
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 1

A Practical Guide for Secure
Software Development and Quality Assurance
Jong C. Hong
Sept. 11, 2002
GSEC Practical v1.4 option 1

Abstract – Today software is everywhere – cellular phone, home PC, enterprise
applications, networking device, firewall, and e-commerce just to name a few. As
the software industry grows so does the risk of an incident with software security.
Its effect can be global in scope and the loss can be monetary or even human
life. All because of the defective software, cracker, weekend warrior and script
kiddies alike are using automated hacking tools 1 ready to do harm for fun or
recognition, corporate espionage steals intellectual property for profit gain and
terrorist can attack the infrastructure of a nation as a whole 2. And yet the
software vendors remain defiant and are producing defective products every
business day. To reduce the risk that we all are bearing, managers at all levels of
a software company should fully realize the seriousness of making insecure
software and therefore institute proper policy to minimize future incidents.
Software developers should raise their awareness of security issues during the
development process and produce security-proof software.

There are already many articles talking about secure software 3 4 and it is not the
intention of this paper to be Yet Another Secure Software (YASS). However, it
appears to the author that a majority of today’s software developers still have a
perception gap between programming and security. To bridge this gap, this
paper tries to give developers a reality check with the latest security incidents
while discussing secure software in principle based on the author’s experience
as a software practitioner. It also intends to serve as a placeholder for readers
who are searching for materials and knowledge for developing secure software.

This paper assumes the reader has some knowledge of operating systems,
software and security in general. Its audience can be a manager, system
architect, security consultant, or programmer. It begins with analyzing existing
issues within the software industry in terms of security and identifying typical
defects and security attacks. The concept of risk assessment is then introduced
to provide a way of thinking for developing software with security perspective.
Lastly, guidelines for implementing secure software are discussed along with
software development life cycle.

Software Security – As software grows as a big business, a brand new software
security industry is arising. If you search “software security” with an Internet
search engine you will be amazed at the number of pages talking about it.
Generally speaking software security deals with confidentiality, integrity and
availability aspects of a software product. Before discussing software security it
will be helpful to take a look at what has made software security become a
business.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

• Software has become more complex and difficult to manage. Quoted from LA

Times "Intel employs more than 5000 tech supporters. Much of this is due to
software complexity, program bugs, and poor quality in software
programming. These all add up to an immense burden on the economy" 5.
This is the major reason why there are so many holes created in the process
of making software products.

• More and more valuable information is carried via network software. Internet,

Intranet and Extranet all are part of modern business. Any unintended
mistake creates a chance for information leakage.

• Pressure from tight schedules and budgets often compromise security issues.

Management is often shortsighted about the potential penalty of creating
insecure software.

• Lack of governmental standard and auditing agency. NIST Computer Security

Division (CSD) 6 has taken the lead to address this issue. It provides several
guidelines and publications for governmental and private businesses to follow
for security concerns. Also the health care industry now has its own HIPAA 7
initiative to deal with security issues.

• Legacy of a closed system mentality creates a closed-door policy. An open

source platform is much more secure than a close system because anyone
can see the insides of an open system and security holes get spotted and
fixed quickly. Not so for a close system.

• None or minimum monetary responsibility for creating a defective product.

Future legislation can give a wake-up call to all software companies.

• Revision, service pack, and hot fix become publicly acceptable behavior and

ironically they are even rewarded as moneymakers.

• The development community lacks the awareness of security issues (i.e.

exploit and abuse). Most programmers probably have no idea that a software
crash can lead to a possible exploitation. Or a crafted message can let a
hacker take control of the entire system.

Software Defects – The bug list of Microsoft W2K SP2 8 gives us a glance of
some possible sources of software defects. To choose this list as an example
does not qualify other systems as better products but just its availability. It helps
to place a real face on software bugs in terms of security so that programmers
can better recognize them in their own programming life and hopefully avoid
making the same mistakes. We are going to cluster and examine some of these
representative bugs.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

1. Design Flaw – missing security requirements or functionality that designers
did not recognize their importance or did not plan for them in advance. This is
the most profound mistake and takes a longer cycle to fix. Usually it is
something that has impact on the entire system or a subsystem.

• Q258872 – “Error Code 1350 Applying SetFileSecurity() to COMx”.

-> It will no allow set security on COMx. Quite often a newly added
feature, in this case the security, is incompatible or missing for the older
system, which still need to be supported. If security had been considered
when the original system was designed, it would be much easier for
adapting later.

• Q262979 – “Cannot Renew Verisign Certificates in IIS 5.0”.

-> It only recognizes PKCS#7 but not PKCS#10. The original design did
not make room in advance for adapting future technology or standard.

• Q269239 – “Vulnerability May Cause Duplicate Name on the Network

Conflicts”, “The NetBIOS over TCP/IP (NBT) protocols are, by design,
unauthenticated and therefore vulnerable to "spoofing." “

-> A protocol without capability for authentication makes spoofing
possible. Why not enable protocols to be authenticable during design
phase even you don’t need to implement immediately.

• Q266794 – “Windows 2000 SNMP Registry Entries Are Saved in Plain

Text Format and Are Readable”.

-> Somehow designer has to think like a hacker. SNMP is designed for
network administrators but hackers also can use it for malicious act.

2. Logic Fault – In your mind you think it makes sense but actually it doesn’t and
consequently creates a potential security hole. This fault takes all sorts of
shapes and forms. It can be a mistaken logic, timing issue 9, or memory leak
etc.

• Q262539 – “Memory Leak in Lsass.exe with Large Built-in Groups”

-> Forgot to release memory when it is no longer in use and it can be
targeted for a deny of service attack.

• Q263603 – “Incorrect Behavior in Winlogon for First-Time User with "Must

Change Password on First Logon" Setting”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

• Q263743 – “RasDisable and RasForce WinLogon Policies Can Be
Bypassed” – “The code to expand the dialog box does not check the
settings for RasDisable or RasForce before enabling the check box”

-> Both are possibly caused by mistaken logic for some boundary cases.
Mistaken logic can create possible exploitation limited only by a hacker’s
imagination.

• Q289166 – “Race Condition Occurs and Autochk.exe Stops Responding

During Restart”

-> A race condition can create a small window for exploitation such as
illegal file accesses or produce unpredictable system behavior. It is more
difficult to trace if it is between software and hardware interface due to its
tiny window.

3. Incomplete Data Coverage – it is a kind of logic fault but significant enough to

be a separate category. It is that something you know you should do with the
data but you didn’t. Either you think it is a case that will never happen, or you
promise that you will do it later when you have time, or you assume
somebody else will do it. The later one typically involves an interface issue.

• Q286132 – “does not correctly handle a particular series of data packets

and cause blue screen.”

• Q278499 - “This vulnerability, known as Cross-Site Scripting (CSS),

results when web applications don’t properly validate inputs before using
them in dynamic web pages.”

• Q267843 - “Windows 2000 Telnet Server Stops Responding After Binary

Input”

• Q274835 – “Buffer Overflow in Network Monitor May Cause Vulnerability”

-> All the above are candidates for deny of service attack.

4. Others - simple typo that generates unintended code; compiler generates

erroneous code; integrates with faulty library functions or mis-configuration.

Types of Attack – There are plenty of web sites that discuss security breach
methods 10 11. Here we will not get into detail but collect links for some typical
attacks for the reader’s further study. The purpose is to provide background
information for later discussion and also let the reader familiarize themselves with
terminology and typical hacking schemes. Most links also provide an associated
incident for understanding the nature of the attack.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

• Deny Of Service attack (DOS) -
http://www.cert.org/tech_tips/denial_of_service.html

• Distributed Deny Of Service attack (DDOS) -
http://www.cisco.com/warp/public/707/newsflash.html

• Malicious Code attack -

• Trojan horse - http://www.cert.org/advisories/CA-1999-02.html
• Virus - http://www.pcworld.com/features/article/0,aid,31002,00.asp

• Sniffing (Eavesdropping) - http://www.robertgraham.com/pubs/sniffing-
faq.html

• Spoofing - http://www.itsecurity.com/papers/articsoft9.htm

• Privilege Escalation -

http://www.windowsitsecurity.com/Articles/Index.cfm?ArticleID=9195

• Cryptanalytic (Brutal force) attack (e.g. password) –

http://www.rsasecurity.com/rsalabs/faq/2-4-2.html

• Session Hijacking - http://www.owasp.org/asac/auth-session/hijack.shtml

Risk Assessment – When your customers purchase insecure software from
your company, they risk revenue loss, lost productivity, liability costs, and brand
damage 12. All that can become your liability. On the other hand, you know
software development is a daunting task and requires resources, which seems to
always reach a limit. All in all there is no absolute secure software! So ultimately
you have to ask at what cost to achieve what level of security? To help to answer
the question, Tim Bass and Roger Robichaux’s paper suggests doing risk
analysis by evaluating three security risk elements - criticality, threat and
vulnerability, with a Risk-Qualifying Matrix 13. Although the paper is meant for
general IT security, the principle can be applied here for risk assessment on
producing secure software. Basically you have to know –

• Where are the critical components in your system? For example, the user

password or system configuration file is a critical asset; a random number
generator referenced by 20 other modules is definitely crucial to the system.

• What are the threads to these components? Internet exposure or

untrustworthy user access is certainly a potential thread.

• What and how components are vulnerable to the thread? A component that

accepts user input data is vulnerable to buffer overflow exploitation. The
component allowed to change privilege is a target for privilege escalation.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

At the end of exercising the risk assessment you should be able to arrive at the
most cost-effective development process that fits your business. In other word,
with given resources (people, budge and time), you should be able to prioritize
your resource allocation based on projected risk factors.

Guideline for Secure Software – Software development is in a cycle. For each
stage of the software development, implementers should examine every aspect
of security issues. Note that it requires a sound plan and discipline to produce
secure software, as we will discuss in this section.

Functional spec – this phase creates a blueprint that specifies what services the
software will provide 14. It is the contract between developers and their clients.
The author of this document should make security a requirement and request a
definite plan to implement and verify it during entire development cycle.

• It should evaluate the necessity of security features for the system – such as

secure link between nodes, system-wide key management etc.

• It should detail possibilities of abuse of the system – database tampering,
deny of service, spoofing, or brutal force attack etc.

• It should specify countermeasure along with recovery scheme.

High-level design – this phase specifying the overall software architecture and
breaking downs the system into subsystem modules using a software design
methodology, either Object-Oriented Design 15 or a traditional Structured Design
approach by Yourdon 16. You should always consider using design methodology
with your project. “The availability of significant measures in the early phases of
the software development life-cycle allows for better management of the later
phases, and more effective quality assessment when quality can be more easily
affected by preventive or corrective actions.” 17
The following list provides some guidelines during high-level design phase within
the security domain.

• Design in security – always keep security in mind and ask questions
regarding Confidentiality, Availability and Integrity, such as where is the
vulnerability? Where should data be encrypted? How users should be
authenticated? Where and how system can be exploited? When you draw
a security perimeter, don’t forget a perpetrator can be either an outsider or
an insider.

• Defense in depth – install security gates at multi-layer with multi-tier. It

could be from applications to OS and from user interface to database
access. It is based on the concept of deterrence instead of a single
knockout.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

• Accurate protocol - note that poor design leads to security holes. The
TCP/IP stack is not secure by design 18 because of lack of authentication.
The 802.11 WLAN protocol is not secure 19 due to several known
vulnerability. Traditionally performance and functionality is the centerpiece
of the protocol design and nowadays security should be on the design list.

• Completeness - cover up all the holes as much as possible: e.g. there are

6 TCP flag bits so how many cases do you actually consider? If possible
verifying your design with simulation or fast-prototype before putting it in
action.

• Traceability - logging is your final defense in detection and recovery. If

every security measure failed you want to know what did go wrong and
how to fix it. But beware the possible exploitation on the log itself. Log
information has to be concise and sufficient.

• Strongest password - installs strongest password policy and enforces it.

For a cracker there are tools ready for brutal force cracking and why
should you let them have the easy way?

• Weakest link - know where your weakest link is. Usually it is not as

obvious as hash algorithm, but as simple as where and how your key is
stored.

• Default case - default to a case not because it is the most common one

but because it is the most security one. For example, set router default
configuration to no remote management is allowed as oppose to
worldwide accessible.

• Encryption - use the strongest encryption algorithm available.

• Paranoid is virtue - pay attention to every little thing. When backing up or

restoring the key do you require a password?

• Legal banner – place a legal banner on login screen to deter intruders.
Consult legal counsel for the content of the legal banner.

• Security API - examine and harden security features of the underlying

platform. Whether it is OS, database or any other subsystems you build
upon, make sure you understand its API of security features and use them
properly. For instance, if you build your application on top of Windows you
should know the right way to set security or control access levels 20.

Low-level design – with this phase, the internal logic and data of each of the
internal processes is defined. The deliverable results in a low-level design
document will be the guidebook for the programmer.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

• Clear interface – try to define clean interface between modules. Confusion
does create mistakes. People tend to be reluctant to change their code once
it is done, which can lead to sloppy modifications. It usually takes more effort
to modify code than to make it right in the first place.

• Memory management – memory is a limited resource and can be

exploited. Design a graceful recovery from memory exhaustion. Beware of
memory leaks and provide a way to detect them. Always consider where
to release it at the time you allocate it.

• Random number generation (RNG) – the goal is to make it unpredictable.

There are several sites for RNG and testing21 22. Carefully select one and
make it available to every module that needs it. Generally speaking,
hardware based RNG (i.e. Intel 810) is better than software based RNG.

• Debugging tool – well designed system-wide debugging tools can alleviate

team members’ debugging effort and improve quality of code. Such as
memory usage monitor, or event log.

• Input validation – require that all user input is checked and double-

checked.

Coding and Unit testing – with this phase, module definition of low-level design is
converted into computer executable code with chosen programming language.
Each individual programmer himself tests the executable code against potential
errors. Note coding is only half the task and the other half is to make sure of its
correctness. Here are some needs to pay attention to.

• Top-down coding, bottom-up testing - by that it means that starting your
coding from a broader view and don’t let the nitty gritty bog you down at
the very beginning of your coding task. And testing your code starts from
smallest module as you can.

• Border case - be careful for border checking and corner case handling.

What is your assumption? And can your assumption stand in the real
world? Above all be sure to add assertions (exception handling) for any
potential corner case concerns.

• Dangling pointers - a reference that doesn't lead to anywhere. This

happens because it formerly pointed to something that has moved or
disappeared. It is a very subtle programming bug and is very difficult to
isolate. In the C world, in order to avoid this bug, always set a pointer to 0,
when delete is called. Subsequent attempts to use the pointer will result in
a run-time exception. This will immediately allow the bug to be identified
and fixed. In the C++ world a smart pointer is the way to go. 23 24

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

• Buffer overflow exploitation – Statistics show that the majority of today’s

security breaches originate from buffer overflow exploitation. Technically it
is caused by a lack of bounds checking on data buffers. Programmers
need to fully understand how it works and how it is exploited. 25

• Data type conversion – It is done by either casting to force the compiler to

use a different data type, or by implicit conversion rules. Be careful of the
side effect of data type conversion. These are two security advisories
regarding data type conversion 26 27.

• Race condition – More than one process is allowed when competing for

the same resource. You need to either serialize the access or avoid it
altogether. Otherwise, unexpected consequences will occur and can be
exploitable28.

• Code review – Before checking in source code it should be reviewed by a

team to verify the correctness of the code and to identify possible security
vulnerabilities. The reviewee should understand that defects are normal
even for the most skilled programmer - don’t be unreasonably defensive.
The reviewers should make an effort to study the code before attending
the session – ask intelligent questions.

• Documentation – good documentation prevents misunderstanding and

improves code quality and maintainability.

Integration – with this phase all source codes are combined and tested as a
whole system.

• Source code control - Use the source code control tool to automate the
integration process and version control. It helps to reduce human error
and makes it easier to trace.

• Code check-in - Can your integration process be tampered? Make

controllable check in so you know who checked in what. Code should be
protected by signature.

• Third party code - Is your third party code secure? How trustworthy is

your third party code? Your third party code can come from any source
including your enemy. Be ware that today’s software comes from every
corner on earth.

Quality Assurance – a process to validate software product for required
functionality, standard and quality. Here is an official site that provides
information on QA - http://satc.gsfc.nasa.gov/fi/fipage.html. I will add the
following.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

• Testing tools - Beside your own test tools, there are free hacking tool kits

out there for you to test your software. However you have to be very
careful about the source of your free software.

• Penetration test – do your own penetration test, a controlled network

attack simulation. It identifies specific exploitable vulnerabilities and risks
within your software.

• Regression test - You might fix a bug but create 10 others 29. Give time

toward testing your patch before releasing it. It is a double jeopardy to
make double fouls.

Software Release – the software is released to general public.

• Default configurations - always set default configuration with secure concern.

This one is on the top of SANS/FBI’s “The Twenty Most Critical
Internet Security Vulnerabilities List” 30.

• Code tampering – be ware someone will tamper with your distribution code.

Conclusion – Information warfare is like an arms race that constantly escalated
by opposing party. Computer technology and malicious threat are changing every
day. A company can only survive by sensing the need from its customer. Security
is definitely on the top of the requirement list of your clients for the years to come.
Therefore educate your people to be secure minded.

Yes, by the way, be sure your software development environment is secure!
Somebody might be watching your work.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

1 Hacking Tools Links - hackingexposed.com - URL:
http://www.hackingexposed.com/tools/tools.html

2 Vamosi, Robert. “Cyberterrorists don't care about your PC”,
ZDNet Reviews, July 10, 2002, 4:35 AM PT, URL: http://zdnet.com.com/2100-1107-942701

3 Stokely, Murray. “Chapter 3 Secure Programming”, FreeBSD Developers' Handbook, URL:
http://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook/secure.html

4 Wheeler, David A. “Secure Programming for Linux and Unix HOWTO”, v2.966, 13 July 2002
URL: http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html

5 Cochran, Shannon. “The Rising Costs of Software Complexity”, Dr. Dobb's Journal April 2001,
URL: http://www.ddj.com/documents/s=868/ddj0104n/0104n.htm

6 NIST Computer Security Division, URL: http://csrc.nist.gov/

7 The Health Insurance Portability and Accountability Act of 1996 (HIPAA), URL:
http://cms.hhs.gov/hipaa/

8 List of Bugs Fixed in Windows 2000 Service Pack 2 (1 of 4), URL:
http://support.microsoft.com/default.aspx?scid=KB;EN-US;Q282522&

9 Stokely, Murray. “Chapter 3 Secure Programming 3.7 Race Conditions”, FreeBSD Developers'
Handbook, URL:
http://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook/secure-race-
conditions.html

10 “… Learning About Security Breach Methods”, Saturday 24 Aug, 2002, Broadband-Help, URL:
http://www.broadband-help.com/cm_security.asp#3

11 “The Open Web Application Security Project”, URL: http://www.owasp.org/asac/

12 DASH, JULEKHA, “Eli Lilly cites programming error for e-mail privacy gaffe”, JULY 05, 2000,
ComputerWorld, URL:
 http://www.computerworld.com/securitytopics/security/privacy/story/0,10801,61934,00.html

13 Bass, Tim & Robichaux, Roger. “DEFENSE-IN-DEPTH REVISITED: QUALITATIVE RISK
ANALYSIS METHODOLOGY FOR COMPLEX NETWORK-CENTRIC OPERATIONS”, URL:
 http://www.silkroad.com/papers/pdf/00985765.pdf

14 “CSE 476/486 - Senior Capstone Design Functional Specification Guidelines”,
 http://www.cet.nau.edu/~edo/Classes/CSE486_WWW/Docs/Guidelines/fn_spec_gdlns.html

15 Graham, Ian. & Wills, Alan. “ULM Tutorial”, URL: http://uml.tutorials.trireme.com/

16 Yourdon, E. & Constantine, L.L. “Structured Design”. Englewood Cliffs, NJ: Prentice Hall, 1979

17 Lionel C. Briand, Sandro Morasca, Victor R. Basili, “Defining and Validating Measures for
Object-Based High-Level Design”, URL: http://citeseer.nj.nec.com/514589.html

18 Bellovin S.M. “Security Problems in the TCP/IP Protocol Suite”, URL:
 http://www.ja.net/CERT/Bellovin/TCP-IP_Security_Problems.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

19 Karygiannis,Tom & Owens, Les. “Wireless Network Security 802.11, Bluetooth™ and
Handheld Devices” NIST Special Publication 800-48, URL:
 http://csrc.nist.gov/publications/drafts/draft-sp800-48.pdf

20 Articles about Writing Secure Code with Windows, URL:
http://www.windowsitsecurity.com/Articles/Index.cfm?DepartmentID=753

21 “A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER
GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS”, URL:
http://csrc.nist.gov/rng/SP800-22b.pd

22 Seifried, Kurt. “Why Random Numbers Are Important For Security”, January 26, 2000
URL:http://www.seifried.org/security/cryptography/20000126-random-numbers.html

23 http://ootips.org/yonat/4dev/smart-pointers.html
24
http://portal.acm.org/citation.cfm?id=176454.176504&coll=portal&dl=ACM&idx=J513&part=journal&W
antType=Journals&title=LOPLAS
25 http://nsfsecurity.pr.erau.edu/bom/

26 Starzetz, Paul. “Quick Analyses of the recent crc32 ssh(d) bug”, URL:
 http://reactor-core.org/security/integer-overflow.html

27 “Microsoft Security Bulletin (MS99-045)”, URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/fq99-045.asp

28 http://razor.bindview.com/publish/advisories/adv_chfn.html

29 Thomas, Lillian. “911 system failure tied to computer programming error” Wednesday, May 01,
2002, Post-Gazette
http://www.post-gazette.com/localnews/20020501911out5.asp

30 The SANS Institute, Version 2.504 May 2, 2002. URL: http://www.sans.org/top20.htm

