
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 1 of 15

Tom King
GSEC Practical v1.4, Option 1
August 4th 2002

Packet Sniffing In a Switched Environment

Abstract

This paper focuses on the threat of packet sniffing in a switched
environment, and briefly explores the effect in a non-switched environment.
Detail is given on techniques such as “ARP (Address Resolution Protocol)
spoofing”, which can allow an attacker to eavesdrop on network traffic in a
switched environment.

Third party tools exist which permit sniffing on a switched network. The result
of running some of these tools on an isolated, switched network is
presented; it clearly demonstrates that the threat they pose is real and
significant.

The final section covers ways to mitigate the threat of network sniffing in both
non-switched and switched environments. It is proposed that encryption is
the only true defence to the threat of sniffing.

A note about permission

A number of techniques and tools to enable network sniffing are detailed in
this paper. Tests have been run on an isolated network, constructed
especially for this piece of work.

If you want to use any of the tools or techniques listed in this paper on a
network at your college or place of work, you should seek permission in
writing from appropriate management. It would also be prudent to talk to
the network team at your site – it is quite possible to severely disrupt a
network through the inappropriate use of some of the tools described
here.

Introduction

For most organizations, packet sniffing is largely an internal threat. A third
party on the Internet, for instance, could not easily use packet sniffing
software to eavesdrop on traffic on a corporate LAN. But as the greatest
threat to corporate systems is internal1, we should not take comfort from this.

There are many reasons why businesses are updating their network
infrastructure, replacing ageing hubs with new switches. A frequently stated
driver for moving to a switched environment is that “it increases security”.
However, the thinking behind this is somewhat flawed. Packet sniffing in a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 2 of 15

switched environment is possible; anyone equipped with a laptop (and armed
with a selection of freely available software) may be able to monitor
communication between machines on a switched network.

Packet sniffing tools have been available from the early days of networked
computing environments. The tools are powerful software, which facilitate
troubleshooting for network administrators. However, in the hands of a
malicious third party, they are a devastating hacking tool, which can be used
to glean passwords and other sensitive information from a LAN.

Traditionally, packet sniffers have been regarded as fairly obscure tools,
which require a certain technical competence to operate – dangerous
utilities, perhaps, but not easy to guide or operate. All this has changed in the
last few years, with specialized, easy to use password-detecting sniffers
becoming widely obtainable. Many of this “new generation” of specially
tailored tools are freely available on the Internet. With built-in logic allowing
many network protocols to be decoded, they have the capability to filter the
sniffed traffic on the fly, and highlight sensitive information such as
usernames and passwords.

Packet sniffing in a non-switched environment is a well understood
technology. A large number of commercial and non-commercial tools enable
eavesdropping of network traffic. The idea is that to eavesdrop on network
traffic, a computer’s network card is put into a special “promiscuous” mode.
Once in this mode, all network traffic (irrespective of its destination) which
reaches the network card can be accessed by an application (such as a
packet sniffing program). A detailed explanation of how packet sniffing works
may be found in Robert Graham’s excellent FAQ on sniffing2.

In a switched environment, it is more of a challenge to eavesdrop on network
traffic. This is because switches will only send network traffic to the machine
which it is destined for3. However, there are a number of techniques which
enable this functionality to be usurped. Tools exist, which combine the ability
of sniffing on a switched network with the capability of filtering the traffic to
highlight sensitive information.

Packet Sniffing in a non-switched environment

In a non-switched environment, the latest generation of packet sniffing tools
are highly effective at reaping passwords and other sensitive information
from the network.

A large number of commonly used protocols either transmit data in plaintext
(which can easily be sniffed), or they do not use strong enough encryption to
prevent a sniffing and cracking attack. Examples of plaintext protocols
include smtp, pop3, snmp, ftp, telnet and http. Perhaps the best known
encrypted protocol which is vulnerable to sniffing and cracking attacks is
Microsoft’s LM (LAN Manager) protocol, used for authenticating Windows
clients.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 3 of 15

Microsoft has tried to address the glaring weaknesses in LM, with the
introduction of NTLM (V1 and V2). NTLM is an improvement, but is still
susceptible to a sniffing and cracking attack. Hidenobu Seki, the author of
ScoopLM and BeatLM tools (qv) gave a fascinating presentation4 covering
the detail of LM, NTLM v1 and v2 and how it can be cracked at BlackHat’s
“Windows Security 2002 Briefings and Training”.

Tools to sniff in a non-switched environment

A quick search on the Internet will reveal a large number of freely available
sniffing tools. In this section, I focus on two tools, dsniff and ScoopLM,
which excel at sniffing sensitive information.

dsniff

For plaintext protocols, to eavesdrop on username, password and other
sensitive information, a very useful tool is dsniff from Dug Song5. The
dsniff tool is available for various flavours of Unix, and there is a port (of an
older version of the software) for Windows6.

In addition to sniffing the plaintext protocols mentioned above (and others),
dsniff is exceptionally good at filtering the sniffed traffic to display only
“interesting” information such as usernames and passwords. In their
esteemed “Hacking Exposed” book7, McClure, Scambray and Kurtz describe
dsniff as offering “passwords on a silver platter”. It makes eavesdropping
on sensitive information a trivial exercise.

A sample run of dsniff is depicted in figure 1, showing the Windows port of
dsniff harvesting passwords on a small network.

Figure 1 - dsniff sniffing plaintext protocols in a non-switched environment

ScoopLM

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 4 of 15

L0phtcrack is a well-known password sniffing and cracking tool, which is
capable of eavesdropping Windows NT/ 2000 usernames and encrypted
passwords from a network. It is a commercial tool, available from @Stake8.
However, there are other freely available tools which can perform a similar
job, and are very simple to use.

A great example is the ScoopLM tool9, which is freeware and downloadable
from the Internet. ScoopLM will sniff NT/ 2000 usernames and LM/ NTLM
encrypted passwords. Its brother, BeatLM10, enables cracking of encrypted
passwords which ScoopLM has harvested by brute-force or dictionary
attacks. Together, they are a significant threat to the security of Microsoft
networking in a non-switched environment.

Figure 2 shows a sample run of ScoopLM, sniffing NT usernames and
encrypted passwords. The sniffed usernames and passwords can then be
saved to a temporary file, and loaded into BeatLM to be cracked.

Figure 2 - ScoopLM in action, sniffing NT usernames and encrypted passwords

The above examples demonstrate how simple it is to discover sensitive
information by eavesdropping on a non-switched network. This fact has
helped drive businesses to replace hubs in their network by switches. There
are many other good reasons for doing this; increasing network performance,
for example. Replacing hubs by switches in the belief that it will cure the
problem of sniffing is misguided. The following section will demonstrate why.

Packet Sniffing in a switched environment

Switches

On the surface, it would seem that replacing hubs by switches will mitigate
the packet sniffing threat to a large extent. The fact that switches will only
send network traffic to the machine which it is destined for implies that if

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 5 of 15

machine A is communicating with machine B, machine C will not be able to
eavesdrop on their conversation. In figure 3, let us assume that machine A
instigates a telnet connection to machine B.

Machine A Machine B

Machine C

Switch

Figure 3 - Three machines connected via a switch. Traffic flowing from A to B is
illustrated by the arrowed lines.

In the situation depicted above, Machine C cannot easily see the network
traffic for the telnet session passing between machines A and B. The switch
ensures that this traffic does not travel over any unnecessary ports – it only
flows over the ports which machines A and B are connected to.

However, a number of techniques exist which will subvert the above,
enabling C to snoop on the network traffic between A and B.

How to sniff in a switched environment

There are a number of theoretical techniques which permit sniffing in a
switched environment. These include ARP spoofing, MAC flooding and MAC
duplicating. The tools covered in this paper all use the ARP spoofing
technique; hence this is covered in detail. An excellent description of ARP
spoofing, MAC flooding and other techniques can be found in Sean Whalen’s
paper on the Packet Storm website11.

ARP spoofing is a reasonably straightforward technique, a classic man-in-the-
middle12 attack. This is best explained by an example. Taking the above
example of machines A, B, and C, assume C wanted to eavesdrop on
network traffic between A and B. For a man in the middle attack, C pretends
to A that it is in fact B. Then, when A sends traffic destined for B, it is
intercepted by C. C passes this information on to B, pretending that it came
from A. Similarly, C also performs a comparable role for traffic from B which

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 6 of 15

is destined for A. The goal of the man in the middle attack is depicted in
figure 4:

Machine A Machine B

Machine C

Switch

1
2 3

4

Figure 4 – The man in the middle attack. C intercepts network traffic from A which is
destined for B.

In more detail, using ARP spoofing to complete the man-in-the-middle-
attack, two steps, detailed below, need to be performed.

First, however, we need to understand how A and B will normally
communicate.

For this to happen, A requires B’s MAC address. To get this, A will check in
its ARP cache to see if it already has B’s MAC address.

If this is the case, it will use the MAC address pulled from the ARP
cache.

If this is not the case, A will broadcast an ARP request. B will respond
with its MAC (and IP) address. B’s IP address and corresponding MAC
address will be stored in A’s ARP cache, for future use.

A can now send packets of data to B. For B to communicate with A, a similar
process will take place.

Let us now assume that A and B have established each others MAC
addresses, and are communicating through a switch. How can C eavesdrop
on the conversation? This is where ARP spoofing comes into play.

The first step is for C to pretend to A that it is in fact B. If this can be 1.
achieved, network traffic destined for B will be routed to C. Likewise, C

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 7 of 15

must pretend to B that it is in fact A. How can this be achieved? The
answer is that C “poisons” the ARP cache on A and B. This is
straightforward, because:

“ARP is a stateless protocol that does not require authentication, so a
simple ARP replay packet sent to each host will force an update in
their ARP cache”13

So, C sends a spoofed ARP packet to A, instructing A to send packets
destined for B to C. The spoofed ARP packet C sends forces A to
update its own ARP cache. In A’s updated ARP cache, B’s IP address
maps to C’s MAC address. This means future communication from A
which is destined for B will go via C.

The following tables show what happens to A’s ARP cache.

Machine A’s ARP Cache – before C sends spoofed ARP packet

IP Addresses MAC Addresses
[B’s IP Address] [B’s MAC Address]
[C’s IP Address] [C’s MAC Address]

… …

Machine A’s ARP Cache – after C sends spoofed ARP packet

IP Addresses MAC Addresses
[B’s IP Address] [C’s MAC Address]
[C’s IP Address] [C’s MAC Address]

… ...

C also does something similar to B. It sends a spoofed ARP packet to
B, instructing B to update its ARP cache so that A’s IP address maps
to C’s MAC address.

Once this has been done, packets which A attempts to send to B are
routed to C. Packets which B attempts to send to A are routed to C as
well.

There is one further important step. Machine C also has to ensure that 2.
traffic it receives is sent on to its true destination. So, for example,
when A sends traffic destined for B, it is intercepted by C, but sent on
from C to B. This can easily be achieved by IP forwarding, a facility
supported by many operating systems. Alternatively, an application
can take responsibility for forwarding the traffic to its true destination.

Once the above steps have been performed, C will be intercepting network
traffic between A and B.

“Re-poisoning” the ARP Cache

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 8 of 15

It is worth noting that once a spoofed ARP packet has been sent to a target
machine, the attacker will need to re-send this information on a regular basis,
to “re-poison” the ARP cache. This is because operating systems
automatically refresh ARP caches on a frequent basis (every 30 seconds is a
typical refresh rate).

“Port security” and ARP spoofing

Many switches now offer a configurable “port security” option, to help
network administrators lock down which machines can connect to switches.
Put simply, “port security” allows us to lock down a port on a switch to a
given MAC address. This helps prevent un-trusted machines connecting to
the switch.

However, there is significant administration overhead to widely deploy and
support “port security” on anything more than a very small network.

Further, “port security” does not prevent ARP spoofing14. With ARP spoofing,
we are just poisoning the ARP cache on target machines (in the above
example, machines A and B); this is not something which “port security” on a
switch prevents.

Session hijacking – made possible by ARP spoofing.

An interesting side-effect is made possible through eavesdropping by ARP
spoofing/ IP forwarding. Because we are performing a man in the middle
attack, we can alter (add, modify or delete) packets we intercept, or even
create brand new packets.

This enables us to hijack certain types of sessions, telnet, for example. As
well as sniffing the telnet traffic, we can forge commands made by the client,
or replies made by the server. This enables all sorts of nefarious activities –
how about forging a “mail hacker@hack.com </etc/passwd”
command, from the client, for instance?

Session hijacking is not just a theoretical possibility. Tools such as
ettercap15 and hunt16 make it simple to achieve.

Tools to sniff in a switched environment

The number of tools which enable sniffing in a switched environment is on
the increase. In this section, I focus on two tools in particular, ettercap and
Cain. Both tools excel at sniffing sensitive information on a switched
network.

Setup of isolated network

An isolated network was setup to investigate sniffing in a switched

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 9 of 15

environment. Three machines (A, B and C) were set up, following the
example detailed above. As above, A and B are the victim machines and C is
the attacking machine, which runs the sniffing software. The following table
summarizes the setup of the machines on the isolated network.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 10 of 15

Machine Name IP Address MAC Address
A 192.168.0.1 00-02-e3-0a-ee-e4
B 192.168.0.2 00-50-22-88-f1-48
C 192.168.0.3 00-00-39-ca-13-81

All machines were setup to run Windows 2000 Professional SP2. The switch
used in the isolated network was a simple 5 port 10/100Mb switch,
manufactured by Unex Innovation Corp.

ettercap

First, we cover ettercap, a tool which describes itself as “a powerful and
flexible tool for man-in-the-middle attacks”. It runs on many of the leading
platforms including Windows, Linux, xBSD and Mac OS X.

ettercap was downloaded from http://ettercap.sourceforge.net/download
then installed on machine C. Before running ettercap, the ARP cache on
machines A and B were checked, via the arp /a command. As expected,
the ARP cache on A was storing the true IP and MAC addresses of B and C:

Figure 5 - the ARP cache on machine A prior to running ettercap

Similarly, the ARP cache on B was storing the true IP and MAC addresses of
A and C.

Figure 6 - the ARP cache on machine B prior to running ettercap

Next, ettercap was run on machine C, and set to sniff traffic between A
and B. At this stage, ettercap performs ARP spoofing to setup the man-in-
the-middle attack. Re-examining the ARP caches on A and B is illuminating;
note how machine C’s MAC address replaces the true MAC addresses for
machines A and B:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 11 of 15

Figure 7 - the ARP cache on machine A now ettercap is running

Figure 8 - the ARP cache on machine B now ettercap is running

Now traffic between A and B was being intercepted by C. Similar to dsniff,
ettercap has in-built knowledge of a large number of network protocols. It
can highlight interesting areas of sniffed traffic, such as usernames and
passwords. The following diagram depicts ettercap eavesdropping the
start of a telnet session between A and B:

Figure 9 - ettercap sniffing a telnet session between A and B

During a sniffing session, ettercap may detect a large number of
usernames and passwords. The data may be saved to a simple ASCII file for
examination at a later date.

Cain

Another tool which is capable of sniffing in a switched environment is Cain17.
Available for Windows only, this tool can do far more than just sniff traffic on
a switched network1.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 12 of 15

1 Note that Cain is currently in beta release – there is little accompanying documentation, and
the software does have some bugs. Despite its beta status, the power and ease of use of
this tool more than justify its inclusion here.

In a similar vein to dsniff and ettercap, Cain has built-in knowledge of
various network protocols, and can highlight interesting areas of sniffed
traffic.

Cain also has built in cracking technology to enable brute-force and
dictionary attacks against encrypted passwords which it sniffs from the
network. In a similar manner to BeatLM, Cain can attempt attacks against
Microsoft’s authentication protocols (including LM, NTLMv1, NTLMv2).
However, it goes further than BeatLM by offering the facility of cracking Cisco
MD5 hashes, encrypted APOP passwords and others.

Highlights of other facilities built-in to Cain include various networking
utilities (including traceroute and tools to analyze routing protocols), and the
capability of enumerating NT users and shares from remote machines.

The breadth of functionality covered by Cain is impressive. It is amazing that
a single tool can cover most of the key roles offered by better known sniffing/
enumeration/ password cracking tools such as L0phtcrack, Revelation18,
userdump19, nat20, pwltool21, john the ripper22 and ettercap.

Cain was downloaded from http://www.oxid.it, and installed onto machine C.
The ARP caches on machines A and B were checked, and found to contain
the expected data (as in figures 5 and 6). Next, Cain was configured to use
ARP spoofing - referred to as APR (ARP poisoned routing) within the
application - to intercept network traffic between machines A and B. This is
depicted in figure 10:

Figure 10 - Cain uses ARP spoofing to intercept data between machines A and B

Once this had been done, Cain used its built-in knowledge of network
protocols to enable key data to be displayed. As with the test with ettercap, a
telnet session between machines A and B was initiated. For many protocols,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 13 of 15

Cain simply captures the username and password. For telnet sessions, the
entire session (including the username and password) is captured and
logged to a text file, as shown in figure 11:

Figure 11 - Cain recording a telnet session between two machines

The above tests demonstrate that tools such as ettercap and Cain present a
very real threat to many network environments. What can be done to protect
against this threat?

Recommendations for mitigating the threat from packet sniffing

Detecting packet sniffers

One way to mitigate against the threat of packet sniffing tools is to try to
detect if they are used on the network.

a) Detecting in a non-switched environment

Detecting tools which are designed to run in a non-switched environment is
difficult. This is because the tools are usually “passive”. They work by putting
the network interface card into promiscuous mode, allowing any network
traffic which reaches the card to be examined. Akin to a radio receiver,
sniffers do not necessarily cause extra, suspicious traffic to be transmitted on
the network, so how can they be discovered?

A number of techniques can be used to try to detect machines whose
network cards are running in promiscuous mode, which are likely to be
sniffing traffic. Many of the techniques used rely on detecting specific
weaknesses in TCP/IP stacks. Tools such as L0pht’s antisniff23 employ
knowledge of the idiosyncrasies of TCP/IP stacks in NT and Unix to detect
machines which are running in promiscuous mode.

b) Detecting in a switched environment

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 14 of 15

As indicated previously, sniffing in a switched environment implies a man-in-
the-middle attack. Eavesdropping in this case will be “active” in that network
traffic will be delivered to the attacking machine, then forwarded onto the true
recipient. Detecting this is somewhat easier than detecting the “passive”
tools.

It is possible to detect techniques such as ARP spoofing – software such as
LBNL’s arpwatch24 can detect suspicious ARP network traffic, and inform a
network administrator.

Ultimately, however, software cannot be relied upon to reliably detect all
instances of network sniffing.

Locking down the network environment

Imagine it were possible to prevent network sniffing software being installed
on any machine on the network. Is this possible?

Solutions such as AppSense25 can help to ensure that only approved
software is run – packet sniffing tools and other hacking tools could be
prevented from executing. However AppSense is not relevant in all
environments as it only supports Microsoft Windows. Further, AppSense
cannot prevent unauthorized machines (for instance a rogue laptop running
eavesdropping software) from connecting to the network.

Encryption

The only viable solution for preventing packet sniffing is encryption.

In the FAQ26 for dsniff, Dug Song advises “don't allow proprietary, insecure
application protocols or legacy cleartext protocols on your network”. This is
valuable advice. Substituting insecure protocols (such as telnet) with their
secure, encrypted counterparts (such as ssh) presents a significant barrier to
eavesdropping. Replacing all insecure protocols is unlikely to be feasible in
many environments, however.

Instead of halting the use of cleartext protocols, one possibility is to encrypt
all network traffic at layer three by using IPSec27. By encrypting at layer three,
it is possible to continue to use plaintext protocols – all data is encapsulated
by IPSec, and is encrypted for its transfer across the network. Thus legacy
applications which may rely on using older, plaintext protocols will be
unaffected.

IPSec is completely transparent to applications and to users. It is an open
standard, supported by many vendors, including Microsoft and Cisco.
Further, many Unix implementations support IPSec. The easy configurability
of IPSec within Windows 2000 and XP further increases its accessibility.

Implementation of a layer three encryption technology such as IPSec solves
the sniffing problem completely. The scalability, widespread availability and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 15 of 15

seamless operation of IPSec highlight it as a pragmatic solution to the
problem of network eavesdropping.

References
1 Verton, Dan. “Analysts: Insiders may pose security threat”. 10 October 2001. URL:
http://www.computerworld.com/securitytopics/security/story/0,10801,64774,00.html

2 Graham, Robert. “Sniffing (network wiretap, sniffer) FAQ”. Version 0.3.3. 14 September
2000. URL: http://www.robertgraham.com/pubs/sniffing-faq.html

3 Tyson, Jeff. “How LAN Switches Work”. URL: http://www.howstuffworks.com/lan-switch.htm

4 Seki, Hidenobu. “Cracking NTLMv2 Authenication”. URL:
http://www.blackhat.com/presentations/win-usa-02/urity-winsec02.ppt

5 Song, Dug. “dsniff”. URL: http://monkey.org/~dugsong/dsniff

6 Davis, Michael. “dsniff”. URL: http://www.datanerds.net/~mike/dsniff.html.

7 McClure, Stuart. Scambray, Joel. Kurtz, George. “Hacking Exposed (Third Edition)”.
McGraw-Hill, 2001. pages 464-465.

8 “L0phtcrack 4”. http://www.atstake.com/research/lc/index.html

9 Seki, Hidenobu. “ScoopLM”. January 2002. URL:
http://www.securityfriday.com/ToolDownload/ScoopLM/scooplm_doc.html

10 Seki, Hidenobu. “ScoopLM”. February 2002. URL:
http://www.securityfriday.com/ToolDownload/BeatLM/beatlm_doc.html

11 Whalen, Sean. “An Introduction to ARP Spoofing”. Revision 1. April 2001. URL:
http://packetstorm.decepticons.org/papers/protocols/intro_to_arp_spoofing.pdf

12 Cohen, Fred. “The All.Net Security Database”. May 1999. URL:
http://www.all.net/CID/Attack/Attack74.html

13 Montoro, Massimiliano. “Introduction to ARP Poison Routing (APR)”. Revision 1.0. URL:
http://www.oxid.it

14 “Ettercap effects on switches”. URL:
http://ettercap.sourceforge.net/forum/viewtopic.php?t=2

15 Ettercap’s homepage. URL: http://ettercap.sourceforge.net

16 Krauz, Pavel. “Hunt Project”. URL: http://lin.fsid.cvut.cz/~kra/index.html#HUNT

17 Montoro, Massimiliano. “Homepage for Cain”. URL: http://www.oxid.it

18 “Snadboy Software”. URL: http://www.snadboy.com

19 “Hammer of God Utlities”. URL: http://www.hammerofgod.com/download.htm

20 URL: ftp://ftp.technotronic.com/microsoft/nat10bin.zip

21 “Lastbit Software”. URL: http://www.webdon.com/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Page 16 of 15

22 “John the Ripper password cracker”. URL: http://www.openwall.com/john

23 “Antisniff 1.021” URL: www.securitysoftwaretech.com/antisniff/download.html

24 “arpwatch” URL: ftp://ftp.ee.lbl.gov/arpwatch.tar.gz

25 “AppSense Application Manager”. URL:
http://www.appsense.net/content/software_solutions/application_manager/application_manag
er.asp

26 Song, Dug. “dsniff Frequently Asked Questions”. URL:
http://monkey.org/~dugsong/dsniff/faq.html

27 Taylor, Laura. “Understanding IPSec”. June 2002. URL:
http://www.intranetjournal.com/articles/200206/se_06_13_02a.html

