the web servers, the DNS
servers and any other servers in the DMZ have done their job to secure their
boxes.

“But I’m using network address translation (NAT), and the database server
doesn’t even have a public IP address,” you may say. It doesn’t matter if one of
the other servers behind your firewall is compromised. The hacker now has
access to the same network with private IP addresses as your database server.
This may seem, in essence, admitting that your own network is ‘untrusted’. It is
a matter of perspective. Some may argue that, in reality, any network is, to a
certain degree, untrusted; i.e., there is always a certain degree of threat and
vulnerability once you plug a computer into any network. No network or resource

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

is invulnerable.

So what are the options if you want to follow this suggestion, and remove your
database server from the DMZ?

The first option would be to install a second firewall and configure it to protect a
separate network that is separated from your DMZ. By configuring it to allow
only very restricted traffic from privileged resources, the database server can be
secured against attacks staged from a compromised server in the DMZ that
should never have access to the database server in the first place (such as the
DNS or mail server).

Permit port 4100 from web1 to data1 only

Internet

Firewall Firewall

DMZ

web1

SECURED

data1

Figure 1

As shown in figure 1 above, the second firewall separates the database server
from the rest of the DMZ and only allows specific traffic from the web server. In
this case, the database server is running a Sybase server on Linux, so the
firewall would be configured to allow only traffic from ‘web1’ to ‘data1’ over port
4100. If the firewall does its job correctly, if another server in the DMZ is
compromised, an attacker will be prevented from launching an attack on ‘data1’
from that server.

Another recommendation that can be made if you follow this suggestion, is
rather than install a second firewall that runs the same firewall software as the
perimeter firewall, consider purchasing a different type of firewall than the one
you already have protecting your DMZ. For instance, your first firewall may be a
Check Point firewall. Instead of installing a second Check Point firewall to
protect your private network, you may want to consider mixing it up a little and
install a different firewall product, such as a Cisco PIX or a Raptor firewall. The
reason for this is that by varying the types of protection in your network
hierarchy, you will make it more difficult for a potential hacker to get all the way
into your network. Suppose a hacker exploits an unknown (or unpatched)
vulnerability in your Check Point firewall on the perimeter and gains access to
some resource in your DMZ. If they attempt to proceed further, they will be
surprised if they find that the next gatekeeper in line is not the same as what
they already encountered on the outside.

There may be a reason that installing a second firewall would be impractical.
One, you may simply not have the funds to do so. Another possibility may be
that you don’t have the skills or resources to add additional technology to your

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

network. If you are a small or one-man operation, then it may not be advisable
by complicating your network by adding additional technology. Firewall products
take a certain level of knowledge about the products to properly configure and
baby-sit. Having one or two improperly configured firewalls could be worse then
not having a second firewall at all. You may also have so few resources in both
the DMZ and the secured network that it would be difficult to justify purchasing a
firewall just to separate one server from another.

If adding a second firewall is not a practical solution, then another option would
be to add functionality to your perimeter firewall by adding another network
interface. Many organizations already do this to separate their DMZ from their
internal local area network/LAN (or corporate Intranet). The type of firewall you
are using may limit this. A software-based firewall (such as Check Point) on an
NT or Unix box is limited by the number of PCI slots available. A hardware-
based solution, however, may be more limited (such as Check Point on a Nokia,
or a Cisco PIX); in which case, your hardware profile (or licensing) may restrict
the number of network interfaces.

Permit port 4100 from web1 to data1 only

Firewall

DMZ

web1

SECURED

data1

eth:0 eth:1

eth:2

Permit Limited Traffic

Deny ALL inbound

Internet

Figure 2

As illustrated in figure 2, the perimeter firewall has three network interfaces:
eth:0, which connects to the Internet, eth:1, to which the DMZ is connected,, and
eth:2, to which a second private network is connected (called ‘secured’ in this
example).

The firewall is configured to limit outside traffic into the DMZ for public access,
but absolutely no outside traffic is permitted into the SECURED network. But the
firewall is configured so that port 4100 is allowed from ‘web1’ in the DMZ to
‘data1’ in the SECURED network, again using Sybase as the example.

A special note should be made regarding this technique, however: You may
already have a similar configuration already set up for your existing DMZ and
local area network (LAN). In that case, you should add a fourth network card to
create the ‘SECURED’ network segment. But instead of adding a fourth network
card, you may find it tempting to install your new database server (or even use

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

an existing corporate Intranet database) in your LAN, and permit restricted traffic
to this database from the web server in the DMZ. This is highly discouraged. A
corporate LAN should have outbound access only, and inbound access, whether
from the Internet or the DMZ should never be allowed in. If the web server is
compromised, then an attacker could conceivably gain access to your entire
internal corporate network.

A third option, if neither of the above two options are feasible, is to leave the
database server in the DMZ and rely on a local software-based firewall on the
server. This is not the ideal solution, but is better than nothing. If you work for a
small organization, and the database server is the only server you have that
would benefit from creating a separate network segment, it may difficult to
convince your boss to spend several thousand dollars for another firewall to
protect one server.

If your database server is running on a Linux platform, then you could utilize
ipchains or iptables (standard open-source software that comes with almost all
Linux distributions). These are firewall software packages that perform the same
duties as most commercial firewall products, and can be run locally to protect a
single machine. In fact, their functionality is robust enough that they could also
be utilized as a firewall gateway in option 1 above if cost is a concern, since
both Linux and ipchains/iptables are free. An older unused Pentium computer
(or possibly even a 486) with two network cards could be used as a low-cost
second firewall gateway. The most significant difference between ipchains (the
older) and iptables (the newer) is that ipchains performs packet-filtering only,
while iptables performs stateful inspection, which is something that most newer
commercial firewalls do, such as Check Point and Cisco PIX.

If your database server is running a Microsoft Windows platform, then you could
install personal firewall software such as Black Ice Defender or Tiny Personal
Firewall, both of which, although designed for workstations, may provide an
adequate level of protection on your server. Windows 2000 also has native
packet filtering rules that can be configured to protect the server.

3: Replace network hubs with switches

By using a switch instead of hub, you will greatly reduce the possibility of data
being sniffed and captured as it traverses the network.

Hubs are simply connectors for all of the network media, and any node that is
connected to a hub will have access to any data that is passed on that network.
Because each host that is connected to a hub has equal access to the media
and the information that is passed between any other hosts on the network, data
could conceivably be ‘sniffed’ as it passes from one host to another.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Let’s say that you have implemented suggestions 1 and 2 in this paper. You
have provided the database server it’s own hardware, separating it from the web
server, and you have installed a second firewall and isolated the database
server from the DMZ by locating it behind the new firewall. So far, so good,
right?

But let’s say that an intruder finds his way into your mail server in the DMZ and
is undetected. He then sets the network adapter on the mail server into
promiscuous mode and installs software that will capture all traffic that occurs in
the DMZ. Even though the database server is not in the DMZ, the web server is
passing traffic to and from the database server and the mail server is now
capturing credit card information and relaying it back to the intruder’s computer.
He does not have to break into either the web server or the database server to
steal the data.

Simply replacing your DMZ hub with a switch will go a long way to stymieing
unauthorized sniffing on your network. The reason a switch is better is because
when two hosts are communicating via a switch, a “virtual circuit” is created
between the two hosts. Hosts connected to other ports on the switch do not see
or even sense the traffic that is not directed towards them, making it nearly
impossible to capture data.

Another benefit of using a switch is that you will obtain faster bandwidth
between two hosts that are communicating.

Will this make your network completely safe at this point? Not quite. It may
seem like a long shot, but a dedicated and determined hacker could still
compromise your network if they can break into the switch. Most switches are
configurable via a telnet console. Many switches can also be configured to
forward all traffic to a single port for analysis. There are legitimate reasons for
this; for instance, running intrusion detection software (IDS) in the DMZ is
problematic unless you can forward all traffic to a single a port on the switch.
However, if someone broke into your mail server, and from there also finds a
way to access the switch, he/she could forward all traffic in the DMZ to the port
that the mail server is connected. Now the mail server could capture traffic that
moves between other hosts.

Granted, this would be difficult to accomplish, but the possibility still exists. So
now what? How can you be absolutely certain that data traveling your network
will not be captured? This brings us to the next recommendation, encryption.

4: Encrypt data between the web server and the database server

You may already be saying to yourself, “I’m already using SSL, so the data is
secure.”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

First off, if you’ve read this far, then you probably already know that there are
issues beyond normal SSL communication that need to be addressed. But this
is actually a common attitude and misconception regarding Secure Sockets
Layer. Many people think that by configuring a secure web site that utilizes SSL,
the data is now encrypted, it is now safe, and their job is done as far as security
is concerned. They often seem to overlook the fact that SSL-enabled web sites
only encrypt the data between the web browser and the web server. If it is credit
card transactions that are being made, the data will be encrypted as it travels
the Internet, but is no longer encrypted once the web server passes it on to the
database server, and vice versa; any queries the web server makes to the
database server will be unencrypted [11].

So now what? How do you encrypt the data between the web server and the
database server? The options are varied, and depend to a certain extent on the
type of database server you have implemented and what version you are
running.

If your database supports native encryption, then the web application could be
written to talk to the database via SSL. For instance, Sybase has introduced
SSL into its Adaptive Server Enterprise database as of version 12.5. The next
release of MySQL (a stable version 4 still has not been released as of this
writing) will incorporate SSL capability. PostgreSQL now has native SSL support
as of version 7.2.1. Microsoft SQL Server 2000 supports SSL. Oracle also
supports SSL encryption.

Using native SSL will require that whoever is writing the web application can
properly utilize the SSL capability that the database provides and incorporate
that into their code. If this is not feasible, or your database does not provide SSL
capability, then the responsibility will fall on you as a network administrator to
provide encryption between the two hosts.

There are two techniques that can be used to implement encryption between the
web server and the database server. Both of these options are completely
independent of the database and the operating system.

SSH Port forwarding

The first option is to use Secure Shell (SSH) port forwarding. SSH is a
replacement for telnet that encrypts the sessions, but it can also be configured
to listen for other types of traffic on the host, forward that traffic through the
encrypted SSH session, and pass it back to its appropriate port on the other
end. It is fairly easy to implement and has been ported to both Unix/Linux
platforms as well as Microsoft Windows.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Initiating a normal SSH session is rather simple and if you were to open an
SSH session from web1 to data1, the basic syntax would look something like
this:

#ssh user@data1

This command will simply provide a shell console to data1 while logged on at
web1. But there are additional switches that can be used with the above
command to provide a ‘tunnel’ for other types of traffic. Following is the basic
command that would be used to set up an SSH port-forwarding tunnel for
Sybase traffic.

ssh –L 4100:data1:4100 user@data1

Running the above command on web1 will open an SSH session to data1, but
will also set up a listening port on the loopback interface on web1, and will listen
for any traffic slated for port 4100. It will pass this traffic through the encrypted
SSH session to data1, then the SSH daemon on data1 will decrypt the 4100
traffic and pass it on to the listening Sybase port.

Note that for the listening port on web1, you do not have to use port 4100. You
make things a little more difficult for would-be intruders by using an unusual port
number. For instance,

ssh –L 35842:data1:4100 user@data1

This will instead listen on port 35842 on web1, but will still get translated to port
4100 for Sybase on data1. Your web application will simply need to know that
any calls it makes to Sybase will be made to port 35842 instead of 4100.

The nice thing about SSH port forwarding, however, is that you can use it in
either direction. The above examples use what is called “local forwarding,”
hence the ‘-L’ switch in the command. You can also use “remote forwarding.”
Instead of opening the SSH tunnel from web1 to data1, you could initiate the
tunnel from data1 to web1, telling web1 to listen for Sybase traffic and pass it
back through the SSH tunnel to data1. The following command would
accomplish this:

ssh –R 4100:127.0.0.1:4100 web1

Using this method, you could configure the firewall that is protecting your secure
network to deny ALL inbound traffic, permitting nothing inside, even from the
DMZ, ensuring that no host outside of the secured network can initiate a
connection to any resource inside the secured network.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

h

DENY ALL

Internet

Firewall Firewall

DMZ

web1

SECURED

data1

SSH

Figure 3

In figure 3 above, the second firewall is configured to deny all inbound traffic to
the secured network. This being the case, using local SSH port forwarding from
web1 to data1 will not work because even traffic from DMZ resources will not be
permitted in. But as long as SSH traffic is permitted outbound from data1 to
web1, then data1 can initiate the SSH session and create the encrypted tunnel.

Using the above SSH command on data1 with the ‘-R’ switch, which specifies
‘remote forwarding’, data1 will instruct the SSH daemon on web1 to set up port
which listens for 4100 traffic on its loopback interface, and passes that traffic
back through the SSH session to data1 for decryption to Sybase.

Please note however, that using this command, you must specify ‘127.0.0.1’ in
the syntax, rather than ‘web1’ or the IP address of web1. Otherwise, you will set
up a listening port on web1 that will listen for Sybase traffic on its outside
interface and pass it on to data1 indiscriminately! Meaning that for all effective
purposes, web1 will be acting as the database server out in the open! By
specifying ‘127.0.0.1’ or ‘localhost’, you will ensure that Sybase traffic will only
be accepted from local processes on web1 alone.

This technique will also work with the single firewall approach (as illustrated in
figure 2). You would just configure the sole firewall to deny any inbound traffic to
the secure network, not only from the outside, but from the DMZ as well.

SSH is available for all Linux/Unix platforms as openssh, the free open source
release at http://www.openssh.org. For Windows platforms, you can either
obtain the commercial version from http://www.ssh.com or install Cygwin (a free
Unix environment for Windows) and run openssh within Cygwin. Cygwin can be
downloaded from http://www.cygwin.com.

Stunnel

While SSH port forwarding can be effective, some may be hesitant to utilize this
technique due to the nature of the SSH connection. SSH port forwarding cannot
be set up to run automatically as a service or a daemon. As a result, it generally
requires manual intervention to set up the connection. And if anything disrupts

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

the SSH connection, the tunnel usually collapses and will have to be set up
again before database communication can resume. (NOTE: This is not to say
that SSH port forwarding is unreliable or worthless. I have personally had SSH
tunnels running for more than 2 months without being disrupted.)

A good alternative is Stunnel, which is open source software designed to utilize
Secure Sockets Layer (SSL) and add SSL encryption to any service that does
not have native encryption capability. It can be obtained freely from
http://www.stunnel.org.

There are a couple of advantages make Stunnel a compelling choice. First, it
can run as a daemon on both the client and the server, and you can write startup
scripts so that the listening daemon will start automatically if either server is
rebooted. Also, because if follows the SSL standard, it can utilize all of the
features of SSL, including a Certificate Authority (CA) and client certificates (in
addition to server certificates). It also utilizes the security features of TCP
Wrappers if running on a Unix/Linux platform.

The one disadvantage compared to SSH port forwarding is that it cannot
perform the equivalent of remote forwarding. As a result, you must have the
firewall protecting the database server configured to permit at least one port
from the web server to the database server.

The operation of Stunnel is very similar to SSH port forwarding. In fact, you
could almost call it SSL port forwarding, because it essentially does the same
thing as SSH local port forwarding.

After installing and configuring the Stunnel software on both the database server
(the Stunnel server) and the web server (the client), the commands to initiate the
tunnel are almost as simple as SSH port forwarding.

On the client, the basic command would be:

#stunnel -P/tmp/ -c -d 127.0.0.1:4100 -r data1:4101

On the server, you would run a corresponding command like this:

#stunnel -P/tmp/ -p /root/stunnel.pem -d 4101 -r localhost:4100

On the client, you tell Stunnel to listen for port 4100 (Sybase) on 127.0.0.1 (the
loopback) and intercept this traffic, encrypt it and pass it on to data1 using port
4101. (This is an arbitrary port of your choice, but it must be different from
standard target port on the server.)

On the server, you essentially do the reverse, telling Stunnel to listen to the
corresponding tunnel port you chose on the client (4101), decrypt this traffic, and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

pass it on to the standard listening port for the database (4100). The “-p
/root/stunnel.pem” parameter specifies the server certificate that it must present
to the client; similar to a server certificate that is presented when you visit an
SSL-enabled web site.

Stunnel is available for both Unix/Linux platforms and Windows.

Encryption is a valuable asset that will help protect your data, but many may be
tempted to omit encryption because they think its overkill, unnecessary, or will
slow down transactions too much. It’s true that you will lose some speed when
using encryption, but again it all boils down to risk analysis. And keep in mind
that many attacks are initiated from the inside, as opposed from originating out
on the Internet. Also, many institutions these days, primarily financial and
banking, and also some healthcare as well, must follow very strict security rules
that demand that all transactions, whether they are internal or external, must be
encrypted [12].

Conclusion

These practices will go a long way towards protecting your database server from
threats. Will implementing these actions ensure that your database is
invulnerable? Absolutely not – there are no networks that are completely
invulnerable. However, implementing these measures will make it extremely
difficult for an intruder to steal data that is either in your database or is in transit
through your network.

While the examples in this paper used a simple web server-to-database server
scenario for public access in the DMZ, these practices should also be
considered even if you are implementing a system for internal company access
only. Leaving a database server that contains payroll or confidential employee
information connected to the corporate LAN with no additional firewall protection
or encryption could pose a big problem if you have an enterprising (and
unethical) employee who spends their weekends learning how to sniff network
traffic or how to take advantage of the latest Microsoft SQL Server vulnerability.

Also, keep in mind that this is by no means a comprehensive checklist of
everything you can do to secure your databases. These practices focus on
securing the network alone, and don’t even address additional measures you
should be taking, such as running intrusion detection software and vulnerability
testing. Then there are the obvious action items that were not mentioned above,
such as making sure that your operating systems and applications on the web
server and database servers have the latest patches and security fixes applied.
Many of successful break-ins of Microsoft SQL server could have been avoided
if the latest patches were applied as soon as Microsoft made them available.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The weakest link at this point is the web server itself, because after all, that is
the public resource that outsiders are being allowed to access. That being the
case, you will need to ensure that all precautions have been taken to protect and
harden the web server.

If you are one of those unlucky souls who runs the entire shop, meaning you are
the network administrator, the web programmer and the database administrator,
you will need to educate yourself about the security implications of these other
areas as well. Otherwise, you should talk with your programmer/web developer
and DBA and make sure that they have done their jobs. After all, wouldn’t you
be terribly upset, after doing all that work to secure the network, only to discover
that your web developer has written code for the web server that submits credit
card information to the database server using the ‘sa’ account and password?
This would be the equivalent of buying the best security system and locks that
money can buy to protect your house, but then leaving the key underneath the
front step doormat.

Footnotes

[1] Lemos, Robert and Charny, Ben, “Egghead cracked; data at risk”,
URL: http://zdnet.com.com/2102-11-526642.html

[2] Lemos, Robert, “Analysts: Egghead’s inquiry cost millions”,
URL: http://zdnet.com.com/2100-11-527001.html?legacy=zdnn

[3] Carrington, Damian, “Net thief grabs credit cards”,
URL: http://news.bbc.co.uk/hi/english/sci/tech/newsid_597000/597828.stm

[4] Katayama, Fred, “Playboy.com gets hacked”,
URL: http://money.cnn.com/2001/11/20/news/playboy

[5] Greene, Thomas C., “Amazon division hacked, thousands of CCs exposed”,
URL: http://www.theregister.co.uk/content/archive/17384.html

[6] Sieberg, Daniel, “Hackers tap credit card info at Bibliofind”,
URL: http://www.cnn.com/2001/TECH/internet/03/05/bibliofind/index.html

[7] Knight, Will, “Hackers steal one million credit cards”,
URL: http://www.zdnet.co.uk/news/2001/9/ns-21473.html

[8] Delio, Michelle, “Hoosier Favorite Hack Victim?”,
URL: http://www.wired.com/news/print/0,1294,44501,00.html

[9] Middleton, James, “Databases a soft touch for hackers”,
URL: http://www.vnunet.com/News/1128592

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

[10] Farrow, Rik, “Web Servers: No Place to Hide”,
Network Magazine, February 6, 2002.

[11] Tippett, Peter, “The Crypto Myth: If you assume SSL is essential to Internet
security, guess again.”
URL:
http://www.infosecuritymag.com/articles/may01/columns_executive_view.shtml

[12] MacVittie, Lorie “Cover Your Assets, Web Style”,
URL: http://www.networkcomputing.com/1314/1314ws1.html

References:

1. Chuvakin, Anton, “Your money or your life! Which would you rather lose to
hackers: private customer data or your website?”,
URL: http://www.securitywatch.com/RES/June25.html

2. Gutzman, Alexis D., “Alternative Payments for the Newly Cautious”,
URL: http://dc.internet.com/news/print.php/941411

3. Olavsrud, Thor, “Egghead.com Gets Hacked”,
URL: http://www.internetnews.com/dev-news/article.php/10_543591

4. Richtel, Matt, “Credit Card Theft Thrives Online as Global Market”,
URL: http://www.nytimes.com/2002/05/13/technology/13CARD.html

5. Chapple, Mike, “Database Insecurity: Is Your Credit Card Safe?”,
URL: http://databases.about.com/library/weekly/aa121500a.htm

7. Aterma, Timo and Kleimola, Johannes, “Using publicly available tools and
sniffers in hacking”,
URL: http://www.hut.fi/~jjkleimo/kurssit/tik110452/toolkits.html

8. Articsoft White Paper, “Does SSL protect your, or is it a condom that is open
at both ends?”
URL: http://www.articsoft.com/wp_ssl_condom.htm

9. Anonymous/(‘orange’), “Intranet Security 101”,
URL: http://www.hackinthebox.org/article.php?sid=3661

10. Meinel, Carolyn, “Are You Giving Away Your Databases: Why Database
Theft Is a Serious Problem”,
URL: http://www.messageq.com/communications_middleware/meinel_2.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

11. ECTalk Discussion Transcript, “Storing Credit Card Details”,
URL:
http://ecommerce.internet.com/community/best/article/0,,10183_484911,00.html

12. URL: http://isc.incidents.org/port_details.html

13. URL: http://www.openssh.org

14. URL: http://www.ssh.com/

15: URL:http://www.cs.uchicago.edu/info/services/ssh_tunneling

16. URL: http://www.stunnel.org/

17. Barrett, Daniel J. and Silverman, Richard, “SSH, The Secure Shell: The
Definitive Guide”, O’Reilly & Associates, 2001.

