
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Web Application Security for managers
GSEC Practical Assignment Version 1.4, option 1

Pierre de la Brassinne
August 24, 2002

Abstract1
As a manager, part of your job is to plan and prioritize tasks and to control the work
done. To plan and prioritize tasks, you need to have a global overview of all issues.
To control the work done, you need a basic understanding of the subject.

The first part of the article intends to convince the reader that web application
security matters. This may not be obvious to all managers. They sometimes believe
that a firewall and the use of the SSL protocol are enough to secure a web
application. The second part of the article surveys some of the potential problems
and discusses solutions. We will look at issues like data manipulation, input
validation, SQL query poisoning, session hijacking, and some others. The article
ends with a summary of the recommendations.

Why does web application security matter?2
It is still quite often heard from managers that there is no reason to invest more in
security since the company is protected by a great firewall and the web application
uses SSL. For sure, firewalls are great tools and help a lot to secure your
applications. But they are only one element of the security chain. They protect the
network. They filter network traffic. But they do not help to detect if an intrusion
occurred and they can also be bypassed. Just like in a house, security involves
more than locking doors: usually, there is an alarm system and a fire-resistant safe
for example. Computer security is not different. You need a firewall to protect your
network. But, you also need (among others), ways to detect intrusions (the alarm
system), protection around the computer and around the application running on that
computer (the safe).

On the one hand, firewalls can prevent hackers from accessing machines or
services (programs running on a machine) without authorization. But, by definition, a
web application must be accessible from the internet. Otherwise, nobody can use
the application! Usually, system administrators restrict network access to a
minimum: allowing only web traffic (http) to the web server trough the http port 80.
When hackers encounter such a configuration, they do not have much choice. They
can only use the http protocol to connect to your site, so they must use http. They
only have access to your web server, so they can try to find weaknesses in your web
server configuration or in the web server itself if it is not properly patched. They only
have access to the applications running on the web server, so they can try to exploit
weaknesses in the application. As you can guess, and as the article will show, there
are potential weaknesses in web applications. Since hackers usually have no other
choice, exploiting web applications vulnerabilities becomes more and more popular.
This is the primary reason why investing in protecting web applications is important.

On the other hand, SSL is a protocol that encrypts the communication between the
browser and the web server. When using SSL, somebody able to listen to the
communication between the client (the browser) and the server cannot understand

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

the dialog because the channel is encrypted. But, on each end of channel, the
information must be decrypted and is stored in clear at some point in time. It is
therefore possible for a user of the client machine to edit specific data before it is
sent to the server. As we will see later, there are ways to attack unprotected web
applications using that technique. SSL does not help to prevent such attacks.

To summarize. It is very important to consider web application security because
The firewall does not help. By definition, http traffic must be allowed to go through •
the firewall. Otherwise no web application is possible. (For more information on
what firewalls cannot prevent, see [21])
SSL does not help either.•
People don’t usually think about securing web applications•
Usually web sites are protected by well configured firewalls and attacking your •
web application might be one of the only ways for a hacker to get in.

Overview of problems and their solutions3
For those not too familiar with the http protocol, figures 1 & 2 (in the appendix)
describe the way a browser interacts with a web server.

"Do not trust client-side data!" [2]3.1

Data manipulation3.1.1
Data is passed between the browser and the server either in the URL itself, in
hidden fields contained in forms or in cookies. Since URLs and hidden fields values
are hard-coded in the HTML source code, they are very easy to modify. An attacker
simply uses the "display source" option of the browser and modifies the source.
Modifying cookies is a bit more complex but still feasible. There are two types of
cookies: persistent and non persistent. Persistent cookies are stored on disk and
can be easily modified. Non persistent cookies are stored in memory only. This
makes them a little harder to modify but there are tools available.

"Here is a real world example on a travel web site: the information stored on the
client (in this case in a cookie) was the following: lang=en-us; admin=no; y=1;
time=10:30GMT. No need to have a lot of hacking experience to imagine that if you
replace admin=no with admin=yes, you will get a few more privileges on the
system!"[1] p.68.

But data is not the only information coming from the browser. As part of the http
protocol, a browser must send additional information (that the user does not see) to
the web server in a so-called http header. One field of the http header is the “referer”
field. This field contains the URL of the web page from which the request originated.
To avoid the previously mentioned problem "(attackers saving web pages, modifying
forms, and posting them off their own computer), some web sites check the 'referer'
field in order to make sure the request originated from a page generated by
them"[1] p.70. Even though every browser on the market fills the http header with the
right values, there is no way to guarantee that the request originates from a browser.
Anybody could write a program of its own, or use an http proxy, that connects to your
web server, follows the http protocol rules but modifies the “referer” field value to
make it look like it came from the original site. This example shows that you should

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

never trust any information coming from the client, including the http header. (See
[16] or [1] p.70 for more information on the "referer" field).

Solutions to data manipulation
Never store critical information (prices for example) on the client. Always store•
critical data on the server. Storing user preferences on the client is OK. Storing
the ‘admin=yes/no’ as in the example above, is not acceptable. To be able to
store data on the server, you need a “session mechanism” to associate data with
a particular user of the application (not all users might have the same price for an
article). The session mechanism is described later in the article.
Never validate data client-side. Of course, for user-friendliness, you can validate •
data on the client. What I mean is that data should always be validated on the
server, regardless of the checks done on the client. Remember that you should
never trust anything that comes from the client.
Always check input format and syntax (see [10] and [1] p.46-51). The safest •
approach is to « only allow valid input ». The approach « remove invalid input » is
more dangerous, since you never know whether you have removed all
vulnerabilities.

Allow only characters in a predefined character set. For example, the ‘;’o
character should be banned from any field value that will be inserted
into a SQL query.
A very good practice is to "have all requests come in to a central o
location and leave from a central location. The problem is then easier
to solve and you can make use of a common component."[1] p.54.

Input validation, however is not that easy. There are other issueso
explained in the section “input validation” below.

Always check access rights. If your application is asked to display the details of a •
bank account, you now know you never can trust the account number that is
given to you. Always verify, at each step in your application, that the user has the
appropriate rights to see the details of the account.
Encrypt values stored in cookies, hidden fields or URLs. •

For more information on data manipulation, see [1] p.45, [10], [16].

SQL Query manipulation3.1.2
This method consists of injecting SQL queries into database systems. The following
example is taken from [1] p.56. Imagine a web form allowing you to change your
password. Usually the form contains 4 fields: your userid (let's name the field uid),
your old password (oldpwd), the new password (newpwd), and a “confirm new
password” field (newpwdconfirm). The application will check that newpwd and
newpwdconfirm are identical, that your old password is correct and then issue a
query to the database to update your password. The query looks like: (the
‘$INPUT[fieldname]’ syntax is used to represent the value entered in the html form
‘fieldname’ field).

Update usertable set pwd=’$input[newpwd]’ where uid=’$input[uid]’;

Everything works fine if the user follows the rules and inputs his or her uid. What if,
the user sends the following value in the uid field: “myuid' or uid=’administrator”?

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The query really sent to the database will be:

Update usertable set pwd=’newpassword]’ where uid=’myuid' or uid='administrator’;

Yes, the administrator password has been reset with the user password! If you are
not quite sure of the exact uid of the administrator account, you can try the following
value uid=“myuid' or uid like ‘%admin%”, resetting the password of all accounts
containing the string admin!

But poisoning SQL statements in web application does not stop there. There are
ways to execute other SQL statements simply by appending them to the original
statement. If you take the previous example and fills the uid field with: “myuid'; insert
into usertable ...”, the DBMS will execute the update statement followed by the insert
statement, resulting in the application to create a new user. Worse, a “drop table
usertable” could be appended resulting in the application to become unusable!

Database servers also have features to execute operating system commands.
Those commands can also be appended to the field value as in the following
example (working for a system running on NT, with IIS and SQL server): uid=”myuid';
exec master..xp_cmdshell copy c: \winnt\system32\cmd.exe c:\inetpub\scripts”. This
will copy the cmd.exe file (the windows command shell) in the web server directory
where scripts are executed. The hacker can now call the cmd.exe in the script
directory and execute any OS command from his browser. Any other OS command
could be executed using the same mechanism. The point here is to show that
security awareness among web developers is crucial. Without knowing about SQL
query manipulation, anybody would probably write the statement shown above and
nobody would have thought there was a potential danger.

If you send DBMS error messages back to the browser, you should read the article
referenced in [4]. The article explains how to exploit the error messages to get the
list of tables in the database, to get the field names of the tables, to retrieve data, ...
As you could see from all the examples, knowing the database structure is the
starting point of SQL query manipulation attacks.

Remarks
SQL query manipulation is not specific to web applications. It also applies to •
client-server applications.
It is worth noting that all the network traffic used in those attacks is perfectly valid •
from the firewall point of view.

Solutions to SQL query manipulation
Basically, solutions are the same as those presented for data manipulation: filter •
any value coming from the client.
"Delete stored procedures that you are not using like: master..xp_cmshell, •
xp_startmail, xp_sendmail, sp_makewebtack"[4]

"Run the DBMS under a low privilege account"[4]•

For more information on SQL query manipulation, see [4], [5], [6], [7].

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Input validation3.1.3
As we saw in previous examples, it is very important to check input data. However,
there are also special issues to deal with when building an input validation
algorithm.

The “null byte” problem (see [9]). It is possible to encode « null bytes » in data •
transferred to the server. The problem is that « null bytes » are interpreted by
several programming languages as « end of string ». So if your “input validation”
algorithm does not filter “null bytes” before being applied, only the first portion (the
one before the null byte) will be checked.
Meta Characters (see [10]). Depending on the context, some characters (called •
meta characters) should be filtered (for example the ‘;’ character in a string
inserted into an SQL query (see earlier in the document)). A good approach is to
have a list of allowed characters instead of a list of forbidden characters.
Examples of meta characters can be found in [10].
Path traversal (see [11]). Some web applications store temporary information in •
files. An application can then take a filename as input parameter and send the file
(where the temporary information is stored) back to the client browser. In that
case, the hacker can manipulate the filename and try to gain access to
interesting files using the classical “../../..” syntax. An example of an interesting
file is “/etc/passwd” on a Unix machine, which contains all user ids and
passwords. "Counter measures are to avoid using the file system unless
absolutely necessary, to validate user input, to use databases instead of the file
system, to never pass unchecked user input to file system commands"[11].

For more information on “input validation”, see [9], [10], [11].

Buffer overflows3.1.4
A buffer overflow occurs when the size of data received from the client is larger than
the size of the buffer where the data must be stored. Data is than copied outside the
border of the buffer. That extra data may contain malicious code or may crash the
system.

Some developers try to prevent the user from entering long strings in a HTML form
field by setting the “maxlength” parameter of the form field. But of course, since this
information is contained in the HTML source code, it can be changed too. There is
absolutely no guarantee that the value of the field sent to the server will not be
longer than expected.

Solutions
Always check the input length on the server.•
Use languages like Java or C# which automatically checks bounds of buffers.•
If switching to Java or C# is not an option and you have to stay with C or C++, •
consider using “a library module that implements safe, bounds-checked buffers
such as the standard C++ string module or libmib”[14]

Always make sure that the programs handling user input do not run in the same •
process as your web server. With such a configuration, a buffer overflow would
crash the application but not the web server as a whole. See [19] for a detailed
explanation on how to do this with IIS.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

For more information on "buffer overflow", see [8], [14] and [19] for example. There
are also a lot of other articles available on the web.

Session hijacking3.2
Before explaining the principles behind session hijacking, let me explain what a
session is and why we need it. HTTP is a stateless protocol. Every time you ask for
a page, or for a graphic within a page, a new connection is set up between your
browser and the web server. There is no relationship at all between one connection
and another. There is no state. The second connection does not know anything
about what took place during the first connection. Though, this is perfectly
acceptable when using the web to search for information, it is not appropriate for a
web application where a context needs to be transmitted from page to page. For
example, an e-commerce site, on the page where you enter your credit card number
to complete the transaction, needs to know exactly the items that you have chosen
on previous pages in order to compute the total amount. The e-commerce site
needs a mechanism that identifies a “session”, a virtual “established connection”
between a browser and a web server to pass a context from page to page.
Technically, this is done as follows (see figure 3 in the appendix): when the browser
connects to the web server for the first time, the user has not been authenticated
yet. The web server asks for credentials and generates a unique identifier (the
session ID). The server can associate a context to each session ID, storing any kind
of information in that context. The generated session ID is sent back to the browser.
For every subsequent call to the server, the browser sends the session ID to the
server. The server can then use the context associated with the transmitted session
ID and “remember” data from page to page.

The system is working fine but there are risks associated with the technique. Since
all you need to get access to the application is a valid session ID, one must make
sure that it is not possible to guess a session ID or to steal a valid one. The process
of stealing a session ID is called “session hijacking”. Once a hacker has
successfully obtained access to a legitimate user’s session, "he or she can perform
all normal application functions with the same privileges of the legitimate user"[15].
Web sites have been vulnerable to this kind of attack because "while it is generally
clear that username/password pairs are indeed authentication data and therefore
sensitive, it is not generally understood that these session IDs are also just as
sensitive"[17].

Ways to capture a legitimate session ID:
Guess it. Some session IDs are generated with a predictable sequence.•
Sniff traffic. If the traffic is not encrypted, the session ID can be sniffed.•
(*3)Usually, users exit the application using a logout feature. This invalidates the •
session ID and clears the context. The session ID cannot be used anymore. But
many users do not use the logout feature and simply exit the browser. The
problem is that browsers have “history” features. "Another user may come by a
few minutes later, open up the browser, look at the history and be able to go in
and perform operations under the original user’s identity"[16] (though this would not
work in all circumstances, depending among others, on the method used to store
the session id and whether or not the browser was closed).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

(*4)An interesting scenario (though a bit theoretical) is the following. Remember •
the “referer field” we talked about earlier? If the user does not use the logout
feature, the first web server the user visits after finishing the session will receive,
in the “referer field”, the URL of the last page he visited during the session. If the
session ID is contained in the URL, the referer field will also contain the session
ID... "If the web server is operated by some sort of malicious administrator or
someone is packet sniffing the connection, we give them the tools to go back into
the session we just left and act as us."[16]

Solutions (inspired by the references [15], [16] (see also the interesting discussion
at the end of the article), [17])

Re-authenticate the user before critical actions are performed. With this kind of •
protection, the user must not only steal the session ID but also the user ID and
password.
Provide a logout mechanism and educate the users to use it! This would avoid •
the potential problems (*3) and (*4) described above.
Do not use a predictable sequence for your session IDs.•
Require SSL so that the session IDs cannot be easily sniffed.•
Do not set the session time-out to a too long value.•

For more information on session hijacking, see [15], [16], and [17].

A word on cross site scripting3.2.1
Web browsers can execute client-side languages like JavaScript, VBScript, ... A
script could potentially access local data and transmit it to a third party. Typically,
session IDs stored in cookies can be obtained with that technique. This is not really
a web application problem. It is more a client browser problem. But since the
technique could be used to hijack sessions, it is worth mentioning.

Discussion groups or news lists give the possibility to directly input HTML into the
messages. To exploit the vulnerability described in the previous paragraph, a hacker
simply posts a message containing the malicious script in a discussion group.
Anyone reading the message will run the script!

It is worth mentioning that more and more engines (like Yahoo for example) now
filter the input and replace the malicious commands with harmless text.

For more information on cross-site scripting, see [12], [22].

Other issues3.3
When putting in a place a Web application, there are many more issues to consider.
This section highlights some of them.

Comments in HTML pages3.3.1
Since it is a recommended best practice in software development, code is usually
well documented. It is amazing what you can find in comments. Since on the web,
the HTML page code is sent to the client, information can sometimes be
inadvertently revealed! (Just try to do a ‘view source’ of your favorite HTML page and
you may already find a lot of information...).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

OWASP says the following about comments in HTML pages:
Examples of information that can be found: “server path structure, true
location of web root, debug information, cookie structure and even names
and phone numbers (useful for social engineering). Automated comments
generated by web page editors can inform the attacker about the precise
software package (even down to the actual release) that is being used on the
site. Known vulnerabilities in those packages can then be tried out against
the site.”[1] p.75

A simple solution to the problem is to have a simple filter that removes all
comments before pages are pushed to the production server. This should be
part of the deployment methodology. ([1] p.75).

System administrators issues3.3.2
Of course, network, firewall and web server configurations, the status of patches, …
all have an influence on the overall security of the application. The focus of the
article is not on those issues. In this section, I try to mention some system
administrators related issues that are relevant to web applications.

It is always a good idea to segregate services. Typically, the security registry (the
place where users and passwords are stored) should be separated (on another
machine) from the content services. “This is a good idea because a compromise of
the content service (the web server) does not compromise the user registry”[1] p.22.
The same reasoning applies to the data server.

Make sure, your applications run with accounts that have the least possible
privileges. In that case, if the application or the account is compromised, it restricts
the damage that can be done.

Only run processes that are needed by your application. This limits the number of
possible exploits.

For more information on system administrators issues, see [23], [24], and [25].

Authentication3.3.3
A Web application must authenticate users. This subject is not covered in the article
but there are lots of papers available on the web. For example, refer to [18], [19] and
[20] for articles about authentication with IIS.

Do not forget it is also crucial that your users can authenticate your server. "On the
web, the focus is reversed and protecting the consumer from spoofed servers is
critical." [18]

Management issues3.3.4
Plan for security from the very beginning of the project. Involve system
administrators early in the development cycle. The overall security depends as much
on the system configuration as on the way the application is programmed.
Developers and system administrators should work hand in hand. From the very
beginning of the project, developers should apply the rules defined by system

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

administrators. For more information on this issue, see [23].

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Summary4
In the article, I described several methods to attack web applications while perfectly
respecting the http protocol, making firewalls and intrusion detection systems
unable to detect the attacks. Usually, the methods described in the article are entry
points to the system. For example, [21] describes how such a very small hole can
widen and lead to a fully compromised system.

The most important points to remember from the article are:

For developers
The way you program your application has a tremendous influence on the overall •
security.
Always strongly validate any information coming from the client•
Make sure your session mechanism is bullet-proof.•
Use an appropriate authentication mechanism.•

For system administrators
Apply all best practices regarding network and host security.•
Run the application under accounts with the fewest possible privileges.•
Separate services as much as possible.•

For managers
Plan for security from the very beginning of the project.•
Make sure developers and system administrators work hand in hand.•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Appendix5

Figure 1 describes (in a very simplified way) how clients and servers interact on the
web.

Web Browser

Request Header

Authorization
Referrer

Client software
…

HTTP Request

Body

Method (Get, Head, Post)
URI

http version

Response Header

Location (for redirection)
Server Software

Content (encoding/type/length)
…

Body

HTML page / Graphic file / …

Status line
HTTP version/Response Code/Reason

Web
Server

Internet

HTTP Request

HTTP Response

HTTP Response

Figure 1

The browser sends an Http request to the web server. The request contains two
parts:

a header, containing information like authorization information, an •
identification of the client software (IE5, NS5, ...), a referrer field (I talk about
this field in the article), ...
the body of the request, containing information about•

the version of http usedo
the methodo

GET: returns the page specified in the URI§
POST: to send data to the server (in forms)§
HEAD: returns the response header only§

The URI: (ex: www.mycompany.com/index.html)o
The web server processes the request and sends an http response back to the
browser. The response contains

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

A status line, indicating whether the request was processed successfully or •
not (a typical rejection reason is "not authorized").
A response header that contains information about•

The content of the response (its type (html, graphics, …), its length, its o
method of encoding)
The server softwareo
A location (in case the response is a redirection to another page)o
...o

The body of the response•
The HTML page, a graphic, …o

With the http protocol, a new connection is established between the browser and
the server for each request. For an HTML page containing 2 pictures, 3 connections
will be established: one for the HTML page and one for each picture.

Figure 2 describes how a browser can send information to the server.

HiddenField

C:\Documents and Settings\userid.DomainName\Cookies

user@myco.txt

PrefColor=blue

Urlparam1=val1
Field1=AA
Field2=
HiddenField=AA
PrefColor=blue

Internet

GetData.jsp

Figure 2

As we saw in figure 1, some information is already sent to the server in the http
request header.

The browser can transmit data to the server in three different ways:
in the URL itself ('urlparam1=val1' in the example)•
in fields contained in HTML forms (Field1 and Field2 in the example). Forms •
can also contain hidden fields that are not displayed by the browser but can
contain information.
in cookies. Cookies contain information generated by the server. They are •
stored either in memory (non persistent cookies) or on your hard drive

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

(persistent cookies) in the directory shown in figure 2 (for IE). The values
stored in cookies are transmitted in every http request. But, cookies also have
a scope. They are only sent to the web server that generated the request.

Figure 3 describes the session mechanism.

Browser Web
Server

Logon

Session ID=1234
- User Prefs

-Current content
of shopping cart

…

Startup page + Session ID=1234

Add book XYZ to my shopping cart, ID=1234

« book XYZ added »

Checkout, ID =1234

The total price for the items is $nn

Figure 3

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

References6

General references on web application security

[1] OWASP. “The Open Web Application Security Project – A guide to building
secure web applications and web services”. 24 Jun 2002.
http://www.cgisecurity.com/owasp/OWASPBuildingSecureWebApplicationsAndWe
bServices-V1.0.pdf (2 Aug 2002)

[2] GrossMan, Jeremiah. "Web application security and presenting the whitehat
arsenal".
http://www.blackhat.com/presentations/win-usa-02/grossman-winsec2002.ppt (7
Aug 2002)

[3] Musa, Zarina. "Web application security". GSEC Practical Assignment. 21 Feb
2002.
http://www.giac.org/practical/Zarina_Musa_GSEC.doc (2 Aug 2002)

References on SQL query manipulation

[4] Beyond-Security Ltd. “SQL injection walkthrough”.
http://www.securiteam.com/securityreviews/5DP0N1P76E.html (2 Aug 2002)

[5] Anley, Chris. "Advanced SQL injection in SQL server applications". 2002.
http://www.nextgenss.com/papers/advanced_sql_injection.pdf (2 Aug 2002)

[6] (no author) "SQL injection FAQ".
http://www.sqlsecurity.com/faq-inj.asp (2 Aug 2002)

[7] SPI Dynamics. "SQL Injection. Are your web applications vulnerable?". 2002.
http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf (2 Aug 2002)

References on input validation and buffer overflow

[8] Beyond-Security Ltd. "Writing buffer overflow exploits – a tutorial for beginners".
http://www.securiteam.com/securityreviews/5OP0B006UQ.html (2 Aug 2002)

[9] Eizner, Martin. “Null Bytes”.
http://www.owasp.org/asac/input_validation/nulls.shtml (2 Aug 2002)

[10] Eizner, Martin. “Meta characters”.
http://www.owasp.org/asac/input_validation/meta.shtml (2 Aug 2002)

[11] Eizner, Martin. “Path traversal”.
http://www.owasp.org/asac/input_validation/pt.shtml (2 Aug 2002)

[12] CERT Advisory CA-2000-02. "Malicious HTML tags embedded in Client Web

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Requests”. 3 Feb 2000.
http://www.cert.org/advisories/CA-2000-02.html (2 Aug 2002)

[13] CERT Coordination center. "Understanding malicious content mitigation for web
developers". 2 Feb 2000.
http://www.cert.org/tech_tips/malicious_code_mitigation.html (16 Aug 2002)

[14] Frykholm, Niklas. “Countermeasures against buffer overflow attacks”.
30 Nov 2000
http://www.rsasecurity.com/rsalabs/technotes/buffer/buffer_overflow.html
(21 Aug 2002)

References on session management

[15] Pennington, Bill & Endler, David. “Authentication and session management”.
http://www.owasp.org/asac/auth-session/hijack.shtml (2 Aug. 2002)

[16] Olson, Joshua. “Session hijacking, Cold Fusion, Dynamic Proxies”. 14 Oct
2000.
http://www.evolt.org/article/Session_Hijacking_Cold_Fusion_Dynamic_Proxies/20/3
516/ (2 Aug. 2002)

[17] Pennington, Bill. “Authentication and session management”.
http://www.owasp.org/asac/auth-session/replay.shtml (2 Aug. 2002)

References on Authentication

[18] Brown, Keith. "Web Security: Putting a secure front end on your COM+
distributed applications". June 2000.
http://msdn.microsoft.com/msdnmag/issues/0600/websecure/websecure.asp. (2
Aug 2002)

[19] Brown, Keith. "Web Security: Part 2: Introducing the web Application Manager,
Client Authentication Options, and Process Isolation". July 2000.
http://msdn.microsoft.com/msdnmag/issues/0700/websecure2/websecure2.asp (2
Aug 2002)

[20] Sabbadin, Enrico. "Implementing secured web applications wit IIS5".
http://www.vb2themax.com/HtmlDoc.asp?Table=Articles&ID=320 (2 Aug 2002)

Various references

[21] Glaser, JD & Shah, Saumil. "One-Way Hacking: Futility of Firewalls in Web
Hacking". 21 Nov 2001
http://www.blackhat.com/presentations/bh-europe-01/jd-glaser/glaser.ppt (2 Aug
2002)

[22] Grossman, Jeremiah. “Cross Site Scripting”.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

http://www.owasp.org/asac/input_validation/css.shtml (2 Aug 2002)

[23] Pogue, Matt. "Securing Microsoft Web applications – A guide for systems
administrators". 10 Dec 2001.
http://rr.sans.org/web/web_apps.php (requires logon to SANS reading room) (1 Aug
2002)

[24] Skoudis, Edward. "Cracker Tools and techniques. Faster, stealthier ...more
dangerous". July 2002.
http://www.infosecuritymag.com/2002/jul/faster.shtml (13 Aug 2002)

[25] Symantec. "The behaviors and tools of today's hackers". 18 June 2002.
http://enterprisesecurity.symantec.com/article.cfm?articleid=1398&PID=12493901&
EID=0 (13 Aug 2002)

