
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SSH, a practical guide to installation, configuration, and use.
GSEC Assignment version 1.4
Mark Sowerby
23 October 2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Table of Contents
SSH, a practical guide to installation, configuration, and use. 1

Abstract 3
Why Secure Shell? 3
Installation 4

What is needed 4
Notes on compilation 5
Zlib................................ 6
Openssl 7
Openssh 8

Starting SSHD 9
Configuration 12

sshd (Server) configuration 12
ListenAddress 12
PermitRootLogin 13
DenyUsers................................ 13
Protocol 13

SSH (client side) configuration 14
Host................................ 14
Protocol 14

Usage 14
Key Pairs (logging in without a password) 14
Port Forwarding 16

The Scenario 16
File Transfer 18
Other tricks 19

ssh-keygen 19
ssh-keyscan 19
Privilege separation 19
ssh-agent and ssh-add 20

Conclusion 20
References 21

Other references 21

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Abstract
Secure shell is more or less a drop in replacement for telnet, ftp, r exec, rlogin, rsh, rcp,
and performs secured communication and authentication across a network. Telnet, ftp,
rexec, rsh, rcp and ftp are all traditional methods for accessing a UNIX system via the
command line and are run over TCP/IP; so SSH is primarily a method to gain access UNIX
systems across a network. Secure shell (SSH) is actually a suite of programs, the main
parts being a client and a server program, ssh is the client, which is used to connect to the
sshd server. Clients exist for most platforms i ncluding Windows, Dos, Macintosh, Java and
of course UNIX in both free and commercial versions. SSH is especially useful when the
network is considered hostile, unknown or not under local control, although it is always a
good philosophy to assume the netwo rk infrastructure is not always friendly or benign.

This document aims to detail how to compile, install, configure and use Secure Shell. The
target audience of this document is any system administrator concerned about security, or
any user of a system w ishing to grasp how to use Secure Shell. Basic system
administration skills are assumed in the target audience, but not necessarily experience of
software compilation. The author also hopes to impart into the reader some security
awareness.

Why Secure Shell?
Secure shell authenticates (validates the identity of) both the client and server ends of a
“conversation” over an encrypted link by use of "keys,” the user is given the assurance
that the system they are typing their password on is the system they b elieve it to be. Users
can also be authenticated by this same method of using “keys,” or they can be
authenticated by the use of the usual username and password combination. There is also
support for strong 2 factor authentication (SecurID etc) where knowi ng the username and
password is only the first step of the process as a further piece of information is requested
from the user before they are considered authenticated. This authentication process
happens over a secured communications channel that is more resilient to eavesdropping,
and other attacks than telnet, rcp, rsh etc.

Access to a system can be restricted on a "per user" basis, and also on a "per host" basis.
This gives the administrator reasonable access control; specific hosts or even entire
subnets can be denied, so that even knowing the correct username and password
combination is insufficient to gain access, the connection must originate from a permitted
location; for example, this can be used to ensure that servers can only be administered
from the desktop systems used by the administration team. By preventing certain
accounts from “logging” in to the system, for example "oracle" or "informix" can be denied
direct network login to the system; this improves the security posture of a system, as it is a
quite easy matter to find out which applications are running on any particular system by
“port scanning” it, if Oracle is found to be running, it is a good guess that there is an
account called "oracle.” Knowing a valid account name on a system i s half the username /
password combination required for access.

Secure shell has the ability to “tunnel” traffic through its' connection, almost like a personal
point-to-point VPN, this means that the ability of secure shell to create an encrypted link
can be used to encrypt traffic that is normally in plain text. A document detailing how to
tunnel X through an SSH tunnel can be found at this location

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://rr.sans.org/encryption/x_tunnels.php . Specific information on tunnelling traffic
through an SSH tunnel1 can also be found here http://rr.sans.org/encryption/tunnels.php .

Note, “SSH” will be used to refer to either the secure shell protocol, or the secure shell
suite of programs, also “ssh” will be used to refer to the secure shell client program, “s shd”
will be used to refer to the ssh server (daemon).

Secure shell comes in two main versions, SSH1 and SSH2. SSH version 1 is becoming
deprecated as it has some known weaknesses 6. SSH Version 2 has more features,
enhancements and support for different a lgorithms. From a user perspective it operates in
the same manner. SSH2 supports RSA SecureID and Kerberos 5. SSH2 also has an sftp
command, which allows interactive transfer of files, in a style similar to ftp, SSH1 only had
an interface similar to rcp for transferring files.

Open SSH is the public domain counterpart to the commercial products. Secure shell is
available from www.openssh.org , and also commercially, from www.ssh.com4 or www.f-
secure.com. The document a t http://rr.sans.org/encryption/intro_SSH.php discusses the
differences between SSH1 and SSH2 and also has a description of how SSH actually
works2. Clients are available for many platforms, even java versions can be found,
http://www.employees.org/~satch/ssh/faq/ssh -faq-2.html lists where many of the free
clients can be obtained.

Note, secure shell is not a panacea, and there have been vulnerabilities found in most
versions. Restrict ing access to the secure shell "login" prompt is recommended if possible,
and always check that the version you are installing does not have any known
vulnerabilities (check vendor web sites, www.cert.org , etc).

Installation
Secure shell is normally shippe d as source code, which means that it will need to be
compiled to work on each specific system. For demonstrating installation, openssh will be
used on Linux running on x86 architecture, with the gnu compiler gcc due to their free
availability.

What is needed

Obtain the source code for zlib, openssl, and openssh. Zlib is utilised by openssh for its'
compression "features" and openssl is utilised for the cryptography routines; that way the
writers of openssh do not have to re -invent or rewrite “the wheel ” for the compression or
cryptography routines in openssh. Please refer to the licenses for each of these
components and keep in mind the credit deserved to the respective authors. Zlib and
openssl will need to be compiled and installed prior to compiling and installation of
openssh.

Openssh requires specific versions of zlib and openssl, as older versions may have
vulnerabilities in them or features found in the latest version may be required for openssh
to work. Which versions are required is detailed a t this link which is the openssh install
guide, ftp://ftp.ca.openbsd.org/pub/OpenBSD/OpenSSH/portable/INSTALL check the
versions of zlib and openssl are suitable for the openssh version obtained. The openssh
install guide also makes an excellent companion to these instructions. Root access to the
system is required to install these software components, but the binaries can actually be
compiled without requiring root access. Typically the download files have the suffix Z or gz

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

that indicates the compression method used on the files. Files with a gz suffix are
compressed using a program called gzip that may already be installed on a system, if not,
gzip need to be obtained from the link above, there are binaries for many systems
available. Files with a Z suffi x have typically been compressed by “compress” which is
standard on UNIX systems. There may also be some files noticed on the ftp servers with a
suffix of sig, these files contain a special signature unique to the file being downloaded, so
that when downlo ading the file, it can be checked that it is what it pertains to be. This is
beyond the scope of this document, but refer to man (1) md5sum for details of how to
verify the md5 signature of a file, or for gnu privacy guard signatures, see man (1) gpg.

Zlib can be downloaded from www.zlib.org and is distributed under liberal licensing, which
in brief allows zlib to be used for any purpose as long as you do not claim it to be your own
work.

Openssl can be downloaded from www.openssl.org and is distributed under openBSD 3
style of license.

Openssh can be downloaded from www.openssh.org/portable.html and is available under
the liberal openBSD 3 style of license.

Gcc can be obtained from gcc.gnu.org If Linux is the operating system being used, it will
generally have gcc installed, but if this is not the case gcc.gnu.org/install/binaries.html has
links to pre-compiled binaries for various popular operating systems. Installation of gcc is
beyond the scope of this document, refer to the instructions that ship w ith the particular
gcc package obtained. Ensure that gcc is in the search path preferably at the begining of
the path to ensure that the correct compiler is called, running the command gcc –v will
indicate that gcc is in the search path and also the gcc ve rsion. The compilation still might
fail if a minimal install of the operating system is on the system, as certain programs or
files required by the compilation process, such as nm or ar may not be part of a minimal
installation. Ensure that n m and ar are in the search path, by default on Solaris they reside
in /usr/ccs/bin.

Notes on compilation
A default compilation is usually adequate, but it may be desirable to change certain
aspects of the compilation, for example it may be necessary to install the programs in a
directory other than /usr/local where they are typically installed, some features of a
program may wish to be disabled or some features enabled that are not normally used. A
script that ships with the source code for each program, called “co nfigure” often controls
this compilation behaviour. Refer to the instructions that ship with each program for details,
but changing configuration options without understanding the impact, may lead to a
program that does not work correctly.

[jbloggs@sneezy jbloggs]$ gcc -v
Reading specs from /usr/lib/gcc -lib/i386-redhat-linux/2.96/specs
gcc version 2.96 20000731 (Red Hat Linux 7.3 2.96 -112)
[jbloggs@sneezy jbloggs]$ which gcc
/usr/bin/gcc
[jbloggs@sneezy jbloggs]$ which xauth
/usr/X11R6/bin/xauth

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

To compile anything o ther than the simplest program requires many steps to link all the
various components together, but a program called “make” does this (which also needs to
be in the search path) by reading instructions contained within the "Makefile." A program’s
author will ship a “Makefile” with the source code so that the correct sequence of steps is
carried out with the compilation. Explaining how “make” operates is beyond the scope of
this document (see “man (1) make” for details), but has been mentioned due to its’
importance to the compilation process.

Zlib
In the directory where the zlib source code has been downloaded, unpack and un -tar the
file. Running make && make install will compile and then copy the b inaries onto the
system in the directory /usr/local (/usr/local must already exist as a directory beforehand
otherwise the install will fail).

The screen dump above shows the compilation of zlib, at the bottom of the screen dump it
is shown that the file libz.a has been placed into /usr/local/lib. By examining /usr/local/lib
satisfactorily operation of the compilation can be verified, by locating the file libz.a.

[root@sneezy openssl-0.9.6g]# . /Configure --help
Usage: Configure [no -<cipher> ...] [-Dxxx] [-lxxx] [-Lxxx] [-fxxx] [-Kxxx] [rsaref] [no-
threads] [no-asm] [no-dso] [386] [--prefix=DIR] [--openssldir=OPENSSLDIR] [--test-
sanity] os/compiler[:flags]

[root@sneezy openssl -0.9.6g]# cd /tmp/ssh_install/zlib/ ; gunzip *z && tar xf *tar
[root@sneezy zlib]# make && make install
cc -O -c -o example.o example.c
cc -O -c -o adler32.o adler32.c
cc -O -c -o compress.o compress.c
cc -O -c -o crc32.o crc32.c
cc -O -c -o gzio.o gzio.c
*
*
*
cp libz.a /tmp/usr/local/lib
cd /usr/local/lib; chmod 755 libz.a
cd /usr/local/lib; if test -f libz.so.1.1.4; then \
 rm -f libz.so libz.so.1; \
 ln -s libz.so.1.1.4 libz.so; \
 ln -s libz.so.1.1.4 libz.so.1; \
 (ldconfig || true) >/dev/null 2>&1; \
fi
[root@sneezy zlib]#

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Openssl
Unpack and un -tar the source code gunzip -c openssl-0.9.6g.tar.gz | tar xf -. Which will
place the source code into a new directory. Change into this directory and execute the
script ./config , “config” is the name of the configuration script for openssl instead of the
usual name “configure.” Config will then build the system specific ma kefile. When “config”
has finished, running make && make install will compile and install openssl.

The above screen dump shows the compilation of openssl. At the bottom of the screen
dump libcrypto.a and libssl.a have been installed, these files are installed in /usr/local/lib
and also a program, openssl should be found in /usr/local/bin , there is also a directory,
/usr/local/ssl .

[root@sneezy ssh_install]# gunzip -c openssl -0.9.6g.tar.gz | tar xf -
[root@sneezy ssh_install]# ls
openssh-3.4p1.tar.gz openssl -0.9.6g openssl -0.9.6g.tar .gz zlib
[root@sneezy ssh_install]# cd openssl -0.9.6g
[root@sneezy openssl -0.9.6g]# ./config
Operating system: i686 -whatever -linux2
Configuring for linux -elf
Configuring for linux -elf
IsWindows=0
CC =gcc
CFLAG = -fPIC -DTHREADS -D_REENT RANT -DDSO_DLFCN -DHAVE_DLFCN_H -DL_ENDIAN
-DTERMIO -O3 -fomit -frame-pointer -m486 -Wall -DSHA1_ASM -DMD5_ASM -DRMD160_ASM
*
*
*
[root@sneezy openssl -0.9.6g]# make && make install
+ rm -f libcrypto.so.0
+ rm -f libcrypto.so
+ rm -f libcrypto.so.0.9.6
+ rm -f libssl.so.0
+ rm -f libssl.so
+ rm -f libssl.so.0.9.6
making all in crypto...
make[1]: Entering directory `/tmp/ssh_install/openssl -0.9.6g/crypto'
(echo "#ifndef MK1MF_BUILD"; \
echo ' /* auto -generated by crypto/Makefile.ssl for crypto/cversion.c */ '; \
echo ' #define CFLAGS "gcc -fPIC -DTHREADS -D_REENTRANT -DDSO_DLFCN -
DHAVE_DLFCN_H -DL_ENDIAN -DTERMIO -O3 -fomit -frame-pointer -m486 -Wall -DSHA1_ASM -
DMD5_ASM -DRMD160_ASM"'; \
echo ' #define PLATFORM "linux -elf"'; \
*
*
*
installing libcrypto.a
installing libssl.a
[root@sneezy openssl -0.9.6g]#

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Openssh
Unpack and un -tar the source code. gunzip –c openssh-3.4p1.tar.gz | tar xf - . That will
place the source code into a new directory. Change into this directory cd openssh-3.4p1
and then execute the configuration script ./configure that will build the system specific
makefile . By typing ./configure --help all the configuration option s available for the
compile via the configure script will be shown. These options are worth examining, as they
will be used for the example compile. The screen shot below shows, the "--with-md5-
passwords" argument being passed to the configure script, as the sample system does
make use md5 passwords. This is not common to most UNIXs so should not be used
unless it is certain the system uses MD5 passwords, some Linux systems do though use
MD5 passwords. The other arguments given to configure are for the “pr ivilege separation”
feature of SSH (--with-privsep-path=/usr/local/ssh --with-privsep-user=nobody), the
options used here for privilege separation should be suitable for most UNIXs. Privilege
separation is explained further on in this document. When the co nfigure script has
completed, running make && make install will compile and install openssh.

[root@sneezy ssh_install]# gunzip -c openssh-3.4p1.tar.gz | tar xf -
[root@sneezy ssh_install]# ls
openssh-3.4p1 openssh -3.4p1.tar.gz openssl -0.9.6g openssl -0.9.6g.tar.gz zlib
[root@sneezy ssh_install]# cd openssh-3.4p1
[root@sneezy openssh -3.4p1]# ./configure --with-md5-passwords --with-privsep-
path=/usr/local/ssh --with-privsep-user=nobody
checking for gcc... gcc
checking for C compiler default output... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
checking build system type... i686 -pc-linux-gnu
checking host system type... i686 -pc-linux-gnu
checking whether byte ordering is bigendian... no
checking how to run the C preprocessor... gcc -E
*
*
*
[root@sneezy openssh -3.4p1]# make && make install
*
*
*
id nobody || \
 echo "WARNING: Privilege separation user \"nobody\" does not exist"
uid=99(nobody) gid=99(nobody) groups=99(nobody)
[root@sneezy openssh -3.4p1]#

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SSH should now be compiled and successfully installed in /usr/local . In /usr/local/bin will
be the client programs, in /usr/local/sbin will be the server (sshd), in /usr/local/etc will be
the configuration files for SSH and also the server keys. The server keys enable SSH to
prove its’ identity (authenticate) to clients. The warning message at the end of the screen
dump above is harmless, this is just the code fro m the installation routines; the installation
script would "echo" to the screen the words "WARNING........." if the "id nobody" command
had failed, but the command was successful, the results of the “id nobody ” command are
the very last line of output from the installation routines "id=99(nobody) gid=99(nobody)
groups=99(nobody)." This can be demonstrated by typing id nobody || \
 echo "WARNING: Privilege separation user \"nobody\" does not exist" at the
command line.

Starting SSHD
To start sshd, th e daemon is simply executed on the command line /usr/local/sbin/sshd
and sshd will start up and bind (listen on) port 22. Sshd will take the configuration from the
file /usr/local/etc/sshd_config . A check that sshd is listening on port 22 can be made
"telnetting" to port 22 at address "localhost" which loops back to the local system; this is
shown in the text box below. A telnet session can be disconnected from an SSH server
(sshd) by just pressing "enter" a couple of times, which causes sshd to realise th at a
proper SSH client is not connected. The connection will then terminate with the message
"Protocol mismatch," but sshd will still be listening for client connections.
An SSH client connection can now be attempted, by typing ssh localhost , a password
prompt will be presented, and on entering the correct password interactive shell access
should be granted. Being permitted to log in to a system directly as “root,” is not
recommended, except at the console, this is explained later in the document, and also how
to prevent this behaviour of SSH.
It is recommended to add the directory /usr/local/man to the MANPATH variable, so that
the excellent manual pages that come with SSH are a vailable for perusal.

In the screen output above SSH warns about not be able to verify the authenticity of
"localhost" and prompts for user input before continuing to connect. This is what happens
when SSH connects to a system for the first time as SSH do es not hold a record of the
servers’ public key, once connected SSH will save a copy of the key. When subsequently

[root@sneezy tmp]# telnet localhost 22
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
SSH-1.99-OpenSSH_3.4p1

Protocol mismatch.
Connection closed by foreign host.
[root@sneezy tmp]# ssh localhost
The authenticity of host 'localhost (127.0.0.1)' can't be established.
RSA key fingerprint is 92:85:17:16:1f:65:91:b4:b4:07:e3:d6:ff:e7:43:f8.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'localhost' (RSA) to the list of known hosts.
root@localhost's password:
Last login: Tue Sep 10 15:22:44 2002 from sneezy
[root@sneezy root]#

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

connecting, SSH makes use of the saved public key to “cryptographically” validate the
identity of the server (the word "cryptographically" is used for want of a simple explanation
of the process).
When first connecting to a server through SSH, SSH cannot protect you from spoofing
attacks5 where an attackers system is "pretending" to be a friendly system; SSH does not
know if it is connecting to the correct system or not at this stage. The username and
password could be given away to the attacker.

Although SSH has been compiled and installed, sshd will not start automatically when the
system is started, the script below can be used to stop and start sshd on a system. This
script will need to be run every time your system boots, typically this will entail placing it in
an "rc" directory, for example /etc/rc3.d or /etc/rc5.d. Please consult the manual pages for
each specific system for details.

Both the SSH client (ssh) and the SSH server (sshd) have many configuration options,
which can be set from configuration files or on the command line, one useful option for de -
bugging SSH is to use the -v argument, which gives de -bugging (verbose) information as it
connects to the server. Below is the output from connecting to the SSH server on localhost
as above, but with the de -bugging information. This is useful when having problems, as a
better idea of which stage in the connection set -up the problem lies.

#!/bin/sh

OpenSSH start/stop script
Author M Sowerby
Arguments stop | start | restart

PREFIX=/usr/local
[-f ${PREFIX}/sbin/sshd] || exit 1

case "$1" in
 start)
 echo "Starting sshd"
 ${PREFIX}/sbin/sshd
 ;;
 stop)
 if [-f /var/run/sshd.pid]
 then
 echo "Shutting down sshd"
 PID= c̀at /var/run/sshd.pid`
 echo "on PID ${PID}"
 kill ${PID}
 else
 echo "cannot find the pid file for ssh"
 fi
 ;;
 restart)
 $0 stop
 $0 start
 ;;
 *)
 echo "Usage: sshd {start|stop|restart}"
 exit 1
esac

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[root@sneezy .ssh]# ssh -v localhost
OpenSSH_3.1p1, SSH protocols 1.5/2.0, OpenSSL 0x0090602f
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Applying options for *
debug1: Rhosts Authentication disabled, originating port will not be trusted.
debug1: restore_uid
debug1: ssh_connect: getuid 0 geteuid 0 anon 1
debug1: Connecting to localhost [127.0.0.1] port 22.
debug1: temporarily_use_uid: 0/0 (e=0)
debug1: restore_uid
debug1: temporarily_use_uid: 0/0 (e=0)
debug1: restore_uid
debug1: Connection established.
debug1: rea d PEM private key done: type DSA
debug1: read PEM private key done: type RSA
debug1: identity file /root/.ssh/identity type -1
debug1: identity file /root/.ssh/id_rsa type -1
debug1: identity file /root/.ssh/id_dsa type -1
debug1: Remote protocol version 1 .99, remote software version OpenSSH_3.1p1
debug1: match: OpenSSH_3.1p1 pat OpenSSH*
Enabling compatibility mode for protocol 2.0
debug1: Local version string SSH -2.0-OpenSSH_3.1p1
debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
debug1: kex : server ->client aes128 -cbc hmac -md5 none
debug1: kex: client ->server aes128 -cbc hmac -md5 none
debug1: SSH2_MSG_KEX_DH_GEX_REQUEST sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP
debug1: dh_gen_key: priv key bits set: 131/256
debug1: bits set: 1605/3191
debug1: SSH2_MSG_KEX_DH_GEX_INIT sent
debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY
The authenticity of host 'localhost (127.0.0.1)' can't be established.
RSA key fingerprint is 10:16:f7:11:92:99:43:fa:05:ee:51:31:33:bf:2b:6f.
Are you sure you want to continu e connecting (yes/no)? yes
Warning: Permanently added 'localhost' (RSA) to the list of known hosts.
debug1: bits set: 1605/3191
debug1: ssh_rsa_verify: signature correct
debug1: kex_derive_keys
debug1: newkeys: mode 1
debug1: SSH2_MSG_NEWKEYS sent
debug1: waiting for SSH2_MSG_NEWKEYS
debug1: newkeys: mode 0
debug1: SSH2_MSG_NEWKEYS received
debug1: done: ssh_kex2.
debug1: send SSH2_MSG_SERVICE_REQUEST
debug1: service_accept: ssh -userauth
debug1: got SSH2_MSG_SERVICE_ACCEPT
debug1: authentications that can c ontinue: publickey,password,keyboard -interactive
debug1: next auth method to try is publickey
debug1: try privkey: /root/.ssh/identity
debug1: try privkey: /root/.ssh/id_rsa
debug1: try privkey: /root/.ssh/id_dsa
debug1: next auth method to try is keyboard -interactive
debug1: authentications that can continue: publickey,password,keyboard -interactive
debug1: next auth method to try is password
root@localhost's password:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Configuration
The configuration of ssh or sshd, can be controlled through their relative configuration files
or through command line arguments. For example, the file /usr/local/etc/sshd_config
controls the configuration of sshd, for controlling which port sshd binds to, the keyword
"Port" is used within the file and by default is set to "22," as show below.

But if sshd is started with a command line argument of -p 6060 as shown below,
sshd will start up, but bind to port 6060 instead of port 22; the command line arguments
take precedence over configur ation file.

SSH client is configured via the file /usr/local/etc/ssh_config. The exact file names and
location vary from vendor to version etc, but the default compilation of openssh, installs the
configuration files into /usr/local/etc, so this will be used as a standard for the examples.
The configuration files for other distributions tend to be easy enough to find, the following
command will more than likely find the configuration files, which are named intuitively and
similar across the various flav ours.

sshd (Server) configuration

The sshd configuration file, is typical of UNIX configuration files, in that a comment begins
with a "#" hash. Each line in the file consists of a keyword and value (or value list) pair.
When the file is examined, it will be apparent that a lot of the configuration lines are
"commented out," this typically indicates the default behaviour of sshd, so examination of
the configuration file allows the default behavi our of sshd to be known. It is not the intent of
this document to reproduce the excellent manual page for sshd (man (8) sshd), but some
of the immediately useful configuration options will be detailed.

ListenAddress
This is the IP Address that sshd binds to. On a system with multiple IP addresses sshd
can bind to a particular address. This is particularly useful if there is a separate
management network, as sshd can be configured to only listen on the management
address and hence it can only be accessed f rom the management network. By default
sshd will bind to all the IP addresses that the system has, as indicated by the 0.0.0.0
address.

Port 22

/usr/local/sbin/sshd -p 6060

ls -al /etc/ssh* /usr/local/ssh* /usr/local/etc/ssh*

#ListenAddress 0.0.0.0
ListenAddress 192.168.123.123

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

PermitRootLogin
By default this is set to "yes" which will allow the system to be logged into directly as the
root user. This is not recommended, as there is no accountability; administrators should
always log in with their own personal account and then "su" to root, as there is actually a
record of who logged in to the system. See man (8) sshd for details of the further options
for this setting.

DenyUsers
This will prevent SSH "logins" to the accounts listed. Access to a system is normally
gained by knowing a username and password combination. By simply port scanning 9 a
system an attacker will probably be able to ascertain the applications a system is running,
for example "ingres." The attacker would then know that the system is highly likely to have
an account called "ingres" (and more than likely with a simple password, such as
“1ngres”). This gives an attacker half the information needed for access, without having
used any clever cracking techniques. By preventing th e "ingres" user from having direct
access, this type of attack is foiled. Group or shared accounts should not be used as they
tend to be neglected; no one individual has ownership of the account; passwords tend to
not be changed as often, and there is litt le audit trail. If log files are trawled at a later date,
it may be known that the "informix" user was logged in at the time that the database
stopped working, but this does not indicate the actual person who logged in. Making
people login with their own p ersonal account is always desirable.

Protocol
Weaknesses in the original SSH protocol triggered a re -write leading to SSH2; the original
protocol then became known as SSH1. By default sshd can fallback to SSH1 compatibility
mode and serve SSH1 clients. Th is is not recommended, as an attacker may exploit these
weaknesses in the SSH1 protocol (which lead to the development of SSH2). It is always a
good idea to disable unused features as protection will be obtained from any as yet
unknown vulnerabilities in t hose features (if it has not got it, it cannot go wrong).

#PermitRootLogin yes
PermitRootLogin no

DenyUsers oracle informix *@mailserver

#Protocol 2,1
Protocol 2

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SSH (client side) configuration
Little configuration tends to take place via the file /usr/local/etc/ssh_config as command
line arguments can be specified at the time of connecting to a system, and the defaults are
usually sufficient. The format of ssh_config is the same as sshd_config and some of the
keywords are the same.

Host

One useful directive is the Host keyword and its' corresponding value. The behaviour of
SSH client can be changed on a host to host basis, for example If there is a specific host
that is always connected to with a certain set of parameters, then this can be set in
ssh_config by surrounding the host specific arguments with the host keyword. For
example, there may be one system named "gateway" where X applications are tunnelled
back from, but it is not used on other systems, the configuration could be set -up thus:

Protocol
See sshd configuration above for a description of "protocol," the same reasoning applies to
the client that SSH version 1 has known weaknesses.

Usage
It has already been demonstrated how to connect to "localhost" using ssh, but to connect
to a remote system running sshd, ssh must be run, followed by the name of the system or
its' IP address i.e. ssh 192.168.123.10 .
If the username on the local system is "mark," but the account on the remote system is
"sowers," ssh would attempt to log on to the remote system as the local account name, ie
it will try to log on remotely as "mark." As there is no "mark" account on the remote system
the login would fail. Ssh gets around this problem by allowing the username to be specified
on the command line in one of two ways; either b y using the -l argument to ssh, or by
using user@hostname notation thus:

Key Pairs (logging in without a password)
SSH can be used to connect to a system, without usi ng password authentication by
generating a "key pair,” this is especially useful for automated or scripted tasks. There are
different types of key pair, like having different vendors for locks, but I will stick to RSA
keys for the purposes of explanation. This authentication method works by having a

Host gateway
ForwardX11 yes
Host *
ForwardX11 no

ssh -l sowers 192.168.123.10
ssh –l sowers gandalf
ssh sowers@192.168.123.10

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

“private key” and a “public key” that make up the key pair. A complex mathematical
relationship exists between the two keys that cannot (easily) be reverse engineered. The
private key is kept private, and on the system to login to without using a password, the
public key is placed, I.E. The private key could be kept local on a desktop system, and on
the remote systems a copy of the public key is placed. When a login to the remote system
is attempted, SSH tests th e mathematical relationship between the public and private keys
and will allow the owner of the correct private key to log in without having to ever see the
private key. The fact that the private key does not need leave the local system is one of
the strengths of this system.

To create a key pair, the command ssh-keygen is used with an argument of –t rsa that
instructs ssh -keygen to create RSA type keys.

Ssh-keygen will then write the keys to ~/.ssh/id_rsa for the private key and the public key
in ~/.ssh/id_rsa.pub. In the output above ssh -keygen requested a “passphrase,” a
passphrase can be used as protection for your private key as without a passphrase the
private key is protected only by the filesystem it resides on. For example, on a UNIX
system the root user would be able to read any private key, also if a home directory and
hence a private key is stored on an NFS mount, then the security of the private key
becomes more of an issue. If a system where ever compromised, then without passphrase
protection the private keys are immediately compromised, the attacker would be able to
access all the systems on the network where the corresponding public keys have been
copied, without even having to type a password.

Now that the key pair has been generate d, to login to a system without using password
authentication, the public key ~/.ssh/id_rsa.pub from the local system is appended into the
file ~/.ssh/authorized_keys (Note the American spelling) on the remote server. It is
important to make sure that the file system permissions on the authorized_keys file and
id_rsa file are such that they are only readable and writable by the owner, otherwise SSH
by default will not allow the authentication to succeed. The authorized_keys file can
contain more than one pu blic key, as it may be required to connect to a server from more
than one client, the public key for each client would need to be appended.

 [mark@sneezy mark] ssh-keygen -t rsa
Generating pub lic/private rsa key pair.
Enter file in which to save the key (/home/mark/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/mark/.ssh/id_rsa.
Your public key has been saved in /home/mark/.ssh/id_rsa.pub.
The key fingerprint is:
2c:5f:05:e4:57:f1:f1:86:71:c8:9b:b4:87:50:c0:bb jbloggs@local

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Port Forwarding
SSH can allow its encrypted link to be used to carry other connections, as well as the
interactive user session. If the display variable ($DISPLAY) is set before and ssh
connection to a remote system, then the remote display will automatically be “forwarded”
back to the local system through the encrypted tunnel. SSH achieves this by setting
$DISPLAY on the remote system to point to a special “display” which forwards the
connection back to the local $DISPLAY. SSH when forwarding X through the encrypted
tunnel also calls the xauth program to ensure that the remote program has the correct
authentication. See man (1) xauth for details of how xauth works.

Above is shown an example of how SSH can “forward ports.”

The Scenario
From a workstation (sneezy), it is required to use the web based administration tool on the
server grumpy, but port 8081 that it listens on is blocked by the firewall. SSH can be used
connect a local port on sneezy through the encrypted link to the administration port on the
grumpy.
The –L argument to ssh will “forward” the local port to the remote server; ssh –L
8081:localhost:80 81 means, on the local system port 8081 is taken through the tunnel
and connects to localhost, which is on the remote system on port 8081. This could also be
represented as ssh –L 8081:grumpy:8081 which in effect is the same, as when ssh
connects over to g rumpy, localhost on grumpy is grumpy.

When the command above is executed on sneezy and login is achieved on grumpy (as
user jbloggs), a web browser on sneezy can connect to port 8081 on sneezy and ssh will
forward the connection transparently to port 8 081 on grumpy. The command below when
executed on sneezy will connect to the web based admin interface on grumpy through the
encrypted tunnel.

[sneezy home] ssh –L 8081:localhost:8081 -l jbloggs grumpy

[sneezy home] /usr/local/netscape/netscape http://localhost:8081 &

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Above is shown a slightly different example of how SSH can be used to “forward ports. “
From the workstation sneezy, it is required to administer an application on bashful. The
application on bashful is configured via a web based interface listening on port 1996, but
unfortunately the firewall does not permit any external connections to bashful. SSH will
allow a local port on sneezy through the encrypted link to the administration port on the
bashful, even though the firewall denies direct connection to bashful.
As already shown, by using the –L argument ssh can “forward” a local port on sneezy,
through the link t o a remote server: ssh –L 8082:bashful:1996 means, on the workstation
(sneezy) port 8082 is taken through the tunnel and connects to bashful on port 1996. The
full command is shown in the box below, which on successful login to grumpy, will forward
the port over to bashful. As far as the firewall is concerned only a connection on port 22
from sneezy to grumpy is made, but SSH does some re -direction at each end of the
connection.

When the command above is executed on sneezy, and authentication is succe ssful a web
browser can be connected to sneezy on port 8082 and SSH will forward the connection
across to bashful on port 1996. Below is shown the command to execute on sneezy to
connect to the administrative web interface on bashful.

[sneezy home] ssh –L 8082:bashful:1996 -l jbloggs grumpy

[sneezy home] /usr/local/netscape/netscape http://localhost:8082 &

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

File Transfer
SSH can be used to transfer files via the same secured communications channel as the
interactive sessions. SSH1 has a remote copy interface for file transfers, whilst SSH2 also
has an interactive FTP style interface. For the remote copy interface, the command scp is
used and for the FTP interface, sftp is used. Examples are shown below for clarification.

The above example requests the file /home/sowers/web_server_log from grumpy to be
copied to the current directory. The user name sowers is used to login to grumpy. Note the
username@machine notation, where a colon (:) separates the machine name from the

path.

The above example is to copy the file /tmp/patches.tar.z from the local system (sneezy)
onto grumpy in the directory /tmp. The user “sowers” will be used to “login” to grumpy for

the copy.

Above is shown how to sftp to a system, the now familiar username@hostname notation is
used, and once the password for “sowers” has been entered an ftp style command prompt
appears, which enables commands such as ls to be run. Files retrieved using the usual get

[sneezy root]# scp sowers@grumpy:/home/sowers/web_server_log .

[sneezy root]# scp /tmp/patches.tar.z sowers@grum py:/tmp

[sneezy root]# sftp sowers@grumpy
grumpy >sftp sowers@atom
Connecting to grumpy...
sowers@grumpy's password:
sftp> ls
drwxr-x--x 7 sowers other 1024 Jul 5 11:06 .
drwxrwxr-x 6 root sys 512 Oct 31 200 1 ..
drwxr-xr-x 11 sowers other 512 Mar 9 2001 .dt
-rwxr-xr-x 1 sowers other 5111 Mar 9 2001 .dtprofile
drwx------ 2 sowers other 512 Mar 9 2001 .solregis
--rw------- 1 sowers other 49 Mar 9 2001 . Xauthority
-rw------- 1 sowers other 962 Jun 10 09:46 .sh_history
drwxr-x--x 3 sowers other 512 Apr 21 2001 .ssh2
-rw------- 1 sowers other 297 Nov 15 2001 dead.letter
-rw-rw-rw- 1 sowers other 94555 Mar 18 2002 clust_admin.pdf
drwxr-x--x 2 root other 512 Jul 5 13:50 openssh
sftp> ?
Available commands:
cd path Change remote directory to 'path'
lcd path Change local directory to 'path'
chgrp grp p ath Change group of file 'path' to 'grp'
chmod mode path Change permissions of file 'path' to 'mode'
chown own path Change owner of file 'path' to 'own'
help Display this help text
get remote-path [local-path] Download file
*
*

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

command or can be placed on the remote system using the put command. Refer to man
(1) scp and man (1) sftp for more details

Other tricks

ssh-keygen
Above has been detailed the “keys” which SSH utilizes to prove the identity of users or of
systems (authenticate them). The first time a connection is made to a system, SSH is
vulnerable to spoofing, as it does not have a record of the other systems’ key. In this
situation, SSH will prompt the user before cont inuing with the connection and will display
to the user the “fingerprint” of the remote systems key, to give the user a chance to make a
manual comparison. The fingerprint of a key is displayed when it is created, but it can also
be displayed by using the ssh-keygen command with an argument of –l ssh-keygen will
prompt the user for the name of the key they wish to fingerprint. There can still be a little
bit of a chicken and egg situation here, where access to the system is required to obtain
the fingerprin t, but perhaps secure distribution of the public keys, or fingerprints can be
part of the commissioning process of each system. Refer to man (1) ssh -keygen for
details.

ssh-keyscan
The command ssh -keyscan can be used to obtain the public key of a syste m, and has
been designed to facilitate the building of the known_hosts file Or known_hosts2 file for
SSH2 keys, where SSH stores the public keys of hosts. By obtaining the public keys of the
remote systems in this manner, the local system becomes less at r isk to spoofing attacks,
at it already has the public keys of the systems it is to connect to.

The command ssh -keyscan can be wrapped around with a script to obtain all the relevant
public keys; the keys can then be installed onto a system as part of the commissioning
process. Refer to man (1) ssh -keyscan for details.

Privilege separation
Privilege separation 7 was configured when SSH was compiled, and is designed to
enhance the security of sshd, and reduce the impact of any as yet undiscovered bugs in
the programming of sshd. With privilege separation, only the parts of sshd that are
required by necessity to have system privileges, have the system privileges, the rest of the
program runs as the lower privileged user nobody (nobody was the example used).
Privilege separation also tries to confine sshd to a directory (/usr/local/ssh in the example
used), so that if sshd were attacked, the attacker would be confined to the directory
/usr/local/ssh and as the low privilege user nobody. Privilege separation offe rs protection

[sneezy home] ssh-keygen –l
Enter file in which the key is (/root/.ssh/id_rsa): /usr/local/etc/ssh_host_rsa_key
1024 92:85:17:16:1f:65:91:b4:b4:07:e3:d6:ff:e7:43:f8
/usr/local/etc/ssh_host_rsa_key.pub

[sneezy .ssh] #ssh-keyscan -t rsa grumpy >> ./.known_hosts2
grumpy SSH-2.0-OpenSSH_3.4p1
[sneezy .ssh]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

against specific types of attacks 8, not against cryptographic attacks for example.

ssh-agent and ssh-add
Ssh-agent and ssh-add can be used in conjunction with each other at the start of an
interactive session to help manage SSH keys. This is extremely useful if the SSH keys are
passphrase protected, as the key only needs to be de -crypted once for the session, which
is as long as the agent remains running. The ssh -agent creates environmental variables
that are used by ssh when making a remote c onnection, so for ssh to inherit the variables,
it must be a descendant of ssh -agent. Ssh -add is used to add an “identity” into the control
of our ssh-agent. For example, ssh -agent is started, and then ssh -add would be executed,
for the agent to manage th e identity for the user mark. The steps taken are shown below
which should make the process clearer.

Above, ssh -agent has been started, and is given the argument of /usr/bin/ksh, ssh -agent
will therefore start a korn shell interactive session (as a chil d) and the environment that
ssh-agent has created can be viewed using the set command. To add an “identity” to the
agent, the ssh -add command is used, this makes ssh -agent hold the information from the
keys, so that when an ssh session is made to a remote system, a login can be made
without having to type the passphrase for the keys, or the password for the remote system.
The keys are protected, as they are still stored encrypted, they are just decrypted once for
the session.

The above example shows the default identity being added to the agent, and then being
listed by using ssh -agent –l, once the agent is managing the keys, ssh will automatically
be able to use the keys for logins. The process of starting up the agent and adding the
identities is best taken care of automatically within a users’ profile for example, the user
would then only be required to login, and then type the passphrase for the keys and the
agent would take care of the keys in the background. When the identities are added ssh -
add should be given an argument also of –t, which sets the lifetime of the identities. See
man (1) ssh-agent and man (1) ssh -add before using this feature.

Conclusion
As the world becomes more computer literate, more computer dependant, and more
connected to computers, attacks against systems will inevitably increase. A little effort
spent on security will reduce the risk this threat poses to systems. Freely available and
easy to use programs are becoming de -facto standards like Secure Shell, which when
used properly can improve the security posture of systems.

[sneezy home] # exec ssh-agent /usr/bin/ksh
[sneezy home]# set | grep SSH
SSH_AGENT_PID=8043
SSH_AUTH_SOCK=/tmp/ssh -UslT7974/agent.7974
[sneezy home]#

[sneezy home] # ssh-add
Enter passphrase for .ssh/id_rsa:
Identity add ed: .ssh/id_rsa .ssh/id_rsa)
atom #ssh -add -l
1024 d7:5b:67:52:c2:89:e5:9e:88:42:93:be:f8:a2:0f:1b .ssh/id_rsa (RSA)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

References
1. Dunston, Duane “Encrypted Tunnels using SSH and MindTerm. ” March 26 2001. URL:
http://rr.sans.org/encryption/tunnels.php

2. Zwamborn, Damian “An introduction to SSH Secure Shell ” May 15 2001 URL:
http://rr.sans.org/encryption/intro_SSH.php

3. Open Source Initiative “The Approved Licenses. ” 2002. URL:
http://www.opensour ce.org/licenses/index.php

4. Lewis, Shawn “A Discussion of SSH Secure Shell ” August 4 2001 URL:
http://rr.sans.org/encryption/SSH.php

5. Riser, Neil B “An Overview of some of the Current Spoofing T hreats” July 1, 2001 URL:
http://rr.sans.org/threats/spoofing.php

6. OpenBSD “openssh advisories” URL:
http://openssh.org/security.html

7. Provos, Niels “Privilege Separated OpenSSH” URL:
http://www.citi.umich.edu/u/provos/ssh/privsep.html

8. One, Aleph “Smashing The Stack For Fun And Profit” URL:
http://www.insecure.org/stf/smashstack.txt

9. Fyador “The Art of Port Scanning” 6 September 1997 URL:
http://www.insecure.org/nmap/nmap_doc.html

Other references
Carnegie Mellon Software Engineering Institute “CERT Coordination Center” URL:
http://www.cert.org

F-Secure Corporation “Securing the Mobile Enterprise” URL:
http://www.f-secure.com/

Free Software Foundation “GCC home page” 04 October 2002 URL:
http://gcc.gnu.org/

Gailly, Jean-Loup “Zlib home page” URL:
http://www.gzip.org/zlib/

Linux Online Inc “Lin ux Online” URL:
http://www.linux.org/

Netscape Communications “Netscape 7 Web Browser” URL:
 http://channels.netscape.com/ns/browsers/download.jsp

OpenBSD “the main OpenSS H page” URL:
http://www.openssh.org/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SSH Communications Security “SSH Communications Security” URL:
http://www.ssh.com/

Engelschall, Ralph S “Welcome to the OpenSSL Project” UR L:
www.openssl.org

OpenBSD “Portable OpenSSH” 14 October 2002 URL:
http://www.openssh.org/portable.html

