
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

!

!

Nftables as a Second Language

GIAC (GSEC) Gold Certification

Author: Kenton A. Groombridge, kgroombr@comcast.net
Advisor: Christopher Walker

Accepted: May 10th 2015!

Abstract

The iptables Linux kernel firewall has been around for a long time and many Linux users are

well versed in it, but now a new player in town, nftables, is now merged into the Linux kernel

source and is touted to replace iptables. “What, another thing I have to learn” you say? Don’t

fret, rather than take on nftables as a completely new language, use what you know of iptables

and apply it.

!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!2!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

1. Introduction

 The iptables kernel firewall was released in 1998 and is considered the standard for

configuring Linux firewalls. Since it has been around for seventeen years, as the writing of this

document, it has it has proven to be a very capable, effective firewall. The command “iptables”

is only one component of the iptables version of the Linux firewall. Although the term

“iptables” is often considered just a command, it refers to the command and the kernel options

with which it interacts as the command itself is useless without selecting, building, and installing

the Linux kernel components for iptables.!

 The nftables kernel firewall application is relatively new as it was released with Linux

kernel version 3.13 on 19 January 2014. It is also a capable, effective firewall, and, like

iptables, it relies on selecting the required optional kernel components when building the kernel.

Nftables is under active development and not all features of iptables incorporated, but it is

sufficient for most host-based firewall applications.!

 Both iptables and nftables are capable of more than just filtering packets as they can also

perform Network Address Translation (NAT), and packet mangling. It is up to the user to

choose between the two; however, though not recommended, iptables and nftables can both be

used simultaneously. Typical users will find nftables to be more flexible with a more intuitive

syntax.!

 The iptables firewall has several predefined tables and filters. With nftables, nothing is

preconfigured, so it is up to the user to configure it to their choosing. Some might consider this a

step backward, but realize that preconfigured tables and chains that are not used reduces the

available memory and performance of the system. Iptables, by default, counts the number of

packets and bytes per chain and per rule (displayable with the '-v' switch). Again, having a

feature and never using it impacts memory and performance. Nftables makes counters optional

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!3!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

and is easily added on a per rule basis. Iptables was limited to having one action per rule, while

nftables can have multiple actions per rule.

 A common iptables rule was usually littered with many switches and options preceded by

either a dash '-' or double dash '--'. Although it made it simpler for the programmer of the

command to parse the command line, it reduced the readability of the rule. The nftables

command uses a flow similar to that of the Berkeley Packet Filter (BPF) syntax which more

closely resembles a sentence rather than a Linux/UNIX command. Although the readability is

improved, it may have been better to actually utilize the BPF syntax to lessen nftables learning

curve.

 Although this document is focused to those with experience with iptables so that they can

utilize what they already know and start using nftables, it will provide value to those with no

iptables experience as it covers several scenarios in the usage of nftables.

2. Getting Started
 Although iptables is a mature product, nftables is under active development and is

changing rapidly. The Linux kernel used in these examples is 3.19.1. The iptables version is

1.4.21, and the nftables version is 0.4. Discrepancies in the functionality of the tools used in this

document may differ due to functionality differences that may occur with each version.

 Before using iptables or nftables, the optional kernel components must be configured,

built, and installed. For those that find tinkering with kernel options challenging, it is

recommended to research what options to build for the planned usage; however, to quickly get

started, configure the kernel for automatic module loading/unloading and select all options under

“Network Packet Filtering Framework (NetFilter)” as modules. Build and install the kernel and

modules, then boot from the newly built kernel. Doing this will enable the system to load the

appropriate module(s) when entering iptables and nftables commands.

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!4!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

!
 It is possible to use iptables and nftables as the same time; however, this is highly

discouraged. Since both of will be acting on packets, this may cause conflicts and perform

unintended actions.

 Again, the goal is to take information known from iptables and apply it to nftables. To

facilitate this, the intended action followed by the iptables and nftables version of performing

that action along with dialog explaining the commands. By comparing the commands side by

side will assist in translating from iptables to nftables.

3. Iptables and nftables Terminology
 To ease the understanding iptables and nftables, it is best to grasp some of the

terminology used. Fortunately much of the terminology is interchangeable between the two.!

 3.1 Tables

 Table are containers for chains.

!
 Iptables has five predefined tables: filter, mangle, nat, raw, and security. The filter table

is the table where actions related to firewalling typically take place. The filter table is the

default, so if a table isn't specified with the iptables command, then the filter table is employed.

The nat, mangle, raw, and security tables are beyond the scope of this document.!

 For nftables, there are no default tables so they must be created as needed. Nftables uses

what are called families which can be any of: arp, bridge, inet, ip, and ip6. When not specifying

a table family in an nftables command, the default is ip which is used for chains containing IPv4

rules. The ip6 table family is used for chains containing IPv6 rules. The inet table family is used

for chains containing both IPv4 and IPv6 rules. The arp and bridge families will not be

discussed as they are beyond the scope of this document.

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!5!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

!
 3.2 Chains

 Chains are containers for rules.

!
 With iptables, there are applicable preconfigured chains for each table type. The source

of the packet determines which chain will be used to process the packet. There are five base

chains, but some may not be pertinent to specified table. The five iptables base chains are:!
!
 PREROUTING: Packets entering the system traverse this chain before a routing decision

is made.!
 INPUT: Packets addressed to the local system will traverse this chain. It is used to

control external connections to the local system.!
 FORWARD: Packets not addressed for the local system that are to be routed traverse this

chain.!
 OUTPUT: Packets originating from the local system to be sent outward will traverse

this chain. It is used to control external connections from the local system.!
 POSTROUTING: Packets exiting the system traverse this chain after a routing decision

has been made.!
!
 Base chains are chains that are connected via netfilter hooks, and through this connection,

they will process traffic. Iptables allows the creation of user-defined chains. User-defined

chains are not associated with any netfilter hook; therefore, by default, do not process traffic but

can be used to arrange rule sets and then using jump-to chains.!
!
 As there are no preconfigured tables with nftables, there are also no preconfigured chains.

Base chains and non-base chains can be created depending on the intended purpose. Base chains

are the same as those with iptables and what iptables refers to as user-defined chains are called

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!6!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

non-base chains with nftables. There are three nftables chain types and their name suits their

description.!

 filter: Packets to be filtered will require this chain.

 route: Packets that require packet mangling will need this chain.

 nat: Packets requiring NAT will utilize this chain.

 Only certain hooks are available depending on the type of chain selected. There are five

hooks that are available with nftables: prerouting, input, forward, output, and postrouting.

These hooks names are the same as the five types of iptables chains, except they are in

lowercase, and the function of each is identical to that of its counterpart in iptables.!
!
 3.3 Rules

 Rules dictate what to match and what actions are performed on packets when there is a

match.!

 The majority of the difference in the syntax between iptables and nftables is with the

rules. When a packet matches a rule, the action specified on that rule will mandate what happens

to the packet. This works the same for both iptables and nftables. One major difference is that

iptables has a feature called “default policy” that doesn't exist in nftables.!

 By default, with iptables, if all the rules in the chain are traversed and there is no match,

then the packet is allowed, but this can be overridden by changing, with the appropriate

command, the default policy to drop packets not matching any previous rule. This is often

preferred for security reasons so that any packet not explicitly allowed, will be denied or

dropped.!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!7!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

 Although it is stated that nftables doesn't have a default policy, it may better be described

that nftables has a default policy that cannot be changed. With nftables, if all the rules in the

chain are traversed and there is no match, then the packet is allowed; however, there is no

command that can change this behavior. If it is required to drop all packets that are not matched

against any rule in the chain, then a rule must be placed at the end of that chain to drop all

remaining packets.!

4. Common Firewall Configurations

 Covering every possible syntax and keyword comparing iptables to nftables isn't feasible

for the scope of this document so it will be limited to discussing utilizing these tools in creating

basic host firewall rules. Even limiting to this, the following examples only touch the surface of

the possibilities, but it covers a foundation of examples that can be utilized in nearly all types of

rule writing.!

 Creating a host firewall is one of the most common applications of iptables or nftables.

Before implementing firewalls on a Linux system, careful planning should take place before

hacking away at the keyboard. When no jump chains are used, both iptables and nftables each

traverse the rule chain from top to bottom, one by one and if a match is found, the rules action is

performed and subsequent rules are not examined. If a rule allowing a packet is listed before

another rule blocking the same packet, then that packet will be allowed. If the intension was to

block that packet, then the rules will have to be reordered so the rule blocking the packet will

precede the rule allowing the packet.!

 Tables 1 through 4 found in the appendix are given to assist in the translation of iptables

command options to nftables command options. The tables do not contain a comprehensive list

of options, but cover the more common ones which are used in the following examples. For a

complete list of command options, refer to the appropriate manual page or online documentation.!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!8!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

 Now that some of the peculiarities between iptables and nftables has been hashed out, it

is time to write some configurations. The IP and network addresses used for these configurations

are completely arbitrary other than RFC 1918 addresses are used to ensure anonymity.!

Creating tables and chains!

 As discussed earlier, iptables has predefined tables and chains that are immediately

available when the applicable kernel modules are loaded so rules can created without any

previously entered commands. These predefined tables and chains cannot be created or removed

as needed; however, iptables does support the creation of user-defined chains. For example, to

perform logging with iptables, a user-defined chain can be created that will contain the rules that

will perform logging. Logging with iptables will be discussed later. Any name can be used, but

style prescribes that it should be uppercase as it is common practice to use uppercase for user-

defined names. Iptables is case sensitive so the name “LOGGING” is not the same as “logging”.!

 # iptables -N LOGGING # Create a new user-defined chain named LOGGING!

 With nftables, there are no preconfigured tables and chains, so they will first need to be

created. This may appear like this is a step backward as tables and chains will have to be created

before ever writing a rule, but the added flexibility eventually pays off.!

 First a table for the appropriate address family must be created. The command is “nft”

followed by “add table” to add or create a new table. This is then followed by the address family

of “ip” as this table will be used for IPv4 addresses. As “ip” is the default family, this is

optional, but again, should be added for readability and consistency. Then lastly, is the name of

the table “FILTER”. This name can be any name and most of the documentation uses lowercase

for table names. It is highly recommended that all user chosen names be uppercase as it will

greatly add to the readability of the configuration and ensures there is no confusion between

keywords and user chosen names.!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!9!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

 # nft add table ip FILTER # Create table name FILTER

 Once the table is created, a chain referencing an existing table must be created. The

command is “nft” followed by “add chain” to add or create a new chain, followed by the address

family of “ip” as this table will be used for IPv4 addresses. This is then followed by the name of

the previously created table “FILTER” as the chain name must be placed within an existing

table. If creating a non-base chain as in the previous iptables example, this is all that is required:!
 !
 # nft add chain ip FILTER LOGGING # Create non-base chain named LOGGING!

 Most of the time, a base chain will be created. The syntax is the same as creating a non-

base chain except an additional section called the chain configuration will be appended to the

command. The chain configuration portion is required when creating a base chain so that it

registers via the appropriate hook so that traffic will be inspected.!

 The chain configuration is enclosed in braces “{}”. It follows a “keyword value”

pattern. The first keyword in the chain configuration is “type” is followed by the value for the

type of chain, in this case “filter” which creates a filter chain for filtering packets. This, in turn is

followed by the keyword “hook”, followed by value “input” so that this chain is registered with

the kernel’s input hook in order for traffic to be inspected as it enters this system. Then this is

followed by the keyword “priority” which is followed value of priority which is a signed 32 bit

number from -2147483648 to 2147483647. The chain configuration portion must be terminated

with a semicolon “;”, but because the semicolon has special meaning and is parsed by the bash

shell used in this example, it must be escaped by preceding it with a backslash “\”.!

 # nft add chain ip FILTER INPUT { type filter hook input priority 1 \; }

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!10!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

 Chains are evaluated from the lowest to highest priority value. In essence the lower the

number, the higher priority. In this previous example, the priority value of one “1” was chosen

as it is an appropriate value to use for filtering (See Table 5: Chain Priorities). The priority

number used should consider internal operations. For example, when using connection tracking,

if specifying a priority value of -401or lower in a rule, then the rule will be evaluated before

defragmentation takes place. Having this ability provides great power with nftables rules, but it

may cause unintended consequences if not aware of the chain priority values and their function. !

 Nftables chains must be created for every type of chain required. If there will be input

and output filtering, then two chains, one for input, and one for output filtering require creation.

Multiple chains can be placed within one table so both chains can reference the FILTER table in

this example. Not all examples in this document require an input and or output chain, but the

following can be used to create the base structure in so that the examples do not cause an error

due to a missing tables or chains:

 # nft add table ip FILTER
 # nft add chain ip FILTER INPUT { type filter hook input priority 1 \; }
 # nft add chain ip FILTER OUTPUT { type filter hook output priority 1 \; }
!
Flushing rules from tables and chains

 Before writing a new set of rules, it is good practice to start with a clean slate. With

iptables, to flush all the rules from all the chains, use the -F switch by itself, and to remove only

rules from specified chains, use the “-F” switch followed by the specified chain. One

disadvantage to iptables is that there is no consistency in character case of the command. The

table name “filter”, must be in lowercase, and the chain name “INPUT” or “OUTPUT” must be

in uppercase. This make differentiating user defined names from keywords which makes the

command slightly more difficult to read to an inexperienced user.!
!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!11!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

 # iptables -t filter -F # Flush all rules from all chains!
 # iptables -t filter -F INPUT # Flush all rules only from the INPUT chain !
 # iptables -t filter -F OUPUT # Flush all rules only from the OUTPUT chain!
!
 Because nftables doesn't have default tables and chains, they will have to be created

before flushing them. This may sound counterintuitive, but there may be existing rules from a

previous configuration that would be easier to flush and start over than to edit or the rules are no

longer required.!
 !
 # nft flush table ip FILTER # Flush all rules from all chains under the FILTER table!
 # nft flush chain ip FILTER INPUT # Flush all rules only from the INPUT chain!
 # nft flush chain ip FILTER OUTPUT # Flush all rules only from the OUTPUT chain!

Block all connections from a single IP address!
 Accomplishing this with iptables is fairly straight forward. The command is “iptables”,

followed by “-t filter” to specify the filter table. Because the filter table is the default table, this

is optional and doesn't have to be included in the command unless specifying a table other than

the filter table. It is good practice to use this to add to the readability of the command and to

ensure consistency. The “-A INPUT” specifies to append this rule to the INPUT chain. The “-s

10.10.10.10” is the source IP address that must match for this rule to be evaluated true and then

“-j DROP” is the action taken if the rule is evaluated true. If the default policy is not changed

from accept to drop, then all packets not matching this rule will be allowed.!

 # iptables -t filter -A INPUT -s 10.10.10.10 -j DROP!

 Achieving this with nftables is quite simple once the table and chain are created. Start

with the command “nft”, followed by “add rule” to add a rule followed by “ip FILTER INPUT”

which specified the address family, the table name, and the chain name. This is the followed by

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!12!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

the match (See Table 5: Common Matches for a subset of common matches). For this example

the goal is the match the source IP address, so the match is “ip” followed by “saddr”. This is

then followed by “10.10.10.10” as the source IP address of 10.10.10.10 must match in order for

this rule to evaluate true. The last item on the line is the action to take if this rule evaluates true

and that is “drop” to drop the packet. Since nftables doesn't have the ability to change the policy,

all other packets not matching this rule will be allowed.!

 # nft add rule ip FILTER INPUT ip saddr 10.10.10.10 drop!

 When considering that a user must create the tables and chains before entering rules, the

nftables example makes iptables look much more appealing, but the tables and chains only have

to be created one time. When researching nftables online, a considerable amount of the

documentation doesn't discuss the creation of the tables and chains, but it is a requirement as no

rule can be added until the base framework of tables and chains is first established.

!
Block all connections from a subnetwork!
 With iptables this is identical to blocking a single IP address with the exception of using

the CIDR notation or dotted octed notation with the IP address to indicate how many bits in the

address must match. Dotted octet notation is also be used with the forward slash “/” as a

separator. !

 # iptables -t filter -A INPUT -s 10.10.10.0/24 -j DROP!
 or!
 # iptables -t filter -A INPUT -s 10.10.10.0/255.255.255.0 -j DROP!

 This will be identical to the configuration with nftables that blocks a single IP address

with the exception of specifying the CIDR notation to indicate how many bits in the network

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!13!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

address must match. Unlike iptables, nftables does not have the ability to use dotted octet

notation for masks. !

 # nft add rule ip FILTER INPUT ip saddr 10.10.10.0/24 drop

Block all connections from a subnetwork to a port!
 When using iptables this is identical to previous example with the addition of adding a

destination port with the “--dport” option. !

 # iptables -t filter -A INPUT -p tcp --dport ssh -s 10.10.10.0/24 -j DROP!

 For this example a negative chain priority will be used to demonstrate some of the quirks

that have to performed in certain instances. When entering commands from the command line,

the nftables command “nft” will attempt to interpret the negative priority as a command line

switch as it begins with a dash “-”. In order for nftables to understand that this is a negative

priority, a double dash “--” surrounded by spaces must precede the negative priority value to

signify the end of command line options. This example doesn't assume that the table and chains

have been created as command line vs interactive mode will be compared:!

 # nft add table ip FILTER!
 # nft add chain ip FILTER INPUT { type filter hook input priority -- -1; }!
 # nft add rule ip FILTER INPUT tcp dport ssh ip saddr 10.10.10.0/24 drop

 Interactive mode simplifies the process as the command “nft” is only entered at the

beginning with the “-i” switch to signify interactive mode. After that the commands are entered

without having to repeatedly type the “nft” command . It makes entering negative chain

priorities simpler as a double dash “--” is not needed , and, the backslash is not required to

escape the semicolon as the bash shell no longer parses the command line. When done, the

“quit” command is used to exit from interactive mode.

!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!14!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

 # nft -i !
 nft> add table ip FILTER!
 nft> add chain ip FILTER INPUT { type filter hook input priority -1; }!
 nft> add rule ip FILTER INPUT tcp dport ssh ip saddr 10.10.10.0/24 drop!
 nft> quit!

 Port numbers or port names listed in /etc/services can be used with both iptables and

nftables commands so it is personal preference on how they are entered. Resolvable port names

are shown by default, but can be displayed by number with optional command line arguments

which will be discussed later.!
!
Allow only packets from new or existing connections to be allowed into the system!
 Since this example states that only internally originated connections are to be allowed

back into the system, it implies that all other inbound traffic should be dropped. With iptables, in

this case, it makes sense to change the default policy, with the “-P” switch, to drop on the input

chain. It doesn't hurt to explicitly set the default policy to accept on the output chain even

though it is the default. To evaluate traffic based on the state, the “-m state” loads the

xt_conntrack kernel module and dependent modules so that the system performs stateful

inspection of the traffic. Using “-m state” requires another “--state' option” which is a list of

states to match. Valid states for iptables is NEW for new sessions, ESTABLISHED for existing

connections, RELATED which is traffic that is related to but does not belong to the existing

connection, and INVALID for traffic that could not be identified. Since this example specifies to

only allow return traffic from internally established connections, then the states will be

ESTABLISHED and RELATED. Iptables requires multiple states to be separated by commas.!

 # iptables -t filter -P INPUT DROP!
 # iptables -t filter -P OUTPUT ACCEPT!
 # iptables -t filter -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT!

 Nftables starts to show its value when it comes to stateful firewall rules. As the previous

example interactive mode is used to save on typing. The table and chain are created followed by

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!15!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

the rule. The match for nftables is “ct state” which states connection tracking, “ct”, based on

state of the traffic which is then followed by the state of the traffic. For nftables, the state names

are exactly the same as iptables except they are specified in lower case. Although not required,

if it is desired to count packets and bytes, it must be specified with the target “counter”. In this

example the rule will count the number of packets and bytes that are accepted by this rule.

Because nftables doesn't have the ability to change the default policy of accept, then a rule must

be added to drop all other traffic.

 # nft -i !
 nft> add rule ip FILTER INPUT ct state established,related counter accept!
 nft> add rule ip FILTER INPUT drop!
 nft> quit!
 !
 The output of configured tables/chains/rules between iptables and nftables is considerably

different. !

 # iptables -L!
 Chain INPUT (policy DROP)!
 target prot opt source destination !
 ACCEPT all -- anywhere anywhere state RELATED,ESTABLISHED!

 Chain FORWARD (policy ACCEPT)!
 target prot opt source destination !

 Chain OUTPUT (policy ACCEPT)!
 target prot opt source destination !

 # nft list chain ip FILTER INPUT!
 table ip FILTER {!
 chain INPUT {!
 type filter hook input priority -1;!
 ct state established,related counter packets 0 bytes 0 accept!
 drop!
 }!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!16!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

 }!

Saving and importing rules

 Nftables produces a clean, organized output. With nftables it would be simpler to take

this command output, and reproduce the commands required to produce the same output, but

isn't required since it is possible to save the configuration and import it in later. With iptables the

commands to save and restore are iptables-save and iptables-restore respectively. Nftables uses

the same nft command to export and import:!

 # nft list table ip FILTER > filtertable.fw # Redirect output to a file!
 # nft -f filtertable.fw # Use the -f switch to read in file!
 !
Specifying interfaces!
 There are many services running on systems that must communicate via the loopback

interface so it is important to allow this. There are different options depending on the direction

of the traffic with respect to the interface. With iptables, the -i option is used to specify “in” or

reading from the interface, and the -o option is used to specify “out” or writing to the interface:!

 # iptables -A INPUT -i lo -j ACCEPT!
 # iptables -A OUTPUT -o lo -j ACCEPT!

 Nftables similarly uses different options depending on the direction. If reading from the

interface use iif and if writing to the interface use oif. Assuming the INPUT and OUTPUT

chains are created, the nftables commands are:!

 # nft add rule ip FILTER INPUT iif lo accept!
 # nft add rule ip FILTER OUTPUT oof lo accept!

 These command are not limited to just using the loopback interface as any available

interface name, found via the ifconfig command, can be specified.!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!17!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

Specifying ranges and multiple IP address and ports!
 If individual rules had to be written by specifying single source and destination addresses

and ports, then it would take a considerable amount of time to write rules and the length of the

rule list would be grow quite large very quickly; therefore, it is common to define ranges and/or

multiple discontiguous IP addresses and ports. Not only does it save keystrokes, but it adds to

the readability of the rules.!

 Without the specified kernel modules, iptables has the ability to comma separate IP

addresses when entering rules. It will create as many rules as required for every possible

combination of communications. For example, this command:

 # iptables -t filter -A INPUT -s 10.1.1.1.1,10.1.1.2 -d 10.0.0.1,10.0.0.2 -j ACCEPT

!
 Will create these four rules:

!
Chain INPUT (policy ACCEPT)
target prot opt source destination
ACCEPT all -- 10.1.1.1 10.0.0.1
ACCEPT all -- 10.1.1.1 10.0.0.2
ACCEPT all -- 10.1.1.2 10.0.0.1
ACCEPT all -- 10.1.1.2 10.0.0.2
!

 One of the main goals of nftables was to add to the readability of the rules, so allowing

ranges and discontiguous addresses and ports were incorporated early on and all that needs to be

done is to enclose them in braces. Assuming the chain “FILTER INPUT” has been created, the

previous iptables command can be accomplished with nftables with the following:

!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!18!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

 # nft add table ip FILTER!
 # nft add chain ip FILTER INPUT { type filter hook input priority 1 \; }
 # nft add rule ip FILTER INPUT ip saddr { 10.1.1.1,10.1.1.2 } \
 ip daddr { 10.0.0.1,10.0.0.2 } accept
!
 Because of the length of this command, it has been broken up into two parts. The first

line is terminated with a backslash “\”. In UNIX, this called a command continuation as the

command isn't completed until a newline (return is pressed) is encountered. This is often used in

scripts and documentation for readability. The command may have been entered on a single line

without the backslash.

!
nft list table ip FILTER
table ip FILTER {
 chain INPUT {
 type filter hook input priority 1;
 ip saddr { 10.1.1.1, 10.1.1.2} ip daddr { 10.0.0.1, 10.0.0.2} accept

 Iptables provides the ability to specify ranges and discontiguous addresses and ports;

however, the proper kernel components must be installed.

 These iptables and nftables commands will allow destination traffic to TCP ports 22, 80,

and 443 into the system:

!
 # iptables -t filter -A INPUT -p tcp --match multiport --dports 22,80,443 -j ACCEPT

!
 # nft add rule ip FILTER INPUT tcp dport { 22,80,442 } accept

 This iptables command will allow destination traffic to TCP ports 20 through 80 into the

system (note that iptables uses a colon “:” as the range separator and nftables uses a dash “-”):

!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!19!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

 # iptables -t filter -A INPUT -p tcp --match multiport --dports 20:80 -j ACCEPT

!
 # nft add rule ip FILTER INPUT tcp dport { 22-80 } accept

!
 These iptables and nftables commands will allow outgoing traffic to destination IP

addresses 10.1.1.1 through 10.1.1.20:

 # iptables -t filter -A OUTPUT -m iprange --dst-range '10.1.1.1-10.1.1.20' -j ACCEPT

!
 # nft add rule ip FILTER OUTPUT ip daddr { 10.1.1.1-10.1.1.20 } accept

 These commands are not limited to just one option as combinations of source and

destination IP addresses and ports can be used to get the desired effect.!

5. Adding Comments to Rules

 Just like programmers comment code so that it can be understood by others,

firewall rule lists should also be commented especially if there are multiple people that manage

the rules. Even with the most simple of rule lists, it is highly recommended to comment each

rule, not so much of what the rule does, but why it is there.!

 Throughout this document comments have been added to commands to explain their

function using the format “# and some text”. The commands will execute properly even if “#

and some text” is appended to the command because the shell will not process it because it

understands that it as a shell comment. The problem with this is that it is recognized by the shell

as a comment, but not by iptables and nftables; thus, the comment isn't saved with the rules.!

 Iptables allows for attaching comments to rules as long as the appropriate module is built

and installed. Like most iptables rules, using comments is a bit convoluted:!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!20!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

 # iptables -A INPUT -p tcp --dport 22 -j DROP -m comment --comment "disallow ssh"!

 The “-m comment” tells iptables to use the comment module, and “--comment “disallow

ssh” is the actual command that adds a comment to the rule. The comment must be entered

within double quotes. Comments are displayed with normal output when listing output with the

“-L” switch:

iptables -L INPUT

Chain INPUT (policy ACCEPT)

target prot opt source destination

DROP tcp -- anywhere anywhere tcp dpt:ssh /* disallow ssh */

 The current nftables documentation doesn't appear to have any information regarding

adding comments, but digging into the source code of nftables v0.4 reveals code supporting the

addition of comments which can be added as follows: !

nft add rule FILTER INPUT tcp dport ssh drop comment \"disallow ssh\"

 This isn't quite as convoluted as the iptables version. The quotes must be escaped when

entering commands from the shell and not escaped if entering commands in interactive mode.

The comments entered are displayed when listing output:!

nft list table FILTER

table ip FILTER {

 chain INPUT {

 tcp dport ssh drop comment "disallow ssh"

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!21!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

6. Logging

 Many would call logging the most important thing to do when configuring a firewall

which is difficult to argue; however, rules by themselves server little purpose until put together

in a working rule list. Each rule is a piece of the puzzle, and unless the puzzle is complete, there

is an exposed hole.!

Basic Logging

 Iptables includes a LOG target that can be used to log packets. What differentiates the

LOG target from others targets is that it returns control back to the calling rule list for further

processing. Essentially it acts like a subroutine in a program. There are a couple approaches to

logging packets. One way would be to create two identical rules with the exception of the

targets. The first rule performs the logging action, and the next rule jumps to the appropriate

action (ACCEPT or DROP).!

 # iptables -t filter -A OUTPUT -d 10.0.0.1 -j LOG # Log, continue to next rule
 # iptables -t filter -A OUTPUT -d 10.0.0.1 -j DROP # Drops the same packet

 The disadvantage to this is that it causes the packet to be evaluated twice, once to log,

and once to perform the action. Evaluating rules takes time and processing power, and keeping

the rule list as short as possible ensures efficiency.

 The second approach is to create a user-defined chain specifically for logging that logs

the packet and performs the appropriate action (ACCEPT or DROP).

 # iptables -t filter -N LOGGING # Create non-base chain for logging!
 # iptables -t filter -A LOGGING -j LOG # Add rule to logging chain to LOG!
 # iptables -t filter -A LOGGING -j DROP # Add rule to logging chain to DROP!
 # iptables -t filter -A OUTPUT -d 10.0.0.1 -j LOGGING # Jump LOGGING if match!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!22!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

 With this version, the packet is evaluated once on the base chain OUTPUT, and if the

destination address is 10.0.0.1, then it jumps to the non-base chain LOGGING which first logs

the packet, and second drops the packet. Utilizing this method, although a bit more convoluted,

is more efficient than the previous version that had to evaluate the packet twice.!

 One major advantage to using nftables is the ability to have multiple targets per rule. The

same rule written with nftables is much simpler to implement:!

 # nft add rule ip FILTER OUTPUT ip daddr 10.0.0.1 log drop!

Logging with custom output!

 Log output can be cryptic, and the log output is often modified to add keywords to make

the log output easier to read. Doing this with iptable and nftables is straight forward. With

iptables, the non-base chain LOGGING will need to be created, and the matching packet will use

the jump chain of LOGGING:!

 # iptables -t filter -A LOGGING -j LOG --log-prefix "Packet Drop: "!
 # iptables -t filter -A LOGGING -j DROP!

 As before, nftables allows the entire configuration in one command. Like entering

comments with nftables, the quotes around the custom message must be escaped, unless utilizing

interactive mode:!

 # nft add rule ip FILTER OUTPUT ip daddr 10.0.0.1 log prefix \“Packet Drop: \“ drop!

Logging with rate limiting!

 Utilizing rate limiting gives the ability to create a threshold to only log a stipulated

amount of matching packets within a specified time frame. This is important since it prevents

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!23!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

log files from growing at a rapid rate which produces log pollution, and denial of service (DoS)

conditions where the system is logging at such a rate that it can't perform other tasks or, if the

logging directory is part of root file system, it exhausts all available space on root which causes

the system to freeze or crash.!

 With iptables, utilizing the user-defined chain LOGGING, is fairly simple to implement.

A logging rule can be created to log only up to two events per minute. The “-m limit” tells

iptables to use the nft_limit module and the “--limit 2/m” will allow up to two events per minute. !

 # iptables -t filter -A LOGGING -m limit --limit 2/m -j LOG!

 The nftables version is similar except is reads a bit easier. The “limit rate” tells nftables

that what follows is a number/timeframe of how much to limit. The timeframe must be spelled

out with nftables as in “2/minute”. Here is an example of the same command added to a non-

base chain named LOGGING:!

 # nft add rule ip FILTER LOGGING limit rate 2/minute accept!

7. Editing rules

 Editing rules has its challenges, but unfortunately the method that nftables utilizes to edit

rules is a step back from that of iptables; however, it is only slightly more complicated than that

of iptables.!

 Rather than focus on rule writing, a simple input filter will be used that has three rules

each allowing a single destination port of 22, 23, and 25. They are entered in that order so the

effects of the editing can be more easily seen. Each example will build upon the previous output.!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!24!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

Listing line numbers and rule handles!
 In order to edit the rules, the position where to insert, delete or replace has to be

specified. Iptables utilizes line numbers which can be displayed with the --line-numbers option

accompanied with the list option “-L”.!

iptables -t filter -L -n --line-numbers!
Chain INPUT (policy ACCEPT)!
num target prot opt source destination !
1 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:22!
2 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:23!
3 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:25!

 In the iptables output the first column “num” is the line number for the rule. A new

switch “-n” was added to not resolve addresses or port names.!

 The nftables command uses the “-a” switch to output what it calls the “rule handle”.

Although it looks like line numbering, it isn't, and how it operates will be described a bit later.!

nft list table FILTER -nna!
table ip FILTER {!
 chain INPUT {!
 type filter hook input priority 0;!
 tcp dport 22 accept # handle 2!
 tcp dport 23 accept # handle 3!
 tcp dport 25 accept # handle 4!
 }!
}!

 This nftables command uses the “-n” and “-nn” switch like tcpdump. “-n” disables

address resolution, and “-nn” disables address and port resolution. There is no column for the

rule handle, but at the end of each rule is listed “# handle num” where “num” is the rule handle.

With nftables version 0.4, if switches are to be used, they must be used in command line mode.

Unfortunately, attempting to use a switch in interactive mode will throw an error. Notice in the

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!25!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

output that the handle number starts with 2 (do not get “priority 0” confused with a rule handle of

the first rule).!

Deleting rules!
 The switch to delete lines with iptables is “-D”. In order to delete line number 2 with

iptables, the command will be:!

 # iptables -t filter -D INPUT 2!
iptables -t filter -L -n --line-numbers!
Chain INPUT (policy ACCEPT)!
num target prot opt source destination !
1 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:22!
2 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:25!

 One thing to notice with the output following the deletion of line number 2, is that

iptables reordered the rules, so what was once line number 3 is now line number 2. In fact,

iptables keeps the line numbers sequential.!

 In order to delete rules in nftables, the command option is “delete” followed by the table

and chain name, then followed by the keyword “handle” then the rule handle.!

nft delete rule FILTER INPUT handle 3!
nft list table FILTER -nna!
table ip FILTER {!
 chain INPUT {!
 type filter hook input priority 0;!
 tcp dport 22 accept # handle 2!
 tcp dport 25 accept # handle 4!
 }!
}!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!26!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

 Unlike iptables, there is no renumbering of rules. The way nftables works, is once a rule

is given a handle, it keeps that handle indefinitely until something forces it to change such as

deleting the tables and chains, reentering them manually or reading them from a file.

Inserting rules!
 To insert a rule with iptables the command switch is “-I” and specify the line number

where the new rule should be placed. If a line number isn't specified, the rule will be inserted at

the beginning of the list. To place a rule between line numbers one and two, then specify line

two, and what was once line two will become line three:!

iptables -t filter -I INPUT 2 -p tcp --dport 23 -j ACCEPT!
iptables -t filter -L -n --line-numbers!
Chain INPUT (policy ACCEPT)!
num target prot opt source destination !
1 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:22!
2 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:23!
3 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:25!

 Using nftables previous output where rule handle three was deleted, to insert the same

rule between two and four, a person may think that the rule handle to specify would be rule

handle three as that is between two and four. Not exactly. Like iptables, the rule handle where

the rule is to be inserted is specified. If a non-existent rule handle is specified, nftables with

throw an error. Like iptables, if the rule handle position is omitted, the rule will be place at the

beginning of the rule list. Unlike iptables where the syntax of the command is consistent,

nftables now uses a new keyword “position” followed by the rule handle where to insert the rule:

nft insert rule FILTER INPUT position 4 tcp dport 23 accept
nft list table FILTER -nna
table ip FILTER {
 chain INPUT {
 type filter hook input priority 0;
 tcp dport 22 accept # handle 2
 tcp dport 23 accept # handle 5

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!27!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

 tcp dport 25 accept # handle 4
 }
}

 This example of nftables confirms that statement that rule handles never change. Do not

get rule handles confused with how nftables traverses the rule list. The rules are still evaluated

sequentially from top to bottom. Rule handles are an nftables mechanism to uniquely identify

rules and not an assignment of order.!

Replacing rules!
 With iptables, the “-R” switch will replace a rule. The line number for the rule to be

replaced is specified followed by the superseded rule:!

iptables -t filter -R INPUT 3 -p tcp --dport 80 -j ACCEPT!
iptables -t filter -L -n --line-numbers!
Chain INPUT (policy ACCEPT)!
num target prot opt source destination !
1 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:22!
2 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:23!
3 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:80!

 Nftables doesn't currently include the ability to replace rules and it is unknown if this

functionality will be added. In order to perform the same function as replacement, the rule to be

replaced can be deleted and the rule to replace can be inserted into the rule chain in the same

location where the previous rule was deleted.

8. Conclusion

 There is little doubt that the iptables components in the Linux kernel will remain for

many more years, and whether it is to be replaced by nftables is yet to be determined. For those

versed in iptables, there is no immediate reason to learn nftables, but for the Linux newcomer,

nftables should be considered as it appears to have an easier learning curve. As nftables matures

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!28!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

and features are added, it will become more appealing and may eventually overtake iptables as

the favored Linux firewall. !

!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!29!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

9. References

nftables HOWTO (2014, November 19). Retrieved April 27, 2015, from!
 http://wiki.nftables.org/wiki-nftables/index.php/Main_Page!

Russell, R. (2002, January 24). Retrieved Retrieved March 14, 2015, from!
 http://www.netfilter.org/documentation/index.html#documentation-howto !

Nftables - Gentoo Wiki. (2015, January 28). Retrieved March 14, 2015, from!
 http://wiki.gentoo.org/wiki/Nftables!

!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!30!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

10. Appendix

Description iptables nftables
Add (append) -A add
Delete -D delete
Flush -F flush
Insert -I insert
List -L list
Policy -P N/A
Replace -R N/A

Table 1: Command Options!

Description iptables nftables
Protocol -p N/A
Source Address -s saddr
Destination Address -d daddr
Source Port --sport sport
Destination Port --dport dport
Jump Target -j N/A
Match Name -m N/A

Table 2: Parameters!
!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!31!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

Description! iptables nftables
Accept (Allow) Packet ACCEPT accept
Silently Drop Packet DROP drop
Reject Packet & Respond REJECT reject
Destination NAT DNAT dnat
Source NAT SNAT snat
Masquerade NAT MASQUERADE masquerade
Log Packet LOG log
Count packets and bytes N/A counter

Table 3: Target Options

Match Arguments Description

ip saddr Source address
daddr Destination address

tcp sport Source port
dport Destination port

udp sport Source port
dport Destination port

ct state State of the connection
Table 4: Common Matches1!

!

!
1 Nftables - Gentoo Wiki. (n.d.). Retrieved March 15, 2015, from
http://wiki.gentoo.org/wiki/Nftables#Matches!

! ! ! ! ! ! !!!!!!!Nftables!as!a!Second!Language! !!!!!32!

Kenton!A.!Groombridge,!kgroombr@comcast.net!

Priority Name/Value Function

NF_IP_PRI_CONNTRACK_DEFRAG (-400) Priority of defragmentation

NF_IP_PRI_RAW (-300) Traditional priority of the raw table placed

before connection tracking operation

NF_IP_PRI_SELINUX_FIRST (-225): SELinux operations

NF_IP_PRI_CONNTRACK (-200) Connection tracking operations

NF_IP_PRI_MANGLE (-150) Mangle operation

NF_IP_PRI_NAT_DST (-100) Destination NAT (DNAT)

NF_IP_PRI_FILTER (0) Filtering operation, the filter table

NF_IP_PRI_SECURITY (50) Place of security table where secmark can be

set for example

NF_IP_PRI_NAT_SRC (100) Source NAT (SNAT)

NF_IP_PRI_SELINUX_LAST (225) SELinux at packet exit

NF_IP_PRI_CONNTRACK_HELPER (300) Connection tracking at exit

Table 5: Chain Priorities2!
!

!
2 Configuring chains - nftables HOWTO. (n.d.). Retrieved from
http://wiki.nftables.org/wiki-nftables/index.php/Configuring_chains#Base_chain_types!

