
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Malicious Mobile Code Security Case Study

GIAC Security Essentials Certification (GSEC)
Practical Assignment, Version 1.4b

Option 2: Case Study in Information Assurance

Stephen Laird

January 6, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Summary
The ICSA reports that “despite increased spending, the rate of malicious

code infection continues to rise…[and] in addition to becoming more prevalent,
computer viruses were becoming more costly and destructive.” 1 Typical
problems caused by viruses include information theft, file corruption, data loss,
and productivity loss. Downloading active web content via web browsers
represents one means of transmitting computer worms, viruses and other
malicious code. What makes it particularly pernicious is that active content is
often downloaded and executed without the user’s explicit consent. Thus, “web
browsing provides a means for malicious code to bypass the firewall and infect a
host or network.”2 We recognized this risk at my company and sought means to
address it.

This paper first discusses the vulnerabilities associated with downloading
mobile code from the Internet, then describes some of the risks associated with
two of the more common forms of executable content – ActiveX controls and
Java applets. Finally it describes the mobile code server we developed as part of
our defense in depth strategy to protect our network from web-based malicious
mobile code. This server not only includes common functionality such as control
lists and a real-time virus scanner but also implements a mobile code policy that
categorizes the different types of mobile code and defines requirements for their
downloading and execution.

Before

Existing Internet Browsing Security Measures

My company’s existing Internet security measures were somewhat limited.
Network security was provided by a firewall and an intrusion detection system.
Individual user logins and real-time virus scanners provided host-based security.
Also, our Internet Explorer security setting was “Medium”. This setting prevents
some forms of active content from being downloaded and provides a pop-up
verification window before downloading others. Lastly, although we employed
nominal monitoring of employee Internet usage, employees had unrestricted use
of the Internet.

Vulnerabilities

These Internet browsing security measures were beset by numerous
vulnerabilities. The main threat is that individual users could download malicious
code and execute it without explicitly approving it. Active content such as
ActiveX controls and Java applets can be embedded in web pages. When these
pages are downloaded, the active content can be automatically executed with no
guarantee that it is benign. A second vulnerability was in allowing individual
users to accept web-based code by simply selecting “OK” in the browser’s pop-
up windows. Individual users may be ignorant of the risks associated with
downloading mobile code or may simply desire expediency and accept the code.
Finally, by relying on browser settings as part of our web-based policy, we were

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

open to malicious individuals intentionally changing their own settings or naïve
individuals inadvertently changing them. Both of these actions serve to bypass
the corporate web-browsing policy and open the organization’s computer
networks up to the threat of downloading web-based malicious mobile code.

Risks

The risks associated with mobile code include inadvertently downloading
viruses or other malicious software into the user’s system. Possible actions of
malicious mobile code include “crashing the browser, damaging the user’s
system, breaching the user’s privacy, or merely creating an annoyance.”3 Other
possible actions are presented in the Nimda worm, ActiveX and Java applet
examples given below.

Nimda Worm

A recent, well-known case of malicious mobile code was the Nimda worm
that exploited vulnerability in Windows systems starting in September 2001.
According to the CERT Coordination Center, the impact of the worm includes the
following: “Hosts that have been compromised are at high risk for being party to
attacks on other Internet sites. The high scanning rate of the Nimda worm may
also cause bandwidth denial-of-service conditions on networks with infected
machines.”4

One of the many propagation modes that Nimda used was through
browsers: “As part of the infection process, the Nimda worm modifies all web
content files it finds (including, but not limited to, files with .htm, .html, and .asp
extensions). As a result, any user browsing web content on the system, whether
via the file system or via a web server, may download a copy of the worm. Some
browsers may automatically execute the downloaded copy, thereby infecting the
browsing system.”5

Forms of Mobile Code

There are several different technologies that can be used as web-based
mobile code: ActiveX, Java applets, Visual Basic for Applications, Javascript,
Shockwave and others. This report will examine two of the most common forms,
ActiveX and Java applets, to highlight some of the risks associated with mobile
code.

ActiveX

A good description of ActiveX, including its security model and associated
risks, is found in The World Wide Web Security FAQ and is summarized as
follows. ActiveX controls were developed by Microsoft as a means of distributing
software over the Internet. They can be embedded in a Web page. ActiveX
places no restrictions on what a control can do and as a result, they present a
huge risk to computer systems if used maliciously. The ActiveX security model is
based on digitally signing each control in such a way that the signature cannot be
altered or repudiated. Browsers will recognize unsigned ActiveX controls or
those that are certified by an unknown authority and present a dialog box

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

warning the user that this action may not be safe. The user can elect to abort the
transfer, or may continue the transfer and risk downloading and executing a
malicious control. While this security model ensures that ActiveX controls cannot
be distributed anonymously and that third parties cannot tamper with a control
after its publication, it does not ensure that a control will be well behaved. A
malicious ActiveX control is capable of crashing a machine, reformatting a hard
disk or planting a virus. 6

Java Applets

Unsigned Java applets are safer than ActiveX controls in that they are
typically restricted to a sandbox environment. As such, “they cannot execute
arbitrary system commands, load system libraries, or open up system device
drivers such as disk drives. In addition, applets are generally limited to reading
and writing to files in a user-designated directory only. Applets are also limited in
the network connections they can make: an applet is only allowed to make a
network connection back to the server from which it was downloaded.” 7

Nonetheless, applets can still leave a system vulnerability to denial-of-
service or other attacks. They do this by absorbing system resources such as
memory and CPU time to the point where the system is incapacitated. Among
other risks associated with applets include “annoyance (playing load sounds),
interfering with other applets or sending forged emails.” 8

Protection against hostile applets involves installing the latest browser
versions and all patches as they become available, filtering known malicious
applets or virus scanning at the client or firewall, resource limiting or checking for
trusted signatures before downloading and executing applets. 9

During

General Requirements

In order to balance the value of Internet browsing with the risks associated
with malicious mobile code, we desired to develop a means that allows web
browsers to download the maximum content without sacrificing too much
security. An additional desire was to remove the security decisions (i.e., pop-up
windows) from the individual users and allow Internet policy to be controlled by
the system administrator from a central location.

Common Internet Security Measures

Common tools used in implementing a web browsing policy include a
control list device and a real-time analyzer. “Devices employing the control list
method typically integrate with an organization’s firewall, proxy server or Internet
caching device. When a web user requests access to a site, the
firewall/proxy/cache consults the control list server and determines if the policy
for the requesting user will permit or deny access to the requested site.” 10 The
control list is typically a database of URLs maintained by the vendor of the
product. One vendor, Websense [Ref. 4], uses web-site mining techniques to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

generate and maintain its list of sites containing malicious code. Real-time
analyzers typically perform one or both of the following functions: scanning for
unsuitable content that contravenes organizational pol icy and detecting malicious
code. “A real-time analyzer generally employs keyword matching or pattern
matching to detect unsuitable content.” 11 Some companies, such as Symantec,
are developing advanced heuristic methods to detect unsuitable content [Ref.
11].

In addition to the typical solutions mentioned above, we also considered the
Department of Defense’s published Mobile Code Policy 12. This policy was
designed to “protect DoD systems from the threat of malicious or improper use of
mobile code”. In short, this document discusses the risks involved in
downloading various types of mobile code and defines the necessary restrictions
placed on downloading and executing them. ActiveX controls, for example, can
have unconstrained access to host systems and resources and are thus ranked
in the highest category, “category 1”. Java applets are restricted to the sandbox
and have other restrictions placed on them and are thus ranked as “category 2”.
JavaScript allows little access to computer resources. It is ranked as “category
3” which is deemed low risk. The policy specifies the requirements for the
reception of mobile code from external sources. Clearly, due to the increased
risk of downloading category 1 mobile code, more stringent requi rements were
placed on category 1 mobile code as compared to category 2 and category 3.

Our Internet Security Requirements

Drawing from these sources, we started to define the requirements for our
own Internet policy. The solution would be based largely on the tenets of the
DoD mobile code policy and also include some of the more common security
measures such as a restricted URL list and virus scanning. Another major
consideration was to centralize the configuration. That is, provide a means
whereby all the browsers on the network can be controlled and configured from a
central location. This removes control from the individual users and allows for
easier configuration changes.

The following features were required for the initial implementation:

• Intercept all active web content and allow or block downloading in
accordance with local mobile code policy

• Provide a list of unacceptable URL’s
• Provide a list of “legacy” URL’s – URL’s from which active content is

acceptable even if it does not otherwise meet the local Internet policy
• Provide virus scanning of active content

Implementation

The core of our solution is a server running on a central machine through
which all browser requests are funneled for analysis. This server also acts as the
central configuration point – that is, the entire mobile code policy can be
implemented and changed at this single location. When the server receives a
URL request, it separates the mobile code requests from the non-mobile code

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

requests based on file extension. The non-mobile code requests (e.g., html, gif)
are retrieved and forwarded directly to the browser. Mobile code, meanwhile, is
retrieved and checked for viruses and approved signatures. It is then measured
against the given policy to see if it is deemed safe to forward to the requesting
browser.

The policy we implemented is summarized in the following table.

Category Examples Allowed to Execute

1 ActiveX, Unix Shell
Scripts

Signed AND from a
trusted source
Designated as Legacy

2 Java applets, Postscript
From a trusted source
Signed
Designated as Legacy

3 Javascript,VBScript Always

Table 1: Mobile Code Policy

The sections below define the terms in the mobile code policy and discuss how
the were implemented.

Signed Code

According to the mobile code policy, certain types of mobile code must be
signed with approved certificates in order to be downloaded and executed. We
added the ability to recognize files signed using Microsoft’s Authenticode,
Netscape SignTool or JavaSoft. In addition to coding in the ability to recognize
signed files of each type, we needed to maintain a list of acceptable certificates.
We added the ability to enter a certificate to our list directly -- using the .cer file --
or importing it from a signed file. Typically, for a piece of mobile code to be
considered signed, the digital certificate used to sign the code and all the
certificates in its certificate chain, up to and including the root certificate, must be
entered into the server’s certificate list. Under certain circumstances, the root
certificate may not be available, so we added the option to accept the certificate
even if the certificate chain is incomplete. Here again, we are trading security for
functionality.

Trusted Sources

According to the DoD mobile code policy, a trusted source is “a source that
is adjudged to provide reliable software code or information and whose identity
can be verified by authentication” 13 Basically, we needed a way to define which
web sites we trust and then be assured of the identity of those sites when
downloading mobile code. For our policy, we decided that a digital signature or
an SSL connection is sufficient to validate the identity of a trusted source. So, in

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

addition to the code signing recognition described above, we needed to generate
and store a list of trusted sources. Sources were identified by their Internet host
name or IP Address. When our server receives a mobile code request, we
compare the hostname to our list of trusted sources. If the name is found, this
mobile code is considered trusted so long as it is properly signed or comes
through an SSL connection.

Legacy Applications

Legacy applications will be executed regardless of whether or not they
otherwise meet the requirements of the mobile code policy. Obviously,
designating a piece of executable content as legacy opens your network up to
the possibility downloading malicious code, so this option is used with caution.
This option, although sparingly used, allows us to retrieve some vital yet
unsigned applications from the Internet. Legacy applications are identified by
their full URL. When our server receives a mobile code request, we compare the
URL to our list of legacy applications. If the name is found, retrieved code is
virus scanned and returned to the browser without further analysis.

Blocked Applications

Blocked applications will be prevented from downloading regardless of
whether or not they otherwise meet the requirements of the mobile code policy.
This feature is similar to a restricted URL list that many proxy servers use. It was
included for cases where a few URL’s were known to be malicious but a
commercial control list application is not available. Blocked applications are
identified by their full URL. When our server receives a mobile code request, we
compare the URL to our list of blocked applications. If the name is found, the
code is blocked.

Virus Scanning

When a piece of mobile code is retrieved from the Internet and found to
match the mobile code policy, we perform a virus scan on it before forwarding it
to the browser. To do this, we use a commercial real-time virus scanner that has
been installed on the host. Any commercial virus scanner will do, we have used
virus scanners from both Norton and McAfee. At first, we used the command line
implementation of the virus scanners but found that this method resulted in too
much latency. Some virus scanning took on the order of 5 seconds per file,
which was unacceptable to our users. We then found that our virus scanners ran
much faster in the real-time mode. To take advantage of this, we configured
them to delete infected files. When our server receives a piece of mobile code,
we write a copy to the local disk drive. This triggers the virus scanner -- if it finds
a virus, the file will be deleted. If the file remains, we know it is safe to forward to
the browser.

Extra Functionality

The sections below describe extra functionality not explicitly defined in our
mobile code policy.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Treat MSOffice Documents as Mobile Code

Microsoft Office documents may contain macros, which are considered
category 2 mobile code by our mobile code policy. A security hole was found
which “allows specially coded macros inside Excel and PowerPoint files to run
without the user's knowledge, making it possible for a virus writer to code
malicious macros to perform operations such as deleting fi les, posting data on
websites, sending e-mails, and the like.”14 To address this vulnerability, we
added an option to treat all MS Office documents as category 2 mobile code. To
some users, blocking all MS Office documents represents too much of a sacrifice
of functionality, but others require the added security.

Block All Unsigned Applets

Java applets are considered category 2 mobile code by the mobile code
policy. As such, unsigned applets may be downloaded if they come from a
trusted source. Some administrators prefer that all java applets be signed. We
added an option that prevents any unsigned applets from being downloaded.

Display Custom Error Messages

When some forms of mobile code are blocked, we provide custom
messages to the browser which state why the code was blocked. Otherwise, the
browser will display its default messages.

Log Debug Messages

Selecting this option results in verbose log messages for aid in interpreting
any unusual behavior. We use this sparingly since the log files generated can
become quite large.

Handling Non-Standard File Extensions

At this point our code was ready for more detailed testing. During this
testing we discovered that file extension alone was not always an accurate
means for determining the file type. For example, ActiveX files often have the file
extension .ocx. However, if an ActiveX file is renamed with another file
extension, Internet Explorer will still recognize the file as an ActiveX control and
execute it. The use of non-standard file extensions could simply be at the
preference of a developer or it could be the intentional attempt of a malicious
entity to bypass security. To handle this vulnerability, we needed to develop an
alternate means of determining file type. We sought and developed other (trade
secret) means of verifying whether or not a file contained executable content. If
these means indicate that a retrieved file is a higher category of mobile code than
the file extension indicates, the file is blocked. The cost of this addition security
measure is that we now have to examine each retrieved file. This is particularly
expensive for files with non-mobile code extensions – such as gif – that we
heretofore had simply forwarded on to the requesting browser.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This completed the initial development phase of our project. Having
satisfied the functional and usability requirements, this method was put into
operation at our corporate offices.

After

Initial Feedback

The mobile code server described in this paper is now in operation full-time
at our company’s head offices. Each browser in our office is redirected through
the server we developed. We have not received any complaints regarding
latency as we feared at first. The most common report is that some desired
piece of mobile code has been blocked. When these events occur, we check out
the site and then add the URL to the legacy applications list. One unexpected
benefit reported by some Internet users is a reduction in the number of pop-up
advertisements.

Continuing Vulnerabilities & Defense in Depth

While the server we developed helps protect our network from inadvertent
downloads of malicious mobile code, it is best used as part of a suite of
protection measures to provide defense in depth. For example, it is possible for
users to bypass the server from their own browsers – one common cause of this
is laptop users who are often leaving and reconnecting to the company’s
network. To prevent users from connecting directly to the Internet, the firewall
can be configured to prevent outgoing connections to ports 80 and 443.
Additional security can be added by configuring network browsers to disable all
ActiveX controls or at least all unsigned ActiveX controls. Furthermore, some
browsers permit the user to explicitly grant or deny privileges to applets based on
the specific certificate used to sign the applet. These privileges can be denied
outright or limited to the minimum set required for the applet to carry out its
function. Other defense in depth measures that can be taken include using one
of the commercial control list devices mentioned above to block sites known to
contain malicious code.

Other continuing vulnerabilities include revoked certificates. Our mobile
code server does not currently check Certificate Revocation Lists (CRL) to see if
certificates have been revoked. This problem can be exacerbated by the fact
that some browsers have flawed CRL checks themselves 15. Another
vulnerability lies in the speed with which viruses and worms can be propagated
over the Internet. A virus scanner is no longer a guarantee against malicious
code as well. "In today's environment, an unknown threat is much more likely to
cause a virus disaster than a known threat due to the speed at which viruses
propagate. Anti-virus vendors and end-user organizations can no longer take a
reactive approach to combating these threats."16 Our current work includes
finding alternate means for detecting malicious content in mobile code.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Future Plans
Our future plans include adding an interface to our IDS product that will

monitor web browsing to check for insider malicious activity. We are also
considering adding caching capabili ties to our mobile code server. This would
serve a two-fold purpose: first, it would reduce latency involved by preventing the
same mobile code from repeated downloadings and second, it reduces the
chance of downloading malicious code by l imiting the number of times we go out
onto the Internet. Other plans include developing an email server that checks
email attachments for malicious mobile code.

Conclusion

This paper discussed our efforts to improve network security with regard to
Internet-based mobile code. We started by developing a mobile code policy that
defines the requirements necessary to download the different types of mobile
code. We then developed a mobile code server to implement this policy. This
server also includes control list and virus scanning capabilities. It also affords us
a central location to implement our Internet mobile code policy, thus reducing the
ability of individual users can bypass the current policy. This server is currently
in use at our company as part of our defense in depth network security strategy.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

End Notes

1. Bridwell and Tippett.
2. Stein and Stewart [Ref .9].
3. Stein and Stewart [Ref. 9].
4. “CERT Advisory CA-2001-26 Nimda Worm.”
5. Stein and Stewart [Ref. 10].
6. Stein and Stewart [Ref. 10].
7. Stein and Stewart [Ref. 10].
8. Seruga[Ref. 7].
9. Seruga[Ref. 8].
10. Gray.
11. Gray.
12. “Policy Guidance for use of Mobile Code Technologies in Department of

Defense (DoD) Information Systems.”
13. “Policy Guidance for use of Mobile Code Technologies in Department of

Defense (DoD) Information Systems.”
14. Kassen.
15. Stein and Stewart [Ref. 10].
16. Bridwell and Tippett.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References

1. Bridwell, Lawrence M. and Tippett, Peter, MD, PhD. “ICSA Labs 7th Annual

Computer Virus Prevalence Survey 2001.”
2. “CERT Advisory CA-2001-26 Nimda Worm.” September 25, 2001.

http://www.cert.org/advisories/CA-2001-26.html (4 January, 2003).
3. Gray, Stephen. “Web Content Security: the Requirement, Methods Available

and Considerations.” March 23, 2001.
http://rr.sans.org/malicious/constent_sec.php (4 January, 2003).

4. http://www.websense.com/products/about/datasheets/pdfs/PremiumGroupIII.pdf
(4 January, 2003).

5. Kassen, Ron. “MS finds new hole in Excel and PowerPoint.” Oct 11, 2001.
http://www.geek.com/news/geeknews/2001oct/mac20011011008295.htm (4
January, 2003).

6. “Policy Guidance for use of Mobile Code Technologies in Department of
Defense (DoD) Information Systems.” November 7, 2000.

7. Seruga, Dr. Jan. “An Investigation of Active Content On The Web.”
Australian Computer Society Newsletter, May 2001.

8. Seruga, Dr. Jan. “An Investigation of Active Content On The Web.”
Australian Computer Society Newsletter, June 2001.

9. Stein, Lincoln and Stewart, John. “The World Wide Web Security FAQ.”
Version 3.1.2. February 4, 2002.
http://www.w3.org/Security/faq/wwwsf1.html (4 January, 2003).

10. Stein, Lincoln and Stewart, John. “The World Wide Web Security FAQ.”
Version 3.1.2. February 4, 2002.
http://www.w3.org/Security/faq/wwwsf2.html (4 January, 2003).

11. “Web Security: Protecting Networks from Inappropriate Web Content and
Malicious Code.”
http://www.hoffmanmarcom.com/IS/Examples/Symantec_web_security.pdf
(4 January, 2003).

