
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Auditing Linux Systems with SNARE

Miles D. Stevenson
SANS GIAC GSEC Practical v1.4b

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

Auditing Linux Systems with SNARE...1
Introduction ..3
System Security Auditing..3
Linux Security Auditing ..4
Auditing with SNARE...6
Installation ..7
Additional Considerations...12
References ..16

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

Introduction
With the astounding growth in recent years of the use and popularity of Linux,
one of the largest gaps inherent in many Unix and Linux Operating Systems is
the lack of a good auditing system. While companies such as Sun and Microsoft
have been providing powerful auditing capabilities in their Operating Systems for
some time now, most of the Unix/Linux variants have remained outdated in
regards to security auditing. Security auditing is an essential technology that
should be implemented by any system, especially when used in a networked
environment by multiple users. Until the Unix/Linux variants recognize this and
include adequate auditing capabilities in their systems, it is left up to the
administrators to provide this important feature to protect their systems.

This paper describes the use of SNARE and other supporting tools to implement
a strong auditing policy on Linux systems. A RedHat Linux 7.2 Firewall will be
used to demonstrate this process. In addition to covering auditing techniques, I
will demonstrate the use of additional tools to protect the audit trail and will briefly
describe theoretical approaches to managing the audit trails of many systems in
a larger environment. A basic understanding of Linux administration is assumed,
and will not be provided by this paper.

System Security Auditing
Audit trails maintain a record of system activity by system or application
processes and by user activity (Swanson & Guttman, p. 53). The goal of security
auditing is to ensure that the security measures in place are adequately
protecting information resources. There exist many different techniques for
security auditing. Some are automated by computer systems, while others are
performed manually by trained security professionals. There exists no single
technique that is effective in every type of environment. This means that it is
very important for Information Technology (IT) personnel to know which
techniques work best for the environment that is used.

When dealing with IT systems such as servers, workstations, routers, etc., it is
important to distinguish between auditing and logging. The two are often
combined to be much more effective, but it must be understood that auditing and
logging are not the same, as some administrators believe. Auditing is the act of
looking for the security related information that helps us to determine what
actions are taking place on the system, how the system is functioning, and how
the security controls on the system are enforcing our security policy. Logging is
simply the act of recording these data. Auditing and logging are usually
combined into what most of the security community refer to as the audit trail.

Security auditing is a very important practice, which must be done by all
organizations to protect their systems. The audit trail is one of the first places to
look when a security incident is suspected. Audit trails are often one of the only
sources of information that can tell us what is happening or has already

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

happened on the system. If auditing is implemented correctly, it is usually the
best way to provide accountability for actions taken on the system. Without
auditing, it is almost impossible for an organization to determine what actions are
being taken on the system, and who is taking them.

This paper concentrates on automated security auditing of Linux systems.
Specifically, on the Operating System, rather than on the applications that are
used on top (although this technique may reveal valuable information relating to
these applications). Generally, I am interested in knowing what actions are being
taken on the system, when they are taken, and who is taking them. As such,
auditing often relies on other security practices and technologies to be effective,
such as good security policy, strong authentication, reliable and accurate system
clocks, and data integrity of the audit trail. Keep these supporting security
practices in mind throughout this paper, as each will be discussed.

Linux Security Auditing
All Operating Systems address security auditing in their own way. This paper
focuses on RedHat Linux, and will not be applicable to other Unix environments
such as OpenBSD, FreeBSD, AIX, HP-UX, etc. In contrast to Sun Solaris and
other Operating Systems such as Microsoft Windows NT, 2000, and XP, most of
the Unix and Linux environments come with poor auditing capabilities. Even
worse, many of the Unix and Linux Operating Systems do not provide any built-in
means for C2-style security auditing. Again, do not confuse auditing with
logging. The syslog facility was not built with security in mind, and only provides
logging capabilities. All audit trails that are found on these systems are
generated from other applications such as login, telnet, SSH, cron, etc., but lack
a strong auditing mechanism built-in to audit system-related events such as
process execution, file access, file modification, and file deletion. It is also
important to point out that system security auditing is something that should be
taking place in real-time. File Integrity Checkers, such as Tripwire, do in fact help
to implement security auditing of the file system, however, the audit trail that is
generated from Tripwire is very limited because it is not generated in real-time, or
as the events occur. This does not help us to determine when the action was
taken, and who took the action.

The only audit mechanism that is generally found in Linux systems (including
RedHat) is process accounting. This suite of utilities provides a means to track
process execution and logon/logoff events. To use process accounting, it must
be enabled with the accton command. Once enabled, process accounting logs
its audit trail to /var/log/psacct in its own binary format. There are several
commands that can be used to retrieve information from the audit trail, such as
the lastcomm command. The lastcomm command prints out information about
previously executed commands. A sample of this output is provided below.

[root@server log]# lastcomm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

clear root stdout 0.01 secs Thu Nov 14 07:20
man S root stdout 0.00 secs Thu Nov 14 07:19
sh root stdout 0.01 secs Thu Nov 14 07:19
sh F root stdout 0.00 secs Thu Nov 14 07:19
less root stdout 0.00 secs Thu Nov 14 07:19
crond F root ?? 0.00 secs Thu Nov 14 07:20
mrtg S root ?? 1.02 secs Thu Nov 14 07:20
crond F root ?? 0.00 secs Thu Nov 14 07:20
sadc S root ?? 0.02 secs Thu Nov 14 07:20

The first row of the output shows the process that was executed, followed by a
flag, which gives information about how the process was executed, the user who
executed the process, the terminal type that was used, and the timestamp of
when the process ended. The ‘S’ flag denotes that this command was executed
by the superuser (root), and the ‘F’ flag shows that the process was ‘forked’ from
another process. More information on the various flags and usages can be
obtained from the manpage for the lastcomm command.

As you can probably tell, process accounting only audits information about the
process when that process has finished execution. This can be bad for security,
because many malicious processes such as viruses, trojans, and rootkit utilities
are designed to keep running. This means that there is a good chance that
process accounting will not help you to determine if a malicious process is
currently running. Also note that process accounting does not keep track of any
arguments that were passed to the command. This is important because the
same command can have different implications depending on its arguments.
Consider the two following commands:

[root@server log]# chmod o+rw /etc/shadow
[root@server log]# chmod o-w /home/mstevens/mydoc

..and now the resulting audit trail from those two commands:

chmod root ?? 0.00 secs Thu Nov 14 04:02
chmod root ?? 0.01 secs Thu Nov 14 04:37

As you can see, the first command sets the permissions on the /etc/shadow file
so everyone can read and write to it. This has bad security implications as the
/etc/shadow file stores the hashed passwords for all users on the system,
whereas the second command is benign and simply removes write access for
group owners to a personal document. When we go back to review the audit trail
after an intruder has made off with our passwords, the only way we can correlate
which entry in the audit trail corresponds to our event is by looking at last access
times on the /etc/shadow file. This is not good because access times can very
easily be changed. Also, imagine if we were not aware that the permissions on

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

the /etc/shadow file had been changed. Regularly reviewing the audit trail would
not give us any clues that malicious actions have taken place on this system!

Process accounting only audits the execution of commands. While very
important for security auditing, this is not enough. There are several other events
which are very important to pay attention to, such as the use of objects on the file
system. Process accounting will not tell us that ‘disgruntled user’ had a vi
session opened on our httpd.conf file, or that the process ‘/bin/sh .hiddenvirus’
just deleted everything under /boot. These are examples of other types of events
that should be a part of every good audit trail.

Process accounting also has a few other shortcomings that are worth mentioning
if I am to convince you that it does not meet our requirements of a good auditing
system. One, is that process accounting logs its audit trail to a file in its own
binary format. You cannot simply read or parse this file to see the audit trail, you
have to use the provided utilities such as lastcomm. While this makes it a bit
more difficult for an attacker to forge entries in your audit trail (but certainly does
NOT make it impossible), it makes it difficult to work with the data using other
utilities such as log analysis programs (think SWATCH and Logsurfer). It is also
more of a pain to parse the raw data for analysis. Another setback, is that there
is no good way to send the audit trail to another system because is does not offer
such a feature by itself, nor does it log to another facility that provides this
feature, such as syslog. Sending logs to a separate system is a very important
step to ensure your audit trail’s integrity and security. For more information on
Linux process accounting, see “Linux Security Administrator’s Guide” at:
http://www.linuxsecurity.com/docs/SecurityAdminGuide/SecurityAdminGuide.html

Now that I have shown the complete lack of auditing provided by most Unix
platforms and severe security problems of the auditing system that is provided by
some, let us look at a tool that is at the center of our preferred auditing
implementation: SNARE.

Auditing with SNARE

System iNtrusion Analysis and Reporting Environment (SNARE) is a freely
available tool from InterSect Alliance (http://www.intersectalliance.com). SNARE
is a very simple and powerful tool that was built for Linux to provide system
auditing capabilities. It works by inserting a kernel module that monitors system
calls to the kernel, and logs the events to /proc/audit. SNARE also provides a
daemon that runs in user-space called auditd. This daemon reads the data from
/proc/audit and sends relevant security information to a log file. Additionally,
SNARE also comes with a GUI tool to configure auditd and read the audit log in
much the same way the Event Viewer is used on Windows systems.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

You can configure SNARE to define exactly what types of events to audit, such
as the execution of a process, the modification of a file, system reboots, and
even processes that are trying to use the network interface. SNARE also
provides a much more detailed audit trail than process accounting. Here is an
example of a single event taken from the InterSect Alliance website at
http://www.intersectalliance.com/projects/Snare/Documentation/index.html :

testsnare.intersectalliance.com LinuxAudit
objective,clear,Mon Aug 6 19:43:25 2001,The program
/usr/bin/gimp has been executed by the user leigh
event,execve(),Mon Aug 6 19:43:25 2001
user,leigh(500),users(500),leigh(500),users(500)
process,1651,sh path,/usr/bin/gimp arguments,gimp
return,0 sequence,12937

Don’t worry if the above output looks a bit difficult to read. There are tools
available which format the output in a much more user-friendly fashion. This
example is showing the execution of a process. One of the nice things about
SNARE is that events are audited as soon as they happen, so we do not have to
worry about those pesky trojan’s avoiding our detection simply because they
continue running. Also note that any arguments given to command execution are
logged. Now we can determine which use of the chmod command given in the
example above was malicious. SNARE also logs the fully qualified domain name
of the host which generated the event. This may seem trivial now, but it will be a
big help later on when we have multiple machines sending their audit trail to one
centralized system. Other very useful pieces of information include the PID of
the running process, the real UID/GID of who took the action and the effective
UID/GID, the actual system calls that were made, and the return code of the
process. Now let’s look at getting SNARE up and running.

Installation
SNARE is provided in both source and RPM formats and can be obtained from
the InterSect Alliance website at:
http://www.intersectalliance.com/projects/Snare/index.html Before moving any
further, please be aware that at the time of this writing, SNARE does not work
with the latest RedHat Linux kernels. Specifically, RedHat 7.3 using kernel
2.4.18 or above, or RedHat 8.0. This is because of a change made in most of
the latest kernels that block processes from having access to hooks in the
system call table of the kernel, which SNARE relies on to monitor system calls.
On the bright side however, InterSect Alliance is working with the RedHat kernel
team to integrate SNARE into the Linux kernel, which if successful, may pave the
way for SNARE to be part of all future Linux kernels by default! Now that you
have been warned, let’s move on to specifics.

For this example, I will be installing SNARE from RPM on a RedHat 7.2 firewall
using the default 2.4.7-10 kernel. If you are not using the default kernel that is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

installed with your version of RedHat, make sure that you install SNARE either
from source RPM or tarball, as the RPM’s are designed only for the default
RedHat kernels. The installation steps I follow here are specific to my system and
are not as detailed as the SNARE documentation, so I encourage you to read
through the SNARE documentation which can be found at:
http://www.intersectalliance.com/projects/Snare/Documentation/index.html

You will also want to first decide whether or not you want to install the GUI utility
that can be used to configure SNARE and analyze the audit trail. I will not be
installing the GUI in this example because I am running SNARE on a server. It is
generally a good practice not to run the X Window system on servers if you do
not need to. This means that I will only need to download the snare-core RPM.
As of this writing, the current version of SNARE is version 0.9.1-1.

First, I download snare-core-0.9-1.i386.rpm into my home directory:
/home/mstevens/snare-core-0.9-1.i386.rpm

Next, I verify the file with md5:
[root@firewall mstevens]# md5sum snare-core-0.9-1.i386.rpm
98f8cc78639686e836953cf1fa5bbbae snare-core-0.9-1.i386.rpm

Install the package:
[root@firewall mstevens]# rpm -ivh snare-core-0.9-1.i386.rpm
Preparing... ### [100%]
 1:snare-core ### [100%]

Start up SNARE:
[root@firewall mstevens]# /sbin/service audit start
Installing Audit Module: Using /lib/modules/2.4.7-10/audit/auditmodule.o

Starting /usr/sbin/auditd:
SNARE audit daemon: version 0.90 starting up
InterSect Alliance Pty Ltd
http://www.intersectalliance.com/
SNARE audit daemon: driver open, starting audit

Check the log file:
[root@firewall audit]# tail /var/log/audit/audit.log
firewall.private.com LinuxAudit objective,priority,Thu Nov 14 10:28:16
2002,The file /var/log/audit/audit.log has been opened (read only) by the user root
event,open(O_RDONLY),Thu Nov 14 10:28:16 2002
user,root(0),root(0),root(0),root(0) process,22776,tail path,/var/log/audit/audit.log
return,3 sequence,1030

And we are up and running. There is still more work to be done however. Next,
SNARE must be configured to fit your security policy. All of SNARE can be

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

configured from a single configuration file in /etc/audit/audit.conf. The authors
recommend that you do not edit the configuration file manually, but rather use the
GUI configuration utility unless you really know what you are doing. If you are
the cautious type then this is a good practice, however, audit.conf is not very
difficult to work with, and I have yet to have any problems, so I will be manually
editing my configuration file. The contents of the default audit.conf file are below.

WARNING: DO NOT MANUALLY EDIT, UNLESS YOU KNOW WHAT YOU
ARE DOING
[AuditType]
 type=Objective

[HostID]

[Output]
 file=/var/log/audit/audit.log

[Objectives]
 criticality=4 event=open(.*),creat,mkdir,mknod,link,symlink return=Success
user!=root match=^/etc/shadow$
 criticality=2 event=open(.*),creat,mkdir,mknod,link,symlink return=Failure
user!=root match=^/etc/shadow$
 criticality=4
event=open(O_WRONLY|O_RDWR|O_CREAT|O_TRUNC|O_APPEND),creat,mkdir,
mknod,link,symlink return=Success user!=root
 match=^/etc/passwd$
 criticality=2
event=open(O_WRONLY|O_RDWR|O_CREAT|O_TRUNC|O_APPEND),creat,mkdir,
mknod,link,symlink return=Failure user!=root
 match=^/etc/passwd$
 criticality=2 event=open(.*),creat,mkdir,mknod,link,symlink return=Failure
user=.* match=^(/var/log|/etc)/audit.*
 criticality=3 event=open(.*),creat,mkdir,mknod,link,symlink return=Success
user=.* match=^(/var/log|/etc)/audit.*
 criticality=4
event=open(O_WRONLY|O_RDWR|O_CREAT|O_TRUNC|O_APPEND),creat,mkdir,
mknod,link,symlink return=Success user!=root
 match=^/(sbin|usr/sbin|bin|usr/bin|usr/X11R6/bin|usr/bin/X11)/.*
 criticality=1 event=execve,exit return=Success user=.* match=^/bin/su$
 criticality=2 event=execve,exit return=Failure user=.* match=^/bin/su$
 criticality=1 event=socketcall(ACCEPT) return=* user!=root match=.*
 criticality=3
event=chmod,rename,reboot,truncate,truncate64,chown,lchown,chown32,lchown32
return=* user=.* match=^/etc/.*
 criticality=2 event=execve,exit return=* user=.* match=.*newgrp.*
 criticality=3 event=rmdir,unlink return=* user=.* match=^/etc/.*

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

 criticality=2 event=rmdir,unlink return=* user=.* match=^/var/log/.*
 criticality=0 event=socketcall(CONNECT) return=* user=.* match=.*
 criticality=0 event=execve,exit return=* user!=root match=.*

[Events]
 open=0
 creat=0
 execve=0
 exit=0
 mkdir=0
 unlink=0
 mknod=0
 rmdir=0
 chown=0
 lchown=0
 chown32=0
 lchown32=0
 chmod=0
 symlink=0
 link=0
 rename=0
 reboot=0
 truncate=0
 chroot=0
 setuid=0
 setreuid=0
 setresuid=0
 setuid32=0
 setreuid32=0
 setresuid32=0
 setgid=0
 setregid=0
 setresgid=0
 setgid32=0
 setregid32=0
 setresgid32=0
 truncate64=0
 socketcall=0
 create_module=0

You can configure SNARE to use one of two different auditing types: Objective or
Event. Toward the beginning of audit.conf, under the [Audit Type] section, you
have to tell SNARE which type you want to use. Objective is recommended and
is the default. Event auditing is the simpler of the two. With Event auditing, you
simply tell SNARE which system calls you want audited and which you do not.
This is done with a simple on or off setting for each system call under the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

[Events] section. Setting a system call to 1 turns auditing on, while 0 turns
auditing off. For example, if I wanted to audit every time a process gets
executed, I would set execve=1. If you use Event auditing, make sure you know
what each system call is used for. Also, be careful not to overwhelm your system
with audit logs! If you use Event auditing, you run the risk of generating a lot of
logs, which could crash your system. This is the main reason that I do not
recommend using Event auditing. I can promise you that if you try and audit
every system call, you will be in trouble.

Objective auditing is a bit more complex, but much more powerful than Event
auditing. It is with Objective auditing that you can tell SNARE exactly what you
want audited, down to the file and user who accesses it. Objective auditing is
configured as a rule set. Each rule has several properties that you can define,
such as the user who creates the event, the system calls related to the event, a
return value to indicate success or failure, and assign a criticality level to the
event. When an action performed on the system matches one of the rules it is
logged. Even with Objective auditing, you have to be careful not to create a rule
set that will generate too many logs. Let’s look at one of the rules that are
present in the default configuration.

criticality=4 event=open(.*),creat,mkdir,mknod,link,symlink return=Success
user!=root match=^/etc/shadow$

This rule tells SNARE to audit any time a non-root user successfully performs
almost any operations on the /etc/shadow file. This is good, because we know
that if a non-root user can perform any of these actions, then the /etc/shadow file
has incorrect permissions and there is a very good possibility that we have been
compromised. Notice that for this rule, the criticality level is set to 4, which is
very high. If we were sorting through a large audit trail, we could easily sort by
the most critical events, and this event would be at the top. This is a very useful
feature when dealing with large audit trails.

The next property is the event property. This tells SNARE which types of system
calls to look for. The open(.*) is directing SNARE to watch any type of open
event regardless of whether it is read-only, write-mode, append-mode, etc.
SNARE also provides several built-in groupings of events called ‘classes’ which
help make writing your rule set easier. Consult the SNARE documentation for
more on classes and related events. Next, we have the return property. Here
you tell SNARE whether to look for a successful event, a failure event, or both.
This is very similar to Windows auditing. Next is the user property. It tells
SNARE to look for any user that does not equal root. Finally, there is the match
property. This is a very powerful feature of SNARE which can be used to build
regular expressions that match against the rule target. In this case, it is the
/etc/shadow file. If you are unfamiliar with the use of regular expressions, consult
the man page for egrep.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

After you are finished building your rule set, it is a good idea to test it and ensure
that your policy works. Again, make sure you are not auditing so many events
that your system fills up with logs. Deciding on what you want to audit is always
the most painstaking part of implementing your auditing policy. If you audit too
little, you may miss valuable information that could be useful in the future. If you
audit too much, then you end up with so much data to analyze that you end up
missing the important events. It is a good idea to start with the default policy,
and then add additional events in accordance with your organizations security
policy. One rule that I would think about adding is auditing the creation or
modification of .rhosts files. Your organizations security policy may state that all
user actions must be tracked. In such case it may be a good idea to put all such
user accounts in a ‘personnel’ group, and audit all events related to that group.
In any case, keep in mind that you will never get it right the first time. Your
auditing policy is probably something that will change relatively often, so it is
simply a matter of adding more rules when you need them, and tuning them
down when they are either generating too much data to process or affecting
system performance.

The next step is to configure SNARE to send its logs to a separate machine. This
is easily done by adding the line:
network=hostname:port
under the [Output] section of the configuration file and restarting SNARE. When
sending logs over the network, SNARE works much like syslog. It uses UDP to
send the data, but it does let you specify which port you wish to send the data to.
Pick a higher port number above 1024 that you can dedicate for the use of
SNARE throughout your network. You also need to have SNARE running on the
remote system to receive the messages. Sending your logs to a separate
system goes a long way in protecting the integrity of your logs and is highly
recommended.

Additional Considerations
I hope that by now you are convinced of the importance of strong auditing and
that SNARE can help you achieve it. At the beginning of this paper I asked you
to keep in mind some additional supporting security practices which can help
make security auditing a lot more effective. I want to mention many of those
points here so that if you do decide to implement a good auditing system you
have additional hints to help make your implementation much more effective.

One of the most valuable things that auditing can provide is accountability. It can
tell you what actions took place, when they were taken, and who took them. The
integrity of these three sources of information depend on much more than your
auditing tools. One very important thing to remember is that the integrity of your
audit trail heavily relies on how strong your authentication mechanisms are. If
you are using a weak authentication scheme, such as relying on IP address
authentication for remote hosts, or sending cleartext usernames and passwords

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 13

over telnet sessions, then how can you trust the usernames that are referenced
in your logs? If all of the administrators log into the system as root, then how do
you know who actually executed those commands when they all show up as
root? The simple answer is that you can’t. If you do not implement strong
authentication mechanisms, and good security policy to protect them, then you
can not rely on your audit trail to tell you the truth.

Just as important as authentication, is the accuracy of your system clocks. It is a
very common mistake to have several systems on the same network with out of
sync clocks. This makes analyzing audit trails almost impossible. Use tools
such as NTP to automatically keep your system clocks in-sync with each other.
Protect your systems with a firewall so outsiders cannot easily reset your system
time and play tricks with your audit trail. If you do not protect it, it will be
exploited.

Unfortunately, SNARE does not provide any built-in mechanisms to ensure the
integrity of your audit logs. This is left up to you. Sending your logs to a remote
system is a good start. The challenging part is ensuring message integrity with
UDP. Experiment with other tools such as IPSec, netcat, and SSH. One very
useful trick is to use netcat to tunnel UDP traffic through SSH, improving the
integrity of your data. A good example of how to do this can be obtained from
http://www.netsys.com/cgi-bin/display_article.cgi?1136 . Keep in mind that
encrypting the traffic will add overhead, so you may want to select a faster, less
secure cipher to encrypt your transmissions. Remember that confidentiality is
not nearly as important as integrity and availability when dealing with your audit
logs. Using technologies such as IPSec and SSH wil also provide you with
authentication for your auditing system. If implemented properly, your central
logging server will not blindly accept any traffic it recieves, but will rely on the
authentication mechanisms provided by tools such as SSH.

Don’t forget to backup your audit logs. I’ve seen gzip take an 80MB text file
down to 5MB so there should be no excuse for not backing up those logs for at
least a month. Your organizations security policies will often outline how long
audit logs should be retained. It is a very common practice to see attackers use
“low and slow” types of attacks to avoid detection. If an incident does happen,
you will want to have at least a months worth of logs to look through so you have
a better chance to determine when the attacks really started.

Think about taking advantage of freely available log analysis utilities such as the
Simple WATCHer (SWATCH), written by Todd Atkins, which can be obtained
from http://www.oit.ucsb.edu/~eta/swatch/ , or Logsurfer, developed by Wolfgang
Ley and Uwe Ellerman, which can be found at http://www.cert.dfn.de/eng/logsurf/
I personally recommend Logsurfer because it has several advantages over
SWATCH, such as the ability to analyze any text file, the ability to specify
exceptions, and including timeouts and resource limits. The advantages of
Logsurfer as listed on the Logsurfer website:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 14

• Works on any textfile (or text from standard input)
• Matching of lines is done by two regular expression (logline must match

the first expression but must not match the optional second regular
expression). So you are able to specify exceptions.

• Uses contexts (collection of messages) instead single lines
• Flexible but easy configuration

• Timeouts and resource limits included
• Handles "shifting" of logfiles (just send a -HUP signal to close and reopen

the logfile after you have moved the old one to another place and created
a new one)

• Dynamic rules can change the actions associated with logmessages
(something might happen that makes you interested in messages you
would usually drop)

• Multiple reactions on one logline possible
• Portable written C-code (uses GNU regex library and autoconfigure)
• …

Logsurfer can be downloaded directly via FTP from
ftp://ftp.cert.dfn.de/pub/tools/audit/logsurfer/ . With the help of a log analysis
utility you can be notified immediately via email or pager when critical events take
place. I would recommend that at a minimum, you configure your log analysis
tool to notify you of any events with a criticality level of 4. With the help of these
utilities you can turn your well established auditing system into a full-blown Host
Based Intrusion Detection System (HIDS).

If you are implementing an auditing system across many hosts in a large,
networked environment, or just simply want to go all out, think about putting your
audit logs into a database such as MySQL rather than just flat text files. Initially,
it takes more time and effort, but in the long run centralizing all of your data into a
managed database will make analyzing and managing your audit logs much
easier. I have implemented similar scenarios with Perl that simply reads the
incoming data from the network, sorts it, and sends it to specific tables in a
database. It is not as complex as you might imagine and if you are not a “perl
hacker,” it is not very difficult to find one that is willing to help. If you search hard
enough, you may even be able to find pre-written scripts for you on the Internet,
but I would seriously recommend customizing it to your situation. Just remember
not to abandon your raw audit logs. Raw audit logs are often the only evidence
that will help you in legal situations, and are always the best source of
information when doing in-depth analysis.

Lastly and probably the most important of all, make sure that you comply with
your organization’s security policy. Your security policy protects you more than
any technical countermeasure you have. You do not want to lose your job over
auditing user activity when it is against your organization’s privacy policies.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 15

Make sure you have the appropriate permission from your managers before
auditing your systems. You can make a lot of people unhappy if you do not. If
you are not sure, then ask. If you get mixed responses, do not move forward
until it is crystal clear that you are complying with your organization’s policies.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 16

References

Swanson, Mariann, & Guttman, Barbara. “Generally Accepted Principles and
Practices for Securing Information Technology Systems.” NIST Special
Publication 800-14 (1996): 50-52.

InterSect Alliance. “Information Technology Security.” SNARE – System
iNtrusion Analysis & Reporting Environment.
URL: http://www.intersectalliance.com/projects/Snare/index.html (5 Nov. 2002).

Atkins, Todd. “SWATCH: The Simple WATCHer.” SWATCH: The Simple
WATCHer. 8 Nov. 2001. URL: http://www.oit.ucsb.edu/~eta/swatch/ (2 Nov.
2002).

DFN-CERT. “Logsurfer Homepage.” Logsurfer. 1 Dec. 2000.
URL: http://www.cert.dfn.de/eng/logsurf/ (2 Nov. 2002).

Staff Writer. “NETSYS.COM – The Intelligent Hacker’s Choice.” Fun and Games
with netcat, ssh, tunneling. URL: http://www.netsys.com/cgi-
bin/display_article.cgi?1136 (5 Nov. 2002).

Wreski, Dave. “Linux Security Administrator’s Guide.” User, System, and Process
Accounting. 22 Aug. 1998.
URL:
http://www.linuxsecurity.com/docs/SecurityAdminGuide/SecurityAdminGuide.html
(2 Nov. 2002).

Computer Protection Program. “Berkely Lab Computer Protection Program.” Enabling
and Configuring System Auditing.
URL: http://www.lbl.gov/ICSD/Security/systems/auditing.html (3 Nov. 2002).

Whelan, Paul. “SANS Information Security Reading Room.” Linux Security Auditing.
1 Jun. 2001. URL: http://rr.sans.org/audit/linux_sec.php (5 Nov. 2002).

