
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Securing and Auditing the iSeries Heritage Application
Villy G Madsen, ISP
August 30, 2002

GSEC Version 1.4b Option 1

Abstract

The IBM iSeries computers traces its heritage back to the System 38 (S/38) that
was first introduced to the world in the late 1970s. Many of the applications
written for the S/38 are still actively in use today. In today's IT environment, it is
vital that all applications and their associated data be properly protected1. This
paper describes how system level security can be added to a "Heritage
Application". It then goes on in more detail to show how OS/400 system
commands and SQL can be used to audit the system level security of a "Heritage
Application".

Background

The IBM iSeries of computers is the latest scion of a line that started with the
introduction of the IBM System 38 in 1978 2,3. The evolution of this earliest of
Relational Database based Operating systems has been managed so well, that
applications that were written for the first system will run on the most modern
iSeries systems today with little or no modification.

On a positive note, this has resulted in the AS/400 (as most of us still call it)
having one of the largest (if not the largest) suite of commercially available
business applications of any computer platform. It also means that many of
these applications have not been completely re-engineered since they were
initially published.

These applications were developed in an age where the great majority of
systems stood alone. PC's were still a dream, and the only user interface device
was a terminal. As Michael Walsh4 points out, security for many of these
applications was and is based upon controlling user activities within the

1 Flierman
2 Sloan
3 Lansa
4 Walsh

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

application. Usually the user would be automatically connected to the application
upon logon, and since his access to the data would be controlled by the
application, there was no need for any additional security.

Today's world is very different. Network connectivity is now common place, and
the standard user interface device is a PC. Commonly available decision support
tools built upon such facilities as ODBC, DRDA, FTP, SQL etc5 provide ready
access to data on the AS/400

In order to maintain the Confidentiality and Integrity of the application data
measures must be undertaken to control access to the data. At the same time,
users must be able to take advantage of the advanced data access facilities that
are available.

A number of means have been used for controlling access to critical data
resources including:
• Use of exit routines5.
• Use of database Triggers6
• Controlling access to tools and commands.
• Controlling access to data and program objects.

Exit routines and controlled access to tools and commands have their place in
certain circumstances, but in my opinion should only be used as an adjunct to
more data centric approaches.

Database Triggers are a relatively recent∗ addition to the AS/400 toolbox. They
have a great potential for moving business rules from the application to the
database. This has the advantage of enforcing business rules for all access to
the application data. This approach has great potential for new applications, but
its use in improving the security on existing applications is questionable.
Retrofitting data triggers into an existing application requires an effort on par with
a major re-write of the application.

Controlling access to data and program objects at the system level can greatly
improve the security of your application data, while allowing authorized users to
use modern decision support tools against the application data. Successful
implementation is typically not a lengthy undertaking. It does require a thorough
knowledge of OS/400 object level security, and a good understanding of how the
application is organized.

5 Susani
6 IBM
∗ Recent by comparison with to the age of the iSeries / AS400 / S38 family.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The First Challenge - Securing the Application

Our goal is to provide increased security to an existing application. The
application was initially installed with security that would allow any user full
access to all application objects using system commands.

The security within the application itself enforces all business rules, controlling
what fields and records an authorized user can access and/or change.

The challenge is to:
• Ensure that the only way to change the application database is through the

application.
• Allow authorized users to use decision support tools to gain read access to

the application database.
• Ensure that only authorized users will be able to access the application

program objects.

The Tools

There are a number of security features available on the AS/400 that can be
used to implement a solution including:
• Authorization Lists
• Object Security
• Adoption of Privilege

Authorization Lists

Authorization Lists are a means setting up security for a number of objects that
all have the same security requirements. A number of objects are secured by an
Authorization List. A number of users will be granted rights against the list. The
rights granted to any user will apply to each of the objects that are members of
the list. Other users may be granted the same, or different rights against the list.

This feature dramatically reduces our security administration effort, as the
following example will illustrate.

We have 200 objects that need to be secured, and 300 users that require read
access to these objects. There are two approaches that we can take.

We can grant each of the users individual access to each of the objects. This
requires that we execute a GRTOBJAUT (grant object authority) command 200
times for each of the 300 users, for a total of 60,000 commands. Every time that

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

a user requires access to a object, the system will have to search through the
300 security entries associated with that object to determine what level of access
the user is allowed, resulting in significant processing overhead.

Using Authorization Lists, we grant each of the 300 users read access to the
same Authorization List. Each of the 200 objects is then secured by the
authorization list. We execute the CRTAUTL command (Create Authorization
List) once and then ADDAUTLE (add authorization list entry) once for each user,
and the GRTOBJAUT once for each object. Five hundred operations is still a
daunting number, but we can easily automate this - and it can be implemented
must faster than the 60,000 changes that would otherwise be needed. Each
secured object will only have one security entry associated with it, rather than the
300 entries with the previous approach. When the system needs to verify that a
user is allowed access to an object, it still needs to verify that the user is
authorize against the list, not against the individual objects. The users' rights to
access the members of the list is then cached for the term of the session,
dramatically reducing processing overhead for access to additional objects.

Object Security

Object security allows us to control who has what kind access to an object.
Access can be managed on a user by user basis, on a group (of users) by group
basis, or through an Authorization List.

Adoption of Privilege

It is possible to configure a program object so that when a user executes it, he
does so using the profile of the object's owner. This can be a powerful tool if
used in conjunction with an application that has solid well thought-out application
level security imbedded within it. The user needs to be authorized to access the
program, but once the program is executing the rights of the program owner
determine which data or additional program objects can be accessed.

Our Approach

This example assumes that the application has a single point of entry, a "Main
menu", and that all other programs are called from this menu.

The following criteria must be met in order to meet our security requirements.
• The application main menu is sole point of access to the application.
• Data can only be created/changed/deleted using the application.
• Authorized users can use any tool available to access data.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

• Only authorized users can change or delete the programs, menus etc
associated with the application.

 The Implementation Details

The approach that we have adopted to meet our requirements will involve
making the following changes:
• Create a unique "application owner" User Id for this application -

APPOWNER.
• "Sanitize" all libraries associated with the application so that:
§ Only objects associated with the application are present in each library.
§ All data objects are consolidated in one or more libraries.
§ Application program libraries do not contain data objects.
§ All objects belong to the application owner.

• Create an authorization list "APPRUN" that will be used to specify which
users are allowed to run the application.

• Create an authorization list "APPREAD" that will be used to specify which
users are allowed to read the application data files using decision support
tools.

• Remove all access to application objects by other than the application owner.
• Add all authorized users to the APPRUN list with *USE (Read / Execute)

privilege.
• Add only those users who require Decision Support access to the data to the

APPREAD list with *USE privilege.
• Grant the APPREAD list access to all application data objects.
• Grant the APPRUN list access to the MAINMENU program.
• Change all the application programs so they run in the owner's profile.

How we wish that it was that simple! It likely won't be, but the list does represent
the bulk of the changes required for many heritage applications. As any
experienced iSeries developer will realize, additional changes will be required. In
particular, any application specific Job Description, Printer and Display
Definitions, and some File objects may need to be either secured against the
APPRUN authorization list, have public granted use access against them. If the
application supports batch jobs, then additional changes will be required. Then
there are the applications that have functions that can only be run from
QSECOFR… These cases are all manageable, but out of scope for this
exercise.

Implementing security after the fact can be a bit of a trial. If one remembers to
ensure that Job Description Objects are changed to cause job logs to be
retained, then the trial can be a lot easier. A close perusal of the job logs can be
a great help in determining why a application is not generating access violations.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

In the words of the university professor, the rest of the proof is left as an exercise
for the student.

The Second Challenge - The Audit

AS/400s are really a joy to audit. With few exceptions, system commands that
generate output can create a database file that can be manipulated on the
AS/400 using SQL, Query/400 or a custom written application. The file could
also be exported to Excel or Access for further data reduction.

A simple example:

DSPUSRPRF USRPRF(*ALL) OUTPUT(*OUTFILE) OUTFILE(WORKLIB/USRPRFLST)

Will create a file that contains user profile information for all users on the system.

Executing the following query from SQL

SELECT UPUPRF, UPUSCL, UPPSOD, UPSPAU FROM WORKLIB/USRPRFLST

Will provide us with a list of all users on the system, their class (User,
Programmer, Operator etc), when they last logged on, and what (if any) special
privileges they have.

As is the norm for OS/400, field names are fully documented on the system. The
easiest way to retrieve this information is through the use of the F4 (Prompt) key
from within SQL or Query/400.

A few different queries will quickly retrieve such useful information as stale user
id's, how many users have elevated privileges, and which ids have static
passwords.

We can use this same approach to verify that all of the changes that we have
implemented to secure our application are still in place, and fully operational.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Verifying the Application Owner ID

First of all, we will ensure that no one inherits the privileges of the Application
Owner Id using the AS/400 Group Profile feature. The following command will
list on the screen all user ids that are linked to APPOWNER. We would only
expect to see one or more support Ids listed.

DSPUSRPRF USRPRF(APPOWNER) TYPE(*GRPMBR) OUTPUT(*)

This command when used with the *GRPMBR specification, is one of the few
instances where we cannot route the results to a file.

Verify the Application Libraries

The second step is to build a file containing information about all of the
application program objects.

The following command will create a new file containing information about all of
the objects in the APPPGML1 library. If the output file already exists it will be
over-written.

DSPOBJD OBJ(APPPMGL1/*ALL) OBJTYPE(*ALL) OUTPUT(*OUTFILE)
OUTFILE(WORKLIB/PGMLST)

If necessary, information about additional libraries can be added to this file as
follows

DSPOBJD OBJ(APPPMGL2/*ALL) OBJTYPE(*ALL) OUTPUT(*OUTFILE)
OUTFILE(WORKLIB/PGMLST) OUTMBR(*FIRST *ADD)

The following query will list all of the records in the file, showing the library,
program name and owner for each object in the library. The owner in each case
should be APPOWNER.

SELECT ODLBNM, ODOBNM, ODOBOW FROM WORKLIB/PGMLST

In many cases, this list will be long enough that you really don't want to manually
scan through it. The following command will provide you with a count of the
number of objects by owner, type and library. A sample from an application
where all of the program objects are contained in a single library looks like this:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

This is a nice situation, ownership of all objects is correct. We would probably
check to ensure that the *FILE and *DTAARA objects are actually part of the
application and not misplaced application data objects.

The following shows an example of a situation where the application program
files are stored in multiple libraries:

We will now perform the same process on the data libraries - the libraries that
actually contain the applications database.

DSPOBJD OBJ(APPDATA/*ALL) OBJTYPE(*ALL) OUTPUT(*OUTFILE)
OUTFILE(WORKLIB/DATLST)

If there is more than one data library associated with the application, then the
command can be repeated with the addition of the outmbr option as follows:

DSPOBJD OBJ(APPDATA/*ALL) OBJTYPE(*ALL) OUTPUT(*OUTFILE)
OUTFILE(WORKLIB/DATLST) OUTMBR(*FIRST *ADD)

Using the following SQL command to parse the data

SELECT ODOBOW,ODLBNM, ODOBTP, ODOBAT, COUNT(*) FROM WORKLIB/DATLST
GROUP BY ODLBNM,ODOBTP,ODOBOW, ODOBAT

OBJECT LIBRARY OBJECT COUNT (*)
OWNER TYPE
APPOWNER APPLIB1 *CMD 13
APPOWNER APPLIB1 *DTAARA 3
APPOWNER APPLIB1 *FILE 286
APPOWNER APPLIB1 *MSGF 1
APPOWNER APPLIB1 *PGM 1,539

OBJECT LIBRARY OBJECT COUNT (*)
OWNER TYPE
APPOWNER JCPLIB *FILE 90
APPOWNER JCPLIB *PGM 357
APPOWNER ORPLIB *FILE 59
APPOWNER ORPLIB *PGM 332
APPOWNER POPLIB *FILE 92
APPOWNER POPLIB *PGM 274

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

gives us the following output:

A happy result. We see that all of the objects are owned by APPOWNER, the
only objects that might perhaps be better placed in a "program" library are the
*FILE objects with the PRTF attribute, and the *JOBD. These are printer
definition files and job description files respectively, and it could easily be argued
that they could be located either in the data libraries or in the program libraries.

Check Program Object Permissions

The next step is to check the permissions associated with every one of the
application objects. This unfortunately needs a little programming.

The following CL program will create a file containing the permission information
for all of the objects in our application program libraries

This program will run for quite a while, and should be run in batch to minimize the
impact upon other system users.

PGM
 DCLF FILE(WORKLIB/PGMLIST)
 DLTF FILE(WORKLIB/OBJAUT)
 MONMSG MSGID(CPF0000)
LOOP:
 RCVF
 MONMSG MSGID(CPF0864) EXEC(GOTO CMDLBL(EOF))
 DSPOBJAUT OBJ(&ODLBNM/&ODOBNM) OBJTYPE(&ODOBTP) +
 OUTPUT(*OUTFILE) +
 OUTFILE(WORKLIB/OBJAUT) OUTMBR(*FIRST
*ADD)
 GOTO CMDLBL(LOOP)
EOF:

OBJECT LIBRARY OBJECT OBJECT COUNT (*)
OWNER TYPE ATTRIBUTE
APPOWNER APPDATA *DTAARA 313
APPOWNER APPDATA *DTADCT 1
APPOWNER APPDATA *FILE ICFF 3
APPOWNER APPDATA *FILE LF 1,629
APPOWNER APPDATA *FILE PF 682
APPOWNER APPDATA *FILE PRTF 4
APPOWNER APPDATA *JOBD 2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

When our CL program has completed, we can use the following SQL query to
determine if there is anything "interesting" to look at.

SELECT OAOWN, OAGRPN, OAUSR, OAANAM, OAOBJA, COUNT(*) FROM
WORKLIB/OBJAUT
GROUP BY OAOWN, OAGRPN, OAUSR, OATYPE, OAOBJA, OAANAM

The results below tell us that of the 1539 program objects, only one is accessible
by anyone that doesn't belong to the APPOWNER group. Note that the PUBLIC
permission is specifically set to *EXCLUDE. There is one object that is secured
using an Authorization List. Based upon our security design, this is expected.

We should now extract the details associated with this item using the following
query.

SELECT OALIB, OANAME, OATYPE, OAOWN FROM WORKLIB/OBJAUT WHERE OAANAM =
'APPUSER'

giving us the following result:

Since UINIT is the initial menu program for the application. Things are looking
good. The next step is to check the contents of the APPUSER authorization list.

OWNER GROUP USER AUTH. LIST OBJECT COUNT (*)
 AUTHORITY
APPOWNER *PUBLIC *NONE *EXCLUDE 1,539
APPOWNER APPOWNER *GROUP *NONE *ALL 1,539
APPOWNER APPOWNER *GROUP APPUSER *ALL 1

LIBRARY OBJECT TYPE OWNER
APPLIB1 UINIT *PGM APPOWNER

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Issuing the following OS/400 command

DSPAUTL APPUSER

gives us

Since the *USE authority on the AS/400 only gives the user execute privilege on
a program object, we are happy!

Check Data Object Permissions

The next step is to repeat the previous steps, but this time for the data objects.
Since the changes required in the previous steps will be obvious to anyone with
AS/400 experience, we will assume that the file OBJAUT now contains the
authorization information for the data libraries.

We then run the following SQL Query

SELECT OAOWN, OAGRPN, OAUSR, OAANAM, OAOBJA, COUNT(*) FROM
WORKLIB/OBJAUT
GROUP BY OAOWN, OAGRPN, OAUSR, OATYPE, OAOBJA, OAANAM

In this particular case, we get some results that are rather more interesting than
our results with the program libraries.

OBJECT : APPUSER OWNER : APPOWNER
 LIBRARY : QSYS PRIMARY GROUP . . . : *NONE

 OBJECT LIST
 USER AUTHORITY MGT
 APPOWNER *ALL X
 APPUSER1 *USE
 APPUSER2 *USE
 APPUSER3 *USE

OWNER GROUP USER TYPE AUTH. OBJECT COUNT(*) LINE
 LIST AUTHORITY #
APPOWNER *PUBLIC *DTAARA *NONE *EXCLUDE 313 1
APPOWNER *PUBLIC *FILE *NONE *CHANGE 1 2
APPOWNER *PUBLIC *FILE *NONE *EXCLUDE 2,305 3
APPOWNER *PUBLIC *FILE *NONE *USE 2 4
APPOWNER *PUBLIC *FILE *NONE USER DEF 10 5
APPOWNER *PUBLIC *JOBD *NONE *USE 2 6
APPOWNER APPOWNER *GROUP *DTAARA *NONE *ALL 313 7
APPOWNER APPOWNER *GROUP *FILE APPREAD*ALL 2,307 8
APPOWNER APPOWNER *GROUP *FILE APPREAD USER DEF 11 9

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The first line of data indicates that we have 313 Data Area objects in our data
libraries, and that there is no public access allowed. We have no problems with
this.

The second line raises a flag. There is a file that anyone can change. We issue
another query

SELECT OALIB, OANAME, OATYPE FROM WORKLIB/OBJAUT WHERE (OAUSR=
'*PUBLIC') AND
(OAOBJA='*CHANGE') AND (OATYPE = '*FILE')

And we get

Now this is something that we want to add to our list of shortcomings!!

The next line (no. 3) tells us that 2,305 files have no public access. The next line
however shows us that there are 2 files with Public *USE access. For a file this
generally means read. We need to explore this. We change our SQL query
slightly

SELECT OALIB, OANAME , OATYPE FROM WORKLIB/OBJAUT WHERE (OAUSR=
'*PUBLIC')
AND (OAOBJA='*USE') AND (OATYPE = '*FILE')

and get the following results

This gives us more information for our final report, and then on to line 5. The
USER DEF object authority indicates that these objects have authorities that
don't fall into the standard definitions. So we change our query again…

SELECT OANAME, OAOPR, OAOMGT, OAEXS, OAREAD, OAADD, OAUPD,
OADLT FROM WORKLIB/OBJAUT WHERE (OAUSR= '*PUBLIC') AND (OAOBJA='USER
DEF')
AND (OATYPE = '*FILE')

LIBRARY OBJECT TYPE
SWCRLOD TIVPOX1 *FILE

LIBRARY OBJECT TYPE
SWCRLOD CONVEND *FILE
SWCRLOD GIMMIT *FILE

OBJECT OBJECT OBJECT OBJECT READ ADD UPDATE DELETE
 OPERATIONAL MANAGEMENT EXISTENCE
QIDCTP02 X
QIDCTP10 X
QIDCTP20 X
QIDCTP21 X
QIDCTP25 X
QIDCTP30 X
QIDCTP31 X
QIDCTP51 X
QIDCTP52 X
QIDCTP53 X

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

These files have been set up giving the world read access to them. The OS/400
standard *USE authority gives both READ access and OBJECT OPERATIONAL
access. The latter allows a user to look at the object's attributes.

In the event, this is incorrect and we can add this to our list of shortcomings.

Line 6 shows that a couple of Job Definitions exist, and the world has *USE
access. This is normal and in fact necessary. The next line that causes some
concern is line 9. We would investigate this discrepancy in the same manner as
we did for Line 5.

Check for Programs

You will remember that programs on the AS/400 can be setup so that they run in
the owner's profile. We want to ensure that there aren't any programs that can
run in the APPOWNER profile that we aren't aware of. Thankfully OS/400 has a
command that will list all programs that run in a particular user's profile

DSPPGMADP USRPRF(APPOWNER) OBJTYPE(*PGM) OUTPUT(*OUTFILE)
OUTFILE(WORKLIB/ADPTLIST)

and then running a SQL query against the result

SELECT COUNT(*),PALIB FROM WORKLIB/ADPTLST GROUP BY PALIB

giving us an unexpected result, and yet more entries in our list of shortcomings.

COUNT (*) LIBRARY
 22 GLCNVRT
 1,539 APPLIB1

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Conclusion

Applying system level security to iSeries heritage applications data is an viable,
and low cost approach to securing data. It dramatically reduces the probability of
data loss occurring, while still allowing the use of modern Decision Support tools
for adhoc data mining and data reduction.

The database centric nature of the iSeries computers provides some very
significant benefits for the developer trying to add system level security to
heritage applications, and for the auditor trying to verify the veracity of such
security.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Glossary

Since iSeries people have their own language, an English to iSeries dictionary is
probably in order.

When we say What we mean is
AS/400 iSeries (the hardware)
DB2/400 The database, We don't usually talk about it - it just

exists. It is the file system under OS/400.
DRDA Distributed Relation Database Access
File An object that usually contains a table, or a collection of

tables sharing a common table specification.
Library A single level directory; contains objects of any type

except Library (QSYS is a special case)
OS/400 the native operating system on the AS/400
QSYS∗ The high level library - think of root. or c:\. It is the only

library that can contain library objects.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

References

1. Flierman, Margaret. "Data Classification." 30 April 2001.
http://rr.sans.org/securitybasics/class.php (8 September 2002)

2. Sloan, Jim. "History of the TAA Tools."
URL: http://www.taatool.com/history.htm

3. Lansa, "Interview with Dr Frank Soltis, IBM AS/400 Chief Architect." LANSA
User & Technical Conference 2000. URL:
http://www.lansa.com/conference/2000_interview.htm (30 Aug 2002)

4. Walsh, Michael. "Some of the Dangers of Connecting your AS/400 to a
Network." 25 September 2001.
URL http://rr.sans.org/sysadmin/connect_AS400.php (30 Aug 2002)

5. Susani, Simi. " Brief Overview of AS/4000 Security Fundamentals" 13 April
2001. URL http://rr.sans.org/sysadmin/AS400.php (18 September 2002)

IBM Corporation, "Triggering automatic events in your database." iSeries DB2
Universal Database for iSeries Database Programming Version 5." URL:
http://publib.boulder.ibm.com/html/as400/v5r1/ic2924/info/dbp/rbafomst.pdf
(30 Aug 2002)

Welborn, Layton. "What About My AS/400? An Auditing How-To." 10 April 2001.
URL: http://rr.sans.org/audit/AS400.php (30 Aug 2002)

IBM Corporation. "AS/400 Internet Security: Protecting Your AS/400 from HARM
in the Internet."
 http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg244929.pdf (30 Aug 2002)

IBM Corporation. "An Implementation Guide for AS/400 Security and Auditing:
Including C2, Cryptography, Communications, and PC Connectivity"
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/gg244200.pdf (30 Aug 2002)

I IBM Corporation. :"IBM iSeries Information Center."
http://publib.boulder.ibm.com/html/as400/v5r1/ic2924/index.htm (30 Aug 2002)

BM Corporation. "I Series Security Reference V5."
http://publib.boulder.ibm.com/html/as400/v5r1/ic2924/books/c4153025.pdf (30
Aug 2002)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

IBM Corporation. "AS/400 Online library."
http://publib.boulder.ibm.com/pubs/html/as400/online/homeeng1.htm
 (30 Aug 2002)

