
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances
for Improved Security

GIAC (GSEC) Gold Certification

Installing, configuring and maintaining hardened servers are core components of a
defense in depth strategy when protecting computing infrastructure. A common
hardening tactic is to disable unnecessary features, functions and capabilities; the
underlying problem with this tactic is that dormant vulnerabilities can be awoken by
simply re enabling those services. Stripping down servers, through the minimization of
bloated operating system platforms, is an effective means to counteract the possibility
of enabling unnecessary or undesirable services �– they are simply not installed.
Commercial network appliances based on UNIX variants, such as load balancers and
intrusion detection systems, continue to be deployed on minimized platforms to not
only limit potential vulnerabilities, but also to improve system performance and
reduce the need to patch. So if minimization is an effective means of hardening
network appliances, shouldn�’t the same tactic be used when deploying servers? This
paper will present minimization as a fundamental tactic when deploying hardened
servers based on a popular Linux platform (CentOS/VM), and propose a methodology
for identifying core functions and discovering necessary software dependencies.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

1. Introduction
Defense-in-Depth is a term commonly used when describing a layered model for

protecting computing environments; by having multiple layers of protection, from the

perimeter of the network to each computing system at the core, security-related failures at

any single layer should not compromise the confidentiality, integrity or availability of the

overall system. In this day and age, simple reliance on firewalls for protecting is

generally considered to be imprudent (Brining, 2008), for they offer no network-level

protection in case of failure, poor configuration, software misbehavior, or unauthorized

access attempts posing as legitimate traffic; nor can they offer any protection if

communications circumvent the firewall itself.

So in order to move beyond a primitive 1990’s security model (Avolio, 2009) of a

hard and crunchy outside (a firewall) protecting a soft and chewy inside (the network

infrastructure worth protecting), what other mechanisms are available to support

Defense-in-Depth (Northcutt, 2007)? Looking inside from the perimeter, popular security

strategies include multiple packet filtering mechanisms with DMZ buffer zones in-

between, perhaps some application-level firewalls or proxy server implementations for

sensitive interfaces, maybe some remote access protection mechanisms, plus network

intrusion protection and intrusion detection systems (NIPS/NIDS). In the event that

undesirable traffic is able to penetrate all those network-based defenses and reach a

system’s network interface, the last line of defense would be host-level protection

mechanisms.

Such last-line defenses can be enhanced with other technologies such as host

intrusion detection and intrusion protection systems (HIDS/HIPS) plus host firewall

implementations. At the very core is the target system of interest, perhaps a web server

vulnerable to a denial-of-service attack or a database server containing credit card

numbers, itself hardened through prudent configuration of its operating system (OS),

applications, services and access controls.

A classic strategy used to perform host-level hardening is to turn off network

services that aren’t required for a target system’s business functions – for if a service is

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

not made available, any vulnerabilities with that service (past, present or future) known,

cannot be exploited. But is it as simple as that? “Is that all there is?” (Leiber & Stoller,

1968) Is simple disabling sufficient to eradicate host-level threats against such vulnerable

services?

The answer is a resounding “no”. Even with the most stringent policies in place to

control user behavior, disabled functionalities can be quickly brought back online by

system administrators accustomed to using specific tools when performing updates or

troubleshooting tasks. While the risks associated with temporary enabling and subsequent

disabling of unauthorized services (such as telnet or FTP) could be deemed necessary by

an organization to address temporary needs, forgetting to return the system to its original

state would result in an erosion of its security profile and an increase of the overall risk of

compromise.

And what about tools and utilities that could be used for harm, in the event that a

system is successfully exploited? Should compilers or troubleshooting tools like trace,

traceroute or Wireshark be installed on production servers, if they could end up being

used to facilitate an attack? How about simply not installing unnecessary and sensitive

software components in the first place?

In order to adequately protect host systems, serious consideration should be given

to introduce stricter controls on system capabilities and user behavior, so that we don’t

simply place the key under the doormat or inadvertently leave the windows wide-open

after locking our front door.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

2. Minimization
Installing only necessary operating system components is a fundamental way to

eliminate risk at the source: it’s impossible to use something that simply isn’t there.

Together with supporting policy that defines and enforces limits on what can be used and

made available on production servers (and other key systems), an organization can

effectively control what their environment does and how it goes about doing it, with

confidence that any policy break results from an intentional act.

A seminal paper on operating system minimization from Sun Microsystems

promoted the notion that the way to “reduce system vulnerabilities is to minimize the

amount of software on a server” (Noordergraaf & Watson, 1999). Updates to that original

paper (Noordergraaf et al., 2002) built upon the proposed methodology for meeting that

objective, resulting in the development of a “cookbook” on how to reduce the software

footprint of operating systems in a controlled, deliberate, systematic and reproducible

fashion. Current-day initiatives, such as the Damn Small Linux (DSL) distribution and

the various “Just enough Operating System” (JeOS or “juice”) offerings, are a current

reminder that platform minimization remains a relevant and meaningful strategy when

deploying computing systems in production environments.

2.1. Justifications beyond reducing exposure
Aside from stripping away unnecessary functionalities to reduce vulnerability,

minimization provides several additional benefits. In fact, not all minimization initiatives

have security as their primary focus when developing their solutions (Damn Small Linux,

2009). These differing perspectives and driving forces, resulting in similar overall

benefits, serve to demonstrate that much can be gained by using a basic grocery shopping

metaphor – picking and choosing only the items that are needed.

2.1.1. Less patching
Monitoring security advisories and keeping systems updated with the latest

updates is a tedious task for system administrators and security professionals, for

consideration needs to be taken each and every time on how system functionality and

availability could be impacted through installation of a software correction. The benefits

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

of counteracting the “vulnerability du jour” or a nagging software bug with a patch often

has to be balanced against the risk that software dependencies could be disturbed, updates

don’t install correctly, or in-house code simply stops functioning.

A minimized platform has fewer components, and as a result, the need for

patching is reduced. An operating system installation containing a quarter of the available

software packages in a standard distribution could help rationalize advisory monitoring

and reduce patching activities by a corresponding factor of 75%.

2.1.2. Reduced dependencies
Software dependencies tend to be difficult to manage; and as software becomes

more modular and code reuse grows in popularity, the risk increases when it comes to

update software that is relied upon by many other implementations. (For example,

OpenSSL cryptographic libraries are often used by other software components.)

By minimizing the software profiles of systems, patching is facilitated as there are

fewer interdependencies between components, resulting in a quicker response time in

closing vulnerabilities.

2.1.3. Increased performance
When system owners propose hardware upgrades to upper management, they are

often told to “do more with less” and encouraged to find ways to increase performance of

their aging equipment without incurring additional costs. Depending on the operating

system and the host system’s baseline configuration, tuning options to squeeze out better

performance may appear limited.

Smaller installation footprints generally result in faster boot times and quicker

shutdowns, for there are fewer processes to bring up and tear down. As well, reductions

in RAM and hard drive memory usage could be significant, resulting in quicker system

response and shorter backup times.

2.1.4. Improved control on user behavior
As organizations grow in size, there often comes a need to standardize processes,

tools and methodologies. Without standardization in the use of compilers, operating

systems and programming languages, developers would have a very difficult time to pick

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

up where another person left off, and system owners would be left with software

painfully difficult to maintain.

From an operations perspective, there is perhaps more of a challenge in

standardizing ways of working, but the challenges are fundamentally the same. Three

different system administrators working in the same team may each prefer the use of their

own favorite Unix shell (for use during interactive login sessions). Yet all three may

confront a security analyst in unison to defend and justify the need to include a suite of

compilers, libraries, interpreters and troubleshooting utilities in production systems, in

case of emergency.

 Limiting shell installation to the Bourne shell (for administrative use) would

effectively force users to use the same tool, potentially eliminating weaknesses in certain

shell implementations and reducing the opportunity to develop scripts using shells that

may be best suited for interactive use (such as tcsh). By categorically disallowing the

installation of system tools and utilities on production systems, malicious users have

greater difficulty to audit nodes, perform network reconnaissance and build attack tools,

thereby hindering their progress as they plan their next course of attack.

Perhaps there is no better way to discourage the use of insecure protocols like

telnet and FTP than by not having them made available. Decisions on what administrative

and troubleshooting tools to include on systems requires careful consideration between

potential exposure and ease of use; in more controlled environments, administrators

would be forced to install such tools on an as-needed basis, then return the target nodes to

their original software profiles upon task completion.

2.2. Revisiting the disabling option
One of the concerns often brought up, when presenting a platform minimization

strategy, is the fear that removing certain components will hinder the ability of staff to

troubleshoot and fix problems, and the uncertainty that the system will continue to

function correctly if too many components are stripped away. By only disabling features

and components, critics maintain that dependencies and capabilities are retained and

overall risk is reduced to acceptable levels.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

But what other risks are maintained by not removing unnecessary or undesirable

functionalities? The concerns with regards to “crippling” troubleshooting capabilities are

ultimately a business decision, and can be effectively reconciled through the

establishment of some ground rules and a sound process. The risks associated with

breaking functionality by reducing the operating system footprint are addressed later in

this paper, through the use of a bottom-up package addition methodology (as opposed to

a stripping-down process).

With regards to retaining disabled services, there is also a patching aspect to

consider and a myth to debunk. Any argument stating that disabled components do not

need to be patched is fundamentally flawed: if there is sufficient justification to disable

components or services because they are insecure, why should vulnerable, unpatched

versions of those components or services lie dormant on critical computing systems and

be made available for use in an emergency? Disabled components must maintain the

same current patch levels as active components, in order to mitigate the increased risk

introduced whenever they are activated.

Finally, there is the human factor to consider. Once a troubleshooting activity is

completed and functionality is restored on a failed system, staff stress levels drop

dramatically and there is a real possibility that temporary measures don’t get rolled back

to pre-incident settings; after all, why touch something that started working properly

again? In order to control the human factors of forgetfulness and reluctance, a robust

event handling process should include detailed note taking, along with an obligation to

return security-sensitive system configurations to their original approved state.

2.3. Defining the business case
A general trend followed by operating systems is continuous growth, with new

releases introducing additional features and capabilities, bundled together with software

corrections collected since the previous release. This bloating of platform kernels

(Schneier, 2000) and footprints have progressively made operating systems more feature-

rich and attractive from a marketing perspective, but it has also created havoc on the

software industry: many developers insist on using the latest and greatest technologies

when performing their craft, and perhaps justifiably so; yet alongside every new software

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

component developed in Ajax, Python or Ruby, there can be other components compiled

with several different versions of gcc, and still others requiring three different versions of

Java runtime environments running side-by-side for support.

At a high level, complexity can be seen as a shifting constant; just as driving skills

become less essential when behind the wheel of a car equipped with power steering and

ABS brakes, adding software components and facilitating code development on one side

inevitably triggers additional costs in knowledge acquisition, license management,

platform maintenance, system overhead, solution performance, software administration

and security management.

2.3.1. Simplifying the landscape
"...it is unreasonable to expect software to not have security bugs. The simpler the

software is, the fewer bugs it will have.” (Schneier, 2000)

So how much platform is enough? Can one realistically reduce the footprint of an

operating system to a mere fraction of a software distribution, which retaining all

necessary and desired functionality? After all, when considering what to chop out, it is

easy in this case to see the forest for the trees (Wuerthner, 2009), and end up justifying

the inherent value of the whole.

Looking back at Noordergraaf’s body of work on Solaris minimization, there is an

opportunity to perform a paradigm shift and move focus from the sum of the whole

towards the actual items of interest: the components that are needed to support desired

functionality. In the case of that particular operating system, there were generally four

different installation clusters made available to begin controlling OS footprint size: a

Core cluster (the smallest package that included all necessary hardware support); an End

User option (which included support for various desktops); the Developer option (that

added libraries and compilers); and the Entire Distribution, also known as the OEM

cluster (Noordergraaf, 2002).

“Because it is so difficult to determine the minimal set of necessary packages,

system administrators commonly just install the Entire Distribution cluster. While this

may be the easiest to do from the short-term perspective of getting a system up and

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

running, it makes it considerably more difficult to secure the system.” (Noordergraaf and

Watson, 1999)

A size comparison of the Solaris 10 (3/05) installation cluster packages

(Noordergraaf, 2002) clearly shows that the vast majority of software packages included

in comprehensive operating system distributions are geared towards user interfaces and

software development support (package totals included under each installation cluster):

Core
172

End User
677

Developer
925

Entire Distribution
992

0 200 400 600 800 1000 1200

Due to ever-increasing collaborative efforts on the parts of members of the

development community at-large, comprehensive Open Source operating system

distributions tend to include many more components than their commercial counterparts.

Growth in the number of install packages is further increased with the splintering of

existing packages into smaller modular components in order to facilitate teamwork and

control update impacts on an entire code base. The results in terms of numbers can be

staggering: between OpenSolaris releases 2008.05 and 2009.06 (Oracle Corporation,

2010), the sum of packages ballooned from 1224 to 1709; statistics from Debian

GNU/Linux are even more eye-popping, with versions 4 (etch) and 5 (lenny) containing

23,156 and 28,250 packages respectively (SPI Inc., 2010).

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

 The growth trend of operating systems over time is real and significant, in that it

affects minimization effort. The following illustration (keying on OS package numbers

over successive product releases) of Solaris package growth (Noordergraaf, 2002) shows

that this trend also affects each of the various target audiences of an operating system

distribution:

Core

End User

Developer

Entire Distribution

0

500

1000

1500

2000

2500

3000

Solaris
2.6

Solaris
7

Solaris
8

Solaris
9

Solaris 10
(3/05)

2.3.2. Building appliances
The fundamental difficulties in performing minimization are to identify all

necessary components and to capture all product dependencies. As package management

utilities (such as Solaris’ pkg, Red Hat’s RPM and Debian’s APT) can resolve many of

the dependency issues automatically, installation concerns should first focus on which

functions are needed to support the business logic of the target system.

Generally, production servers are deployed to perform a specific task such as

serve web pages, manage databases or warehouse source code. Once the core function is

identified and a software solution for this function has been selected, it is a relatively

simple exercise to start putting together a list of third-party software needed to support

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

the business solution: developers of an in-house software solution should be able to

quickly identify what extra code they acquired to test their prototypes; both commercial

and Open Source third-party software tend to publish listings of other necessary third-

party software required for functional support.

Where this declarative model breaks down is when it comes to identifying which

individual packages are required of host operating systems, as such dependencies

continue to be rarely defined in software application documentation (Noordergraaf,

2002). This is because minimization is considered to be a time-consuming task, and

because explicit support of a range of platforms (including a variety of Linux

distributions) would require package identification by the supplier for each single

platform variant. Regrettably, the burden of this responsibility falls on the motivated

individual – the prudent system administrator or the demanding security specialist.

At the end of the day, the intent is to produce an appliance: a system assembled to

perform a dedicated task, such as a toaster or a network router, tuned in such as a way as

to perform this task in an efficient and effective manner. As is the case in manufacturing

environments, the objective is to put together the best product at the right price, using

only the components needed in order to cut downstream costs to a minimum, and limit

the amount of after-sales customer support to acceptable levels.

The preferred way to begin selecting operating system components is by adopting

a core installation package cluster, unless the OS supplier has a predefined package

profile that corresponds to the server’s core function; then going through that initial

package listing and identifying what is and what isn’t needed from a hardware and

software perspective. It is much easier from a testing perspective to add components to

introduce functions than to take a fully operational system, drop a few components, hope

for the best, and run a full battery of tests to see if all business functions are still

operational. When sifting through package listings, it is recommended to retain only

those components that are found to be definitely required, rather than err on the side of

caution; the minimization methodology defined later in this paper has been designed to

identify and capture any missing components along the way.

The resulting listing would then become the starting point for the minimized

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

operating system platform.

2.3.3. Mapping dependencies
The mapping of dependencies is the second big part of the minimization effort. As

alluded to earlier, much of this effort is alleviated with the prudent use of the package

management system in place. Package management systems track interdependencies and

are programmed to maintain relationships, and although errors can be made through data

entry when defining these relationships, any benefit of breaking these bonds during

system installation – in hopes of eliminating a few extra packages – would only introduce

a loss of reliability in the integrity of the database. It is strongly recommended to bring

down the number of OS packages to the minimum level possible, all while maintaining

pre-defined package dependencies.

A useful strategy for mapping dependencies and justifying the inclusion of each

OS package is to log the intra-relational mapping and record the underlying reasoning,

either in a text document or a spreadsheet. Mapping dependencies may result in

voluminous documentation, but it is a valuable exercise in learning how the target system

functions from an outside view (as opposed to a programmer’s inside view).

2.4. Preparing for deployment
Once there is a buy-in and a commitment for minimizing OS platforms, and after

the preliminary identification of software components has been completed, it’s time to

put the rubber on the road and bring the technical implementation into motion. On the

other hand, for those motivated individuals unable to secure buy-in for this type of

activity and somehow find the bandwidth to invest in better securing their systems, there

is hope: minimization can be effectively performed as an intermittent background activity

using virtual machines. With respect to investing time and effort in minimization,

sometimes “it’s easier to get forgiveness than permission” (McKenzie, 2009).

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

3. Implementation
There is currently a renewed interest in minimization, witnessed by the increasing

number of JeOS projects publishing compact operating systems distributions for

download: some launched as niche projects by those looking for an improved platform to

fit their needs (RKO Security, 2009); others directly promoted by OS suppliers in

response to that market need (Canonical Inc., 2010). In both cases, the preferred direction

is towards the development of virtual appliances – an operating system and software

solution installed inside a virtual server container (Novell Inc., 2008).

An audit of recently published security-related Linux books demonstrates that the

deployment of OS profiles tuned to production needs is generally recommended,

sometimes because particular distributions do not offer full install or minimal install

options (Negus & Foster-Johnson, 2009). But only in rare cases (Rankin & Hill, 2009) is

any detail provided on how to build popular server types, regrettably with little mention

of methodologies on whittling down packages to the minimum from a cluster baseline. It

is for this reason that Noordergraaf’s body of work in this area will once again be visited,

before presenting an updated methodology optimized to take advantage of improvements

in today’s most popular package management systems.

3.1. Methodology
The Solaris minimization methodology called for an installation of a core package

cluster and the addition of required supporting software, followed by patching,

subsequent removal of unnecessary packages and OS configuration (Noordergraaf,

2000). Due to the robustness of today’s installation tools, the mature yet fragile nature of

popular package management systems such as RPM and APT, as well as the inherent

responsiveness of the Open Source community to correct faults found in software in a

prompt manner, the following order for minimizing UNIX-based platforms is proposed:

3.1.1. Installation of a minimal subset of packages
Modern installation programs, such as the Red Hat (Graphical or Text Mode)

Installation Program User Interfaces, provide the ability to not only select installation

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

clusters (defined by Red Hat as Package Groups), but also grant the option of fine-tuning

the selection of OS packages during the installation setup. The installation programs

maintain package relationships, and will install any additional support packages that were

not explicitly selected during the fine-tuning process.

Once installation is completed, the system should be shutdown and rebooted, all

while monitoring the console messages for any error messages. (Monitored shutdown and

reboots are also suggested after each remaining activity.)

By adding desired components (such as SSH and NTP support) during this initial

selection process (which may not necessarily come with core clusters), and removing

components from the core that are deemed unnecessary, the amount of post-installation

work can be measurably reduced.

3.1.2. Parallel installation of an OS reference system
In order to facilitate the tracking and tracing of software dependencies, it is

strongly recommended to maintain a reference system in parallel, one that includes a full

software installation of the adopted operating system. By reproducing installations in

both minimized and full OS environments, one should be able to ascertain quickly if any

installation and functional failures are due to missing infrastructure or to other factors.

While the temporary use of a second system may have been considered

prohibitively expensive in the past due to doubled hardware needs, the availability and

ease-of-use of today’s virtual machines have eliminated that financial consideration, even

if the target system is planned for a bare metal installation on new server hardware.

3.1.3. Removal of unnecessary packages
Once installation in completed, the package management system is used to

consult what has been deployed on the target system and further reduce the footprint of

the operating system. As was the case during initial installation, the package management

system will alert the installer of any problems with respect to maintaining intra-package

relationships.

But wasn’t the selection of packages already performed before installation?

Additional packages sometimes do get introduced during an initial installation, over and

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

above those required for supporting selected packages, quite possibly to maintain features

desired by the OS supplier.

3.1.4. Configuration and hardening of the platform
Much of the basic OS configuration – such as regional settings, networking and

disk partitioning – tends to be defined during the installation process. Hardening of the

platform should be performed as early as possible after initial installation so as to reduce

the exposure of the newly installed system.

The Center for Internet Security’s benchmarks and audit tools can help guide

hardening activities: benchmarks are free configuration guides made available for a broad

range of popular UNIX, Linux and Windows operating systems; most audit tools require

CIS membership, and are used to perform automated host-level benchmark assessments

(CIS, 2010).

3.1.5. Installation of relevant patches
Depending on the installation method, patching may have already been

performed. Certainly, using a live Internet-based installation should result in the

deployment of a server that could only require a few extra corrections to be up-to-date,

but some organizations implement code controls and require the use of only pre-approved

software versions. This would preclude the use of this type of installation method.

Alternately, the deployment of patches could be performed immediately after

initial installation of the OS, followed by package removal, but is not recommended

because of the risks involved with breaking package relationships by introducing new

components with old at an earlier point in the process. Also, by holding off on patching

until the last of these five steps, the target system is deployed in a controlled environment

and only exposed to (local or remote) update services after being hardened.

3.2. Example
In deference to Noordergraaf’s contributions to the study of minimizing UNIX-

based operating systems, the following section briefly highlights how package selection

and subsequent removal can be performed, through a sample deployment of an Apache

web server atop a CentOS implementation, residing upon a VMware virtual machine.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

3.2.1. Selecting clusters and packages before installation
During the initial phases of the CentOS installation process, the installation

program opens a series of windows to solicit inputs for language and keyboard options,

disk partitioning information, network and hostname configuration, plus time zone and

root password choices, before presenting the package selection screen:

On a CentOS 5.2 text based installation, a “package selection” of only the

“Server” profile resulted in the installation of 450 operating system packages.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

By entering the “Customize software selection” sub-menu, one can pick and

choose the Package Groups that ended up being tagged through the profiles chosen in the

previous screen. In this case with only the Server option selected, fourteen Package

Groups were highlighted for installation; by dropping 11 groups and retaining only Base,

Editors and Systems Tools, the number of installed packages went down to 391.

While this resulted in a significant 13% reduction in packages, that figure did not

remotely correspond to the 79% reduction in the number of Package Groups. A

subsequent installation attempt with no profile selection and no Package Groups selected

generated a CentOS 5.2 system installation comprised of 150 packages (see Appendix A),

proof that there is some type of logic inside some installation tools to ensure that installed

systems boot and provide a predefined-as-critical set of processes and services, even after

aggressive platform minimization.

3.2.2. Removing packages after installation
A glance at a corresponding (same CentOS/Red Hat 2.6.18-92 kernel) Orange

JeOS VMware image (RKO Security LLC, 2008) showed a package listing of 185:

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

A comparison between the two minimized environments showed that there were

some small discrepancies that could be used to reduce package numbers further on either

side: the base profile developed from the proposed methodology included some IPv6

support (dhcpv6_client) and an OpenSSH client (openssh-clients) that could be dropped;

while the Orange JeOS platform had some superfluous components of it’s own such as a

vector graphics library (cairo), a font configuration utility (fontconfig) and some icon

support (hicolor-icon-theme) that also has no real place on production servers that don’t

need graphical support.

Interestingly, some common components in both platforms included some

packages that appear to be excellent candidates for removal, which somehow made it

through the restrictive selection process – including a legacy text editor (ed) and a

wireless networking configuration utility (wireless-tools). Removal attempts on both of

these components should that some additional investigations may have to be performed:

In the example above, a library used by some CentOS programs (rhpl) has a

dependency on a file (libiw.so.28) that is part of the wireless-tools package. If that library

is not required by any other installed packages, then “rhpl” and “wireless-tools” could be

removed in succession:

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

Other package removal scenarios may not be so simple to resolve. Attempts to

remove certain packages that may appear to be superfluous at first glance, such as

support for the Python programming language, may show dependencies on components

that are considered mission critical – such as “yum”, a popular RPM package

management and package update utility. By taking the time to map the dependencies in

document or spreadsheet form, and shaving off any remaining unnecessary OS packages,

the informed analyst will eventually be able to come up with a final “gold image”

baseline that represents the smallest core operating system available for his environment.

The “rpm –e” command can be run with a space-separated listing package names

in cases where there are cross-dependencies between several packages targeted for

removal.

Package removal is an iterative process. If case of need, packages can be simply

reinstalled with the same RPM package management command. Once the fine-tuning is

completed, the final output of this exercise is a minimized platform that could be used as

a “gold image” baseline OS system for many future server deployments.

3.2.3. Adding packages after installation
Once the minimized environment is defined, the next step is to introduce the

business logic that defines the system in question. In this particular example, the target

system will be a web server running the latest stable version of Apache HTTP Server. In

order to be able to quickly introduce security patches to such a sensitive piece of

software, and not have to rely on an intermediary such as an OS supplier that bundles the

same component, the application will be sourced directly from the Apache Software

Foundation’s HTTP Server web site (http://httpd.apache.org).

An attempt to install the component on a minimized CentOS platform flagged

several failed dependencies; in this particular case, four necessary libraries were missing:

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

By consulting a reference system running a full install of the operating system,

one can find out if each of the necessary library files can be sourced from the OS

distribution. On the full CentOS 5.2 install, a quick search of the string “libssl.so” on a

filesystem listing discovers a soft link for Version 6 of the file, so that particular

dependency can be satisfied through the installation of its’ parent package. Confirming

the location of that link with the “find / -name libssl.so.6” command, and subsequently

using that result as a parameter to the “rpm –qf” command, one can identify the missing

OS package that would have to be added to the platform.

Package addition is also an iterative process. By persistently tracking all package

dependencies, configuration management is performed at the server level through the

justification of every single component deployed on production systems.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

4. Conclusion
Platform minimization, implemented through careful selection and installation of

only the OS packages required for supporting necessary system functions, is a

fundamentally effective method for hardening computing systems. By limiting the at-

hand availability of system services, utilities and support functions to only those needed

for desired system and user behavior, the number of potential vulnerabilities is

measurably reduced. Additional benefits associated with minimization include a reduced

need for patching, facilitated software management due to fewer component intra-

dependencies, and increased system performance as a result of lower overhead.

Yet despite a renewed interest in recent years, platform minimization remains a

tough sell. This is due in some degree to the reluctance of some OS suppliers to embrace

the benefits of mitigating risk by limiting deployed system footprints, because of the

challenges associated with supporting wide ranges of implementations of their products:

“The majority of software vendors (including Sun) do the majority of their testing

using systems that have been installed using the complete set of Solaris OS software (…).

Testing is rarely completed using reduced or minimal configurations.” (Sun

Microsystems, 2006).

Minimization is also considered to be grunt work, as it requires functional

analysis, detailed record keeping and a disciplined multi-cycle iterative approach. In this

day and age where security professionals are often judged in terms of their ability to

perform “ethical hacking” by successfully executing penetration tests, the rewards of

deploying robust solutions tuned to business needs may have to be measured in terms of

reduced maintenance efforts instead of peer recognition.

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

5. Appendix A: CentOS 5.2 Base Packages

audit-libs
audit-libs-python
authconfig
basesystem
bash
beecrypt
bzip2-libs
centos-release
centos-release-notes
checkpolicy
chkconfig
coreutils
cpio
cracklib
cracklib-dicts
cryptsetup-luks
cyrus-sasl-lib
db4
dbus
dbus-glib
device-mapper
device-mapper-event
device-mapper-multipath
dhclient
dhcpv6-client
diffutils
dmidecode
dmraid
e2fsprogs
e2fsprogs-libs
ecryptfs-utils
ed
elfutils-libelf
ethtool
expat
file
filesystem
findutils
gawk
gdbm
glib2
glibc
glibc-common
gnu-efi
grep
grub
gzip
hal
hdparm
hwdata

info
initscripts
iproute
iptables
iptables-ipv6
iputils
kbd
kernel
keyutils-libs
kpartx
krb5-libs
kudzu
less
libacl
libattr
libcap
libgcc
libgcrypt
libgpg-error
libhugetlbfs
libselinux
libselinux-python
libsemanage
libsepol
libstdc++
libsysfs
libtermcap
libusb
libuser
libvolume_id
libxml2
libxml2-python
lvm2
m2crypto
MAKEDEV
mcstrans
mingetty
mkinitrd
mktemp
module-init-tools
nash
ncurses
net-tools
newt
nspr
nss
openldap
openssh
openssh-clients
openssh-server

openssl
pam
passwd
pciutils
pcre
pm-utils
policycoreutils
popt
prelink
procps
psmisc
python
python-elementtree
python-iniparse
python-sqlite
python-urlgrabber
readline
redhat-logos
rhpl
rootfiles
rpm
rpm-libs
rpm-python
sed
selinux-policy
selinux-policy-targeted
setools
setserial
setup
shadow-utils
slang
sqlite
sysfsutils
sysklogd
system-config-securitylevel-tui
SysVinit
tar
tcl
tcp_wrappers
termcap
tzdata
udev
udftools
usermode
util-linux
vim-minimal
wireless-tools
yum
yum-metadata-parser
zlib

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

6. References
Avolio, F. (2009). Firewalls and Internet security, the second hundred (Internet) years.

The Internet Protocol Journal, 12(4), Retrieved from
http://www.cisco.com/web/about/ac123/ac147/ac174/ac200/about_cisco_ipj_arch
ive_article09186a00800c85ae.html

Brining, S. (2008, August 26). When a firewall is not enough. Retrieved from

http://www.imakenews.com/hosting/e_article001180714.cfm?x=b11,0,w

Canonical Inc. (2010). JeOS: Ubuntu Server Edition. Retrieved from

http://www.ubuntu.com/products/whatisubuntu/serveredition/jeos

CIS. (2010). The center for Internet security. Retrieved from http://cisecurity.org

Damn Small Linux: biz-card desktop OS. (2009). Retrieved from

http://www.damnsmalllinux.org/

Leiber, J., & Stoller, M. (1968). Is that all there is? [Recorded by Peggy Lee]. On Is that

all there is? [Medium of recording: Record] Los Angeles: Capitol. (1969)
Hat Enterprise Linux bible. Indianapolis, IN: Wiley Publishing, Inc.

Noordergraaf, A., (2000). Solaris operating environment minimization for security: a

simple, reproducible and secure application installation methodology: updated
for Solaris 8 Operating Environment. Palo Alto, CA: Sun Microsystems, Inc.
Retrieved from http://www.sun.com/blueprints/1100/minimize-updt1.pdf

Noordergraaf, A., (2002). Minimizing the Solaris operating environment for security:

Updated for Solaris 9 Operating Environment. Palo Alto, CA: Sun Microsystems,
Inc. Retrieved from http://www.sun.com/blueprints/1102/816-5241.pdf

Noordergraaf, A., et al. (2002). Enterprise security: Solaris operating environment. Santa

Clara, CA: Sun Microsystems Press.

Noordergraaf, A., & Watson, K. (1999). Solaris operating environment minimization for

security: a simple, reproducible and secure application installation methodology.
Palo Alto, CA: Sun Microsystems, Inc. Retrieved from
http://www.sun.com/blueprints/1299/minimization.pdf

Northcutt, S. (2007, February 26). The uniform method of protection to achieve defense-

in-depth. Retrieved from http://www.sans.edu/resources/securitylab/367.php

Novell Inc. (2008, August). Technical white paper: advantages of building virtual

appliances on SUSE Linux Enterprise Server [462-002088-001]. (Adobe PDF
version), Retrieved from

	

© 2010 The SANS Institute Author retains full rights.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Key	 fingerprint	 =	 AF19	 FA27	 2F94	 998D	 FDB5	 DE3D	 F8B5	 06E4	 A169	 4E46	

Building Servers as Appliances for Improved Security

http://www.novell.com/rc/docrepository/public/37/basedocument.2008-08-
12.5466048836/Advantages_of_Building_Virtual_Appliances_on_SUSE_Linux_
Enterprise_Server_Technical_White_Paper_en.pdf

Oracle Corporation. (2010). OpenSolaris: package catalog. Retrieved from

http://pkg.opensolaris.org/release/en/catalog.shtml

Rankin, K., & Hill, B.M. (2009). The official Ubuntu server book. Boston, MA: Pearson

Education.

Red Hat Inc. (2005). Red Hat Enterprise Linux 4: installation guide for x86, Itanium,

AMD64, and Intel extended memory 64 technology (Intel® M64T) [rhel-ig-
x8664(EN)-4-Print-RHI (2004-09-24T13:10)]. (Adobe PDF version), Retrieved
from http://www.linux-books.us/red_hat_enterprise_0001.php

RKO Security LLC. (2008). Orange JeOS downloads. Retrieved from

http://www.rkosecurity.com/oj_download.html

RKO Security. (2009, January 20). Orange JeOS: small & good for you. Retrieved from

http://orangejeos.sourceforge.net/

Schneier, B. (2000). Secrets and lies: digital security in a networked world. New York,

NY: John Wiley and Sons, Inc.

Shingledecker, R., Andrews, J., & Negus, C. (2007). The official Damn Small Linux

book: the tiny adaptable Linux that runs on anything. Upper Saddle River, NJ:
Prentice Hall PTR.

SPI Inc., (2010). Debian: packages. Retrieved from

http://www.debian.org/distrib/packages

Sun Microsystems. (2006). Rules of engagement for the support of reduced or minimal

configurations. Palo Alto, CA: Sun Microsystems, Inc. Retrieved from
http://www.opensolaris.org/os/community/security/files/minimization-support-
rules-ext.pdf

Sun Microsystems Security Engineers. (2009). Solaris 10 security essentials. Boston,

MA: Prentice Hall PTR.

von Hagen, W. (2001). Installing Red Hat Linux 7. Indianapolis, IN: SAMS Publishing.

Wuerthner, G. (2009, March 30). See the forest for the trees. Retrieved from

http://www.newwest.net/topic/article/see_the_forest_for_the_trees/C564/L564/

