
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Linux.Slapper.Worm: Buffer overflow attacks continue to be a problem

SANS GSEC Practical ver. 1.4b, Option 1
Richard H. Fifarek

Oct. 1, 2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Abstract
The Linux.Slapper.Worm is yet another example of the security problems

that programmers must consider when creating applications and libraries that are
intended to be used via the network, and on a broader scale, the Internet.
 Many programs that are written today, particularly for the UNIX operating
system or UNIX-like operating systems, are written in the C programming
language. The design of the C programming language created a framework that
allowed buffer overflows to occur. In addition, lack of proper training of
programmers and bad programming practices makes the buffer overflow
possible. “Buffer overflow attacks are said to have arisen because the C
programming language supplied the framework, and poor programming practices
supplied the vulnerability” (searchSecurity.com).
 OpenSSL is a popular library of functions that is used to encrypt
transmissions of data over the network. It is often used in the very popular
Apache web server to provide encrypted web communications, which is the
means by which this worm propagated itself. The OpenSSL package is designed
to help improve security, but yet, in turn, it made systems less secure.
Numerous versions of the OpenSSL library contained four buffer overflow
conditions that could be exploited to compromise a system over the network.
Using these buffer overflows as a point of attack, someone designed a worm
(called Linux.Slapper.Worm) that attacked and compromised systems, and then
used that system to propagate itself to other systems. Approximately 13,900
machines were confirmed infected, as reported by F-Secure, Inc. (F-Secure).
 Until programmers begin writing from a security first approach and
systems administrators and vendors learn to be proactive about patching their
systems, the computing industry will continue to be plagued by worms and
remote security compromises in general.

Overview

On July 30, 2002, the OpenSSL Project team released a security advisory
documenting vulnerabilities in various versions of the project’s OpenSSL
programming library. The affected versions were 0.9.6d and earlier, or 0.9.7-
beta2 and earlier. Four of these vulnerabilities were explicitly documented
because they were identified as remotely exploitable via a buffer overflow attack.
While the Neohapsis computer security group had internally proven that exploits
were possible, there were no known exploits “in the wild” at the time the report
was released.
 On September 13, 2002, Ben Laurie, the author of the original security
advisory, posted the first reports of a worm that exploited the buffer overflow
vulnerabilities in OpenSSL programming library to the software security mailing
list Bugtraq. In his message, he said “Anyone who has not patched/upgraded to
[OpenSSL] 0.9.6e+ should be _seriously worried_” (Laurie). He was correct.

The Linux.Slapper.Worm specifically targets machines running the Linux
operating system, and its point of entry was the popular Apache web server,
which used OpenSSL to provide secure web communications using encryption
via the plugin module mod_ssl. The Apache web server is responsible for more

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

than 60% of the 35 million plus public websites on the Internet. Less than 10% of
those websites use SSL services. Furthermore, only 50% of those use
OpenSSL, which equates to slightly over 1 million sites that were potentially
vulnerable (F-Secure). Analysis of the worm’s method of attack generated some
quick fixes that obscured vulnerable systems from attack by the worm.
Unfortunately, these temporary fixes bought systems administrators little time as
2 “smarter” variants of the Linux.Slapper.Worm were released shortly after the
original. While certainly not the fastest and most destructive worm, it proved that
the problem of buffer overflows attacks was still an ongoing issue.
 Buffer overflows and worms that exploit them are nothing new. The first
publicly documented Internet worm that exploited a buffer overflow occurred in
1988, and 14 years later, they still regularly plague the computing industry
(Litterio). Effective methods and tools exist to prevent or detect buffer overflows
before they become a problem, but these aren’t widely implemented. Some tools
actually monitor the program while it is running, but these often seriously degrade
the performance of the system. Programming techniques and specific functions
that help prevent buffer overflows are well documented and easily available.
Newer versions of compilers are beginning to flag dangerous functions and
generate warnings regarding the use of those functions. However, these aren’t
being adopted, and the computer industry continues to see problems.

Unfortunately, education tends to always lag behind the “cutting edge” in
any field. In the computer security and programming, this is particularly an issue,
as advancements have followed a much more aggressive curve than many other
industries. Until the computer education community begins teaching
programming from a “security first” approach rather than “security as an
afterthought” approach, these problems will continue to persist and likely get
worse as the number of Internet connected hosts grows.

Also, vulnerabilities are often discovered, repaired, and made public
before an exploit is created and actively used. In the case of the OpenSSL
vulnerabilities, a functioning exploit wasn’t “in the wild” for nearly a month and a
half, giving many systems administrator’s ample time to upgrade or patch their
OpenSSL libraries.

OpenSSL
 A well known, successful open source project, the OpenSSL project is an
effort “to develop a robust, commercial-grade, full-featured … toolkit
implementing the Secure Sockets Layer (SSL v2/v3) and Transport Layer
Security (TLS v1) protocols as well as a full-strength general purpose
cryptography library” (OpenSSL Project). In short, the OpenSSL package allows
one to build SSL and TLS functionality and the inherent security provided by
encryption into network applications. As security on the Internet continues to be
a growing concern, SSL and TLS encryption has proven to be an effective way to
protect sensitive (and sometimes non sensitive) data while in transit between two
machines via the network. In addition to supporting SSL and TLS, OpenSSL
now includes support for interfacing with external crypto hardware. OpenSSL is
a popular library for use in the web server Apache for providing secure web

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

communication, and in OpenSSH, a popular Telnet replacement that allows
secure remote administration. OpenSSL is often used to provide secure
communications in many open source software packages that require encryption.
Any security flaw in OpenSSL reduces the effectiveness of the security it was
designed to provide.

Worm
 A computer worm is similar to a computer virus in how it replicates, and
often contains some functionality that is designed to disrupt the normal functions
of a computer (Virus Definitions). However, a worm does not attach itself to a
program or file like a virus does, but rather is a standalone program or a separate
entity that attempts to spread without help. A worm’s objective is to propagate
itself as quickly as possible, and as such, a worm will attempt to do as much of
the propagation work without any intervention or assistance from a user as it can.
 In order to propagate itself, a worm will often take advantage of automated
tasks or functions, such as file sending and receiving (Virus Definitions). Many
modern operating systems provide these services. Also, certain popular
programs (typically email clients) have automatic functions built into them that
are intended to make the program easier for the layman to use. Another method
that worms use to propagate is to take advantage of a remotely exploitable
vulnerability such as a buffer overflow that can be taken advantage of via the
network. The Linux.Slapper.Worm is an example of a worm that uses this
technique.
 The Linux.Slapper.Worm will randomly begin scanning for hosts on the
Internet, and when it finds one, it will attempt to determine if the host is capable
of being attacked. If the machine is able to be compromised, the worm copies
itself to the newly compromised system, and then both systems begin searching
for other systems to attack. Using this method, a worm can spread very quickly.

Nicolas C. Weaver of the University of California Berkeley believes that a
properly designed worm using intelligent propagation techniques could infect
every vulnerable host within the IPV4 address space (more than 4 billion
addresses) in a minimum of 15 minutes to a maximum of one hour (Weaver).
Even the most proactive systems administrators could not be notified and able to
take action to protect their systems within that short time frame. The potential of
this Warhol worm is enormous, “capable of doing many billions of dollars in real
damage and disruption” (Weaver). Furthermore, because of the speed with
which the worm spreads, “human mediated responses offer almost no hope of
stopping it”, as systems administrators would likely not receive security
advisories in time to prevent infection (Weaver). Fortunately, this hyper-virulent
worm has yet to be seen in the wild.

While detecting worm activity isn’t impossible, it often can appear as
normal network traffic. A connection to port 80, the web server port, on a
machine is not unusual, and is, in most cases, expected. Any network
monitoring device, such as an Intrusion Detection System (IDS), would have to
look for patterns within the network traffic to detect worm activity. The patterns
may be discovered by monitoring the data transferred between the attacker and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

victim machines, or by tracking the number of connections and type of
connections to multiple machines. This is resource intensive, and often requires
prior knowledge of the patterns before accurate detection can occur. As worms
become more sophisticated, this becomes an increasingly difficult means of
protection against them. The only truly effective way to stop a worm from
propagating is to prevent infection by maintaining current patch levels that
repair/remove the point of entry, in this case a buffer overflow.

Buffer Overflow

According to searchSecurity.com, “a buffer overflow occurs when a
program or process tries to store more data in a buffer (temporary data storage
area) than it was intended to hold” (searchSecurity.com). By overflowing a
buffer, a program can begin to overwrite certain areas of memory that it typically
wouldn’t have access to. A properly designed buffer overflow attack will overflow
the buffer and write new instructions to memory that the running program will
eventually execute. By tailoring these instructions, an attacker can give
themselves access to the machine that he or she wouldn’t normally have
available. In the case of a worm, the worm would use the access to infect the
host, and then use that host to aid in the further propagation of the worm.

Using buffer overflows to attack machines is nothing new. One of the
most well known, and perhaps the first to be publicly documented, buffer
overflow attacks occurred in November 1988 in the form of the infamous “Internet
Worm” (Litterio). This worm shut down approximately 6,000 machines, and in
effect the entire Internet itself (Farrow). By using a buffer overflow in the finger
service, the worm was able to infect the machine and then use the newly infected
host to further propagate itself.

Buffer overflows occur primarily because of the design of the C
programming language, and partially because of poor programmer’s habits. The
C language was designed to allow easy porting of programs to many hardware
architectures, and to be “tight and fast”. In short, the C programming language
was designed to be very close to assembly language while still providing a layer
of abstraction that would facilitate porting code to other architectures easily.
Unfortunately, this type of design inadvertently created a framework that allows
buffer overflow conditions to occur easily.
 A computer categorizes things in two ways: code and data. It treats code
as a set of instructions that tell it what to do, and it treats data as the item that it
executes the instructions on or with. Unfortunately, a computer can’t tell the
difference between the two, and relies on the programmer or user to determine
which is which. In order to run a program on a computer, the operating system
must load the code and data the code needs into memory for execution. For
certain applications, the code will get most of its needed data from another
application through some form of communication, often via a network. This
design isn’t inherently dangerous because the remote application can only work
within the constraints of the local program’s original code.

The problem arises when a remote program does something that breaks
those constraints and overwrites the set of instructions stored in the memory of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

the local program. Since a computer can’t distinguish between code and data, it
will blindly execute commands stored in the data. A malicious remote program
will first try to get the code to the targeted computer by sending it as input data
for the buffer over the network. An improperly written program won’t check the
size of the input data to see if it is larger than the destination buffer, and thus will
begin overwriting other areas of memory outside the boundary of the buffer. The
malicious program will tailor the data such that the data written outside of the
buffer contains instructions that the program will execute. These instructions
vary in type and purpose, but in general, they perform actions that will allow the
worm to infect the machine and then use that machine to attempt to infect other
machines. Frequently, programs such as distributed denial of service (DDoS)
tools are installed as well.

Given its age and popularity, the design of the C programming language is
not going to change, so that leaves the burden of change on the programmers
and the educators of programmers. Unfortunately, very little progress has been
made in the education of the programming community, as shown by the
Linux.Slapper.Worm and the continued success of buffer overflow attacks over
the years. The only effective prevention of buffer overflow attacks is properly
written software that checks for an attempted buffer overflow and deals with it
accordingly, written by better educated programmers who avoid writing software
that is susceptible to attack. The best defense against buffer overflow attacks is
maintaining proper patch levels on the system.

Linux.Slapper.Worm

In an email message to Bugtraq, Ben Laurie reported that he had seen a
worm that attacked OpenSSL, taking advantage of the buffer overflow problems
reported earlier by him. He went on to say that the worm was specifically
targeted at Linux systems, but he felt that variants that attacked other systems
could exist, or could easily be created (pg. 1).
 The Linux.Slapper.Worm (also known as the Apache/mod_ssl Worm)
came in three variants. All three variants took advantage of the buffer overflow
that existed in older OpenSSL versions by attacking vulnerable installations of
the popular open source web server Apache on Linux operating systems. Many
flavors of Linux were vulnerable, including SuSE, Mandrake, RedHat, Slackware,
and Debian.
 Each variant attempts to connect to port 80 on the victim computer. If the
connection is successful, it will send an invalid GET request (a HTTP command
used by web browsers). Each web server responds differently to an invalid GET
request, and typically identifies itself in the response. If the invalid GET request
is responded to by an Apache server, the worm will connect to port 443, the SSL
port, and send the exploit to that port. The worm tries to execute a Linux shell
code exploit that is specifically targeted at x86 (Intel) hardware platforms. The
code requires /bin/sh in order to function, and then sends uuencoded source
code files of itself to the /tmp directory on the victim machine. Once the files are
uploaded to the victim machine, the worm decodes the files, and using gcc,
compiles them into binary format. It then executes the binary file that was

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

created in /tmp. When executed, the IP address of the attacking computer is
provided as an argument to the program. This creates a virtual peer-to-peer
network of infected systems that is used to coordinate and launch a Distributed
Denial of Service attack. The worm listens on a UDP port (each variant uses a
different port number) in order to participate in the peer-to-peer network and
await instructions. In order to continue propagation, the worm scans class B-
sized networks, choosing the first byte of the address randomly from a list, and
the second byte randomly.

The A variant listens on UDP port 2002. The files that it places in /tmp are
.uubugtraq, .bugtraq.c, and .bugtraq. .uubugtraq is the uuencoded file,
.bugtraq.c is the source code, and .bugtraq is the compiled binary of the worm.

The B variant listens on UDP port 1978. The files that it places in /tmp are
.cinik.uu, .cinik.c, and .cinik. .cinik.uu is the uuencoded file, .cinik.c is the source
code, and .cinik is the compiled binary of the worm. The B variant also behaves
differently from the A and C variant in that it collects and sends information about
the infected host to a yahoo.com address. Also, the B variant takes on the role
of a virus and infects certain files on the victim machine by overwriting them with
a copy of itself. It then schedules them for later execution in an attempt to
reactivate the worm on that machine in the event that it is discovered and
removed from its standard /tmp location. Due to a bug in the software, it is only
able to infect a small number of files. Upon first infecting a machine, the B
variant will look for the source code in the /tmp directory and if it doesn’t find it,
will download the code from a (now shutdown) web site in Romania. A
modification of the B variant, referred to as the C2 (cinik version 2) variant, was
discovered on October 2, 2002. The C2 variant had some bug fixes from the
original B variant, and uses port 1812 instead.

The C variant is unique in that it contains two source code files. The files
that it places in /tmp are .unlock.uu, .unlock, .unlock.c, .update.c, httpd, and
update. .unlock.uu is the uuencoded file, .unlock is an archive file (.tgz format),
.unlock.c and .update.c are the source code files, and httpd and update are the
compiled binaries. This variant listens on UDP port 4156. The renaming the
binary httpd is an attempt to hide the process by making it look like a regular
Apache process when the “ps” command is executed. Another twist on the
original is that “the C variant periodically listens on TCP port 1052 and provides a
shell to an attacker who is connecting to the port.”

In addition, all of the filenames of the variants begin with a “.”. This is an
attempt to prevent detection by hiding the files from listing by the ls command.
The only way to see the files would be to run “/bin/ls -a”, instead of the standard
“/bin/ls”.

Once specific details of the worms behavior and methods of attack were
posted to Bugtraq, a number of people offered temporary fixes. One idea,
offered by Ajai Khattri, was to modify the “Server:” HTTP response field which
obscured a vulnerable system from detection by the worm (Khattri). The worm
based its attack on the response generated by the server for identification of the
type of system. Another idea posted by Sandu Mihai suggested using the
worm’s own peer-to-peer network against itself, periodically sending commands

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

to the infected hosts instructing them to kill the worm process with the killall
command (Mihai). This technique could have been made more effective by
sending instructions prior to killall that deleted the files in /tmp, and made the
filenames symlinks to /dev/null to prevent possible reinfection, and then send the
kill command to the worm’s process. While the idea of using the peer-to-peer
network against the worm was never implemented, a similar, but simpler
technique was used. As reported by F-Secure Security Information Center, there
was evidence that systems administrators were running automated scripts that
would kill and delete the worm. Unfortunately, many of those systems would
soon get reinfected (F-Secure).

Another worm named Linux.DevNull, which has been incorrectly called
Linux.Slapper.Worm variant D because it also uses the OpenSSL vulnerability,
was discovered on September 30, 2002 (F-Secure). Once this worm has
successfully infected a host, it downloads and executes a shell script from a
website. This script downloads a compressed executable from the same
website, decompresses it, and executes it. The executable is an IRC client that
connects to a particular chat channel, and accepts commands to run on the
infected host. The worm then downloads another compressed file, and
decompresses it. This file contains both an executable and a source code file.
The worm attempts to compile the source code file, and then executes the
executable. This executable begins to search for more vulnerable hosts, and
attempts to infect them. This worm does not create a peer-to-peer network as
Linux.Slapper.Worm does. Since this behavior isn’t similar to the
Linux.Slapper.Worm pattern, it is considered an entirely separate worm.

Detection and Removal

Detecting infection requires very little effort and skill. The author(s) of this
worm didn’t put much effort into hiding this worm from systems administrators.
1. Login as root and stop the Apache process (note: if you aren’t running Apache,

then it is very unlikely that you have been infected). This often can be
accomplished by running the command “/etc/init.d/httpd stop” or the
command “apachectl stop”.

2. Change into the /tmp directory, and run the command “/bin/ls -a” (note: the -a
argument to /bin/ls is important because ls’ default behavior is to not list files
that begin with a “.”). If you see any of the filenames that were mentioned
before, then you are infected.

3. Run the “/bin/ps -aux| less” and look for any process names that are unusual
(note: if you have already stopped Apache, and you see a httpd process still
running, then it is possible that you have been infected by the C variant.
However check for other evidence to be sure).

Based on the filenames in /tmp, it should be possible to determine which
variant has infected the computer. If it is the A variant (.bugtraq), then one
should see a .bugtraq process running and the process id it is running under in
the process list generated by the “/bin/ps -ef” command. By running “/bin/netstat
-t inet -an” one should also see that UDP port 2002 is open. To kill the process,
run “/bin/killall -9 .bugtraq”. Run the “/bin/ps -ef” command again to verify that

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

the process is no longer listed. If it is the C variant of the worm, then the same
steps apply, just replacing “.bugtraq” with “httpd” and a UDP port of 4156. With
both variants, one will want to delete the worm files from /tmp, or at the very least
move the files to a different directory for later viewing and investigation. All major
Linux distribution vendors have released updates for their OpenSSL packages,
so the process of patching a system should be simple. For instance, the updated
OpenSSL package for RedHat 7.x is openssl-0.9.6b-28.<arch>.rpm, where
<arch> is the hardware architecture. To update the package on RedHat 7.x on
the Intel (x86) architecture, download the openssl-0.9.6b-28.i386.rpm file from
RedHat’s site, and then run “/bin/rpm -Uvh openssl-0.9.6b-28.i386.rpm”. Once
the package is updated, Apache can safely restarted.

With the B variant, the detection and removal process is similar, however
one has to consider that the B variant infects other files, and tracking those files
down may be difficult and time consuming. One method of doing this on an rpm
based distribution like RedHat would be to use the /bin/rpm command’s package
verification options. “/bin/rpm --verify --all” will scan the files and compare them
to its database and flag any of them have changed from what it expects. On a
cautionary note, one must be certain that the rpm database hasn’t been
tampered with; otherwise the information will be suspect. Another tool is
Tripwire, but it needs to be installed prior to infection by the worm. Also,
consider that information about the infected machine was sent to a yahoo.com
email address. Given all of this, wiping the system clean and installing a fresh
operating system and software would be the safest option. This applies to all of
the variants, but is especially significant if infected by the B variant. As always,
after reinstalling the operating system and software, make sure that the system is
patched to the latest patch level provided by the vendor.

Conclusion
 While the Linux.Slapper.Worm affected a small percentage of the
machines, it serves as yet another example of the problems still facing the
computing industry. This worm took advantage of a buffer overflow in the
OpenSSL library commonly used by the Apache web server to provide secure
web communications. The first recorded worm that utilized a buffer overflow
attack was launched in November 1988, and 14 years later, the computer
industry continues to be plagued by them.
 While the C programming language created the framework for buffer
overflows to occur, the burden of responsibility falls on the programmers to avoid
creating buffer overflows in their programs. In addition, the educational system is
also responsible for teaching proper programming techniques to students.
Programmers have to start writing programs from a “security first” approach
rather than building security into the application as an afterthought.
Unfortunately, security “holes” are something that are always going to be a
problem, and as such, systems administrators need to be proactive in
maintaining current patch levels on their systems when security advisories are
released.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Even though each of the Linux.Slapper.Worm variants were either
improved or modified versions of the original, all variants made infection fairly
easy to detect. They created a peer-to-peer virtual network running over UDP
that used non-standard ports that probably wouldn’t get confused with other
commonly used UDP ports. They placed all of their files in /tmp. The B variant
had the potential to do the most damage because it not only tried to infect other
machines, but it tried to infect local files. Fortunately, due to a bug in the worm’s
source code, it only met with mild success. Using tools such as rpm or Tripwire
to verify signatures of the systems files, it is possible to track down the changes
made by the B variant, and reinstall the software packages that were affected
from known good sources. The threat of the Linux.Slapper.Worm was short
lived, and infected a relatively small number of hosts. A suspect was arrested on
suspicion of authoring the original worm, after having been tracked back to an
email address in the Ukraine (Middleton).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Works Cited

“Computer Worm (Definition).” Virus Information. University Computing

Services, Ball State University. 22 September 2002
<http://www.bsu.edu/ucs/article/0,1299,6313~448~1985,00.html>

Farrow, Rik. “Blocking Buffer Overflow Attacks.” Network Magazine 1 November
1999. 22 September 2002
<http://www.networkmagazine.com/article/NMG20000511S0015>

“Global Slapper Worm Information Center.” F-Secure Security Information

Center. 14 September 2002. 6 October 2002 <http://www.f-
secure.com/slapper>

Khattri, Ajai. “Re: Linux Slapper Worm.” Online posting. 18 September 2002. 6
October 2002 <http://online.securityfocus.com/archive/1/292361>

Laurie, Ben. “OpenSSL worm in the wild.” Online posting. 13 September 2002.
6 October 2002 <http://online.securityfocus.com/archive/1/291782>

Litterio, Francis. The Internet Worm Of 1988. 22 September 2002
<http://world.std.com/~franl/worm.html>

Middleton, James. “Arrest for Slapper author.” vnunet.com. 24 September

2002. 6 October 2002 <http://www.vnunet.com/News/1135274>

Mihai, Sandu. “Re: bugtraq.c httpd apache ssl attack.” Online posting. 16
September 2002. 6 October 2002
<http://online.securityfocus.com/archive/1/292013>

The OpenSSL Project. 23 December 1998. 22 September 2002

<http://www.openssl.org>

“searchSecurity.com Definitions: buffer overflow.” searchSecurity.com. 1 May
2001. 6 October 2002
<http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci549024,00.ht
ml>

Weaver, Nicholas C. Warhol Worms: The Potential for Very Fast Internet

Plagues. 15 August 2001. 22 September 2002
<http://www.cs.berkeley.edu/~nweaver/warhol.html>

