
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Web Application Security - Layers of Protection

by
William Fredholm
January 26, 2003

GIAC Security Essentials Certification (GSEC)
Practical Assignment – Version 1.4b
Option 1 – Research on Topics in Information Security

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Abstract
This paper reviews some of the large number of resources available for creating secure Web
applications. These resources ranges from the security features of the development and
database environments used, to automated tools evaluating an existing Web application, to Web
sites dedicated to all facets of Web application security.

Web application security is an extremely complex topic and by making one single mistake an
otherwise secure application may be opened up to uninvited guests. By using the different
resources available the risk borne by applications can be reduced to an acceptable level. In
addition, some risk can be avoided at the very beginning of the project life cycle when the
requirements for the system are defined.

Resources on the Internet - OWASP
The Open Web Application Security Project (OWASP) is a Web site devoted to Web application
security [19]. According to the About Us section, the OWASP site strives to be a location to learn
and share information about Web application security. The site has several different sub sections.

Web application security now also has its own top-10 list. The OWASP The Ten Most Critical
Web Application Security Vulnerabilities paper [12] details not only a name and a short
description of 10 common vulnerabilities, but it also provides more extensive explanations on
what the vulnerability is, what type of systems that are affected, how to test for it and remedies.
Also included are references to other material in relation to each vulnerability.

A second document published at the site is titled A Guide to Building Secure Web Applications
[4]. This is a longer document explores topics ranging from the definition of a Web application to
descriptions and security implications of the many technical elements involved in Web
applications and the HTTP protocol.

One section of the site is focused on testing. While no compete document has been published on
the site at this point, a draft table of contents indicates that a comprehensive document is in the
works.

The project is publishing a Web application vulnerability scanner named Web Scarab. The tool is
described as a spider that will crawl a site to find potential vulnerabilities and generate tests to
evaluate the potential vulnerabilities. The tool can also work as a proxy in manual testing mode. A
"pre-beta 3" version of the tool was released in December of 2002, and the source code for the
tool can be downloaded from SourceForge.net [20].

WebGoat is an application intended to be used as a learning tool for Web application security
concepts. WebGoat includes lessons for vulnerabilities and it allows a user to try to exploit the
vulnerabilities after reading about them. The OWASP site also states that future releases will
include a benchmarking feature for Web application vulnerability scanners. WebGoat can be
downloaded from SourceForge.net [20].

Other projects at different stages of completion includes:

VulnXML, a project to standardize the descriptions of Web application vulnerabilities so
that checks can be developed in any Web application vulnerability scanner tool that
understands this common format.
Application Security Attack Components (ASAC), a project focusing on creating a
common set of definitions that can be used to describe vulnerabilities. This would remove
ambiguity when describing and modeling more complex vulnerabilities.
Filters, which is a project to assist Web developers in using secure practices.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

CodeSeeker, a firewall and/or IDS at the application level. Using rules, it examines HTTP
requests to block and/or report on malicious traffic. CodeSeeker is installed on the Web
server and examines traffic after any SSL traffic has been decrypted,

As seen above, the OWASP site has numerous projects in different realms of Web application
security. Many of the projects are still in development stages, but a lot of information is provided
already from the two papers published at the site.

Security Provided by Development Environments
The development environment in use provides many different security features. One problem for
developers is that different environments provide different features. The security features are not
automatic, if they are not properly used and coded into the application they will not provide any
protection. What security features in the development environment do provide is abstraction, the
developer does not need to implement all security features from scratch and the implementation
details are hidden. Below are highlights of some security features provided by the Java and .NET
Web development environments and that are commonly required by any Web application.

In Java, several security features are available for the developer for example functions for
cryptography and access control (permissions). Java (JDK 1.2) defines a security model where
Java code is subject to a security policy that dictates what permissions a caller executing some
code has on different system resources [5].

Java Web Services also has many built in security features [3]. Security can be defined as an
application is deployed (called declarative security) or more granular in the Java program (called
programmatic security).

The access control mechanism includes several different concepts. Users are individuals that
have been authenticated by the run time environment. Groups are sets of users, and Roles
(security roles) are permissions to access some resource. Further, security constraints are
specified to protect parts of the Web application.

The .NET environment also includes many security features [9] starting with IIS (the Web server
used in the .NET environment) using regular Windows file permissions. IIS must have the proper
permissions to access the files a user requests via their browser.

Access is either granted based on specific login credentials provided by the user, but will more
often for Web applications be based on the access right of a standard account used by IIS for all
anonymous access (access without specific user Windows credentials). Because of the need for
anonymous access (otherwise, separate Widows accounts has to be created for each user) the
usefulness of the built in Windows file permissions will be limited for Web applications.

.NET provides other security features to secure a Web application. Access can be granted or
denied for URLs based on the user, role or verb (type of access being requested, GET or POST).
This type of authorization can be defined for the complete application or on individual sub
directories and it is set up using configuration files. This is still a rather coarse method, as it
defines access based on the applications directory structure and not based on the data in the
application (i.e. if you can access the "ViewBankAccount.aspx" page, you can view any bank
account). Role based security functions allow a .NET application fine granular access control
based on the user and the user's role. This type of access control must be coded into the
application by the developer. .NET also provides a set of encryption routines.

Both the Java and the .NET environments provide a rich set of comparable security features [6].
The security features are extensive and flexible but complex. It would be rather easy to make
mistakes, either locking out sections of the application that should be accessible or opening up

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

parts that should be locked down. The first case will soon be noted as users start to point this out
(hopefully before production), while the second case may not be discovered at all until it is
exploited by a malicious user.

Security Provided by the DBMS
The database system itself can provide a high level of security, if used properly. The DBMS can
for example provide granular access control for and auditing, but the DBMS must also be
maintained with patches and audit logs must be reviewed in order for the information to be of use
[18].

While the DBMS can limit access to data in several different ways on a user-by-user basis, one
common problem in a Web application is that the end user does not actually access the database
using his or her own account. Instead, the Web application often uses a service or functional
account that all database access is conducted through. The Web application acts as a proxy
between the user and the DBMS. In this case, many of the more granular access control features
of the DBMS are bypassed and the access control now becomes the burden of the Web
application.

The worst-case scenario is when a Web application uses a high power account, such as 'sa' for a
SQL Server system. By default, 'sa' can perform basically any function within SQL Server and the
account can access any data. This in turn means that if the Web application has a vulnerability,
maybe a SQL injection problem, the potential damage is enormous. Anything from data being
stolen and tables being dropped to compromise of the DBMS host computer.

Another interesting scenario is when an older legacy application is "Web enabled" by deploying a
Web application front-end to the system. In this case, a system that was perfectly secure when
accessed via terminal or custom client software may be compromised because the Web
application now uses an account that has access to more of the data than the individual user
originally had. If the Web application is not secure, the legacy application is no longer secure.

Using an account like 'sa' is obviously not a good idea. Instead one or more specific accounts
should be created for the Web application to use in connecting to the DBMS. Then, follow the
recommendations in limiting access control only to data that is required by the accounts [18]. In
this case all data and each stored procedure in use by the Web application must be available to
the account or accounts, but nothing else. The setup of this scenario is a lot more complex
compared to just allowing the Web application to access anything, but the level of risk is also
reduced substantially.

Tools to Test Web Application Security
One method to ensure that a Web application is safe is to test it from a Web browser's
perspective. Testing for functionality is usually a standard phase of the development life cycle, but
testing can also be focused on security issues. This testing is conducted by sending HTTP
requests from a client to the application and observing the responses.

Tools are now available to assist in this type of testing. A recent article in the Information Security
magazine [22] evaluated two of these tools, AppScan by Sanctum [1] and WebInspect by SPI
Dynamics [21]. The conclusion of the evaluation seems to be that the tools pinpoint many types
of vulnerabilities, but that there is still room for improvement with both performance, false
positives and false negatives.

In general, Web application vulnerability scanner works in two main stages. First, the tool crawls
the Web site (automatic and/or manual) following URLs and submitting forms. The second stage
is the assessment stage, where the tool generates a large number of specially crafted HTTP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

requests. The requests are either based on manipulating information gathered during the crawl
stage (testing for issues like cross site scripting and SQL injection) or they are standard requests
known to exploit vulnerabilities in Web server software (such as appending a special character at
the end of a URL forcing the Web server to return source code instead of HTML). The first type of
assessment requests is usually referred to as testing for "unknown vulnerabilities" while the
second type is referred to as testing for "known vulnerabilities".

Tools can be an excellent companion to the experienced auditor. However, in the wrong hands,
results from any type of testing tool can also give a false sense of security. In addition to running
the tool, a good evaluation must include the use of a pair of critical eyes. What does it mean that
the report from the tool came back "clean"? Does it mean we are secure or does it mean that the
tool was not used properly?

Some issues may never be completely identified by a tool and total automation in this area may
never be obtained, unless the tools can start making use of additional business related
information. Consider the following example:

• A user provides a login ID and password to log on to a Web application. The users login

session is maintained using cookies while it is the initial login ID that identifies what resources
the user can access. Perhaps a list of specific bank accounts.

• The application includes the bank account number currently being accessed on the Web
page as a parameter in some way (a hidden form filed, a URL parameter, a cookie etc.).

• In this case, if the user changes the bank account number by manipulating the parameter, the
application displays the information for that bank account, no matter if it is one of the
accounts on the user's list or not.

• The application is not verifying that the user should have access to the selected bank
account.

This brief example does not reveal anything new when it comes to Web application security
(trivial parameter manipulation), however the question here is how would an automated tool
assessing the application strictly from a Web browsers perspective ever be able to tell that the
second account is not owned by the user?

The information sent back to the browser (or the tool testing the application) looks just like perfect
HTML code. No errors were produced and nothing unusual was returned. The problem here is
that the application violates a business rule. As long as the tool does not know about business
rules, it cannot determine that this was an error.

There are of course many options that can be suggested to allow the tool to actually determine
the problem. For example, if the owner of the account is in some way included as a hidden field
on the Web page the test tool could verify that the owner field does not change, but this again
requires some knowledge about business rules. If the tool always flags a change in the owner
field as a vulnerability, but a user does have valid access to the account (perhaps a shared
account owed by the users spouse) the tool would produce a false positive. This extends to any
other field, when is a change in a filed an error and when is it part of a well functioning
application?

Testing in Production
Although conducting testing in production is not usually a good idea, when it comes to assessing
Web application security it may be a necessity for at least a couple of reasons. First, even if
thorough testing is done on development and test systems, there is still a potential for production
systems to be configured differently. The actual application code could also be different, for
example if files that were supposed to be deployed from test to production never got deployed, or
of files has been manipulated on the production servers. Second, there are many Web

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

applications that are already in production but that were never tested for security to begin with.
There may be an option to set up a parallel test environment for such applications but that is not
always possible.

Special care must obviously be taken when testing production applications as applications are
many times not designed to be tested in a live production environment. This means for example
that data submitted to a production database may not easily be identified as test data and
cleanup may be difficult. If the application contains vulnerabilities, testing may inadvertently ruin
large quantities of data that the test user should not have had access to. Testing should, if
possible be conducted during maintenance windows so that any problems or DoS conditions can
be cleaned up before the application goes live again.

Testing of a production application should be done in a controlled fashion, so using automated
features of testing tools must be carefully considered. It would be best to know exactly what
HTTP requests the testing tool will use in the assessment stage. One option for a production
application testing is a 3rd party penetration type testing.

Application Level Firewalls

Once the application is up and running, there are further measures one can take to monitor how
well the application is doing from a security stand point or to prevent malicious requests from ever
reaching our application [2].

This type of devices or software often labeled application level firewalls promises to monitor
HTTP traffic and automatically make determinations on what constitutes a valid request and what
is to be considered a malicious request. Responses include denying a users request, logging and
sending administrative alerts [10][8][7][11]. One must take care when using automated responses
(denying access) as the firewall may have been responding to a false positive. Another issue with
automated responses is if malicious users are able to trick the firewall in denying legitimate traffic.

At this time, searches on the Internet did not provide any major evaluations of the effectiveness of
this type of products. What level of protection do they provide? What type of attack do they stop?
Do they live up to their promises? While evaluations are scares, an overview of products [17]
shows that there are tradeoffs that have to be made when making the decision on what to deploy.

Using Requirements to Avoid Risk
New vulnerabilities and exploits are discovered continuously, therefore, it is impossible to be
100% certain that all weaknesses in a system has been addressed. As is often pointed out within
the security discipline, what we need is defense in depth [13] and each layer added must mean a
stronger defense.

Because of this, security cannot be considered simply a technical issue that it is up to the
development teams to "code" into the application. Nor can security be completely the
responsibility of code reviewers, testers and security auditors.

Security is the responsibility of all parties involved in the application project. While the previous
sections have all discussed layers of protection provided by several of these parties, this final
layer is actually provided by stakeholders involved from the beginning of a development project,
when the requirements for the system are defined.

The method is simple:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

When defining requirements for a system, always consider the implications of the data
within the system ending up in the wrong hands. If some data element identified carries a
high risk, consider ways to do without it. If the business and the system do not absolutely
need some specific data element, do not include it!

Risk can be addressed in 4 different ways: avoid risk; transfer risk; mitigate risk or accept risk
[16]. While most other methods that address Web application security intends to mitigate risk, this
method instead avoids risk all together. No matter what, unauthorized access to data that is not
present will never happen.

The cost of data being exposed to un-authorized persons is getting higher every day. For
example, states are passing laws requiring companies to inform customers of such events [15]. In
this case, the bill [14] addresses un-encrypted exposure of a persons name in combination with
some specific other data elements. By applying the method above, for example by ensuring that
the specific data elements are not present in the system, the risk of not complying with this law
would be avoided. Of course, as this bill discusses un-encrypted data one way to mitigate the risk
would be to store the data encrypted. However, that does not address the problem where the
data is displayed or exposed somewhere within the system un-encrypted. If the data is not there
we know it will not be exposed.

At times data elements are being included in requirements because they seem like something
that can be nice to have at some point in time or simply because "this is the way we always done
it". Data elements like social security numbers may have been freely used in many older system
and they are just kept on being included by habit. This is one reason why a reminder that each
data element included carries a risk is needed.

If it is realized that a data element, or a combination of data elements within a system exposes an
organization to unacceptable high levels of risk then there is a good chance that alternative ways
will be explored to deal with the business problem at hand. However, unless the requirements
analysis is conducted with this explicitly in mind less risky alternatives may not be used, as they
are not always obvious.

Conclusions
During development of an application, security features at many levels must be used. It all starts
when the requirements are defined, through design, coding, and testing of the application. But it
does not end there, as the wonderful world of Web applications is always changing, both the
application and new vulnerabilities being discovered, continuous education and review of
production system are also required.

Defense in depth must be employed using all avenues available and this paper looked at a few of
those avenues. Start by learning (for example using the OWASP Web site). Then, create low-risk
requirements, and make sure you utilize available security features in your development
environment. Test your application, both in development and during periodic reviews in
production.
Finally, application level firewalls can provide a layer of ongoing monitoring and protection of your
Web application.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References

[1] AppScan, Sanctum. URL: http://www.sanctuminc.com (January 26, 2003)
[2] Ben-Itzhak, Yuval. "Web Application Protection" Web Application Security--The Next

Evolution. URL: http://www.devx.com/security/Article/10236/0/page/4 (January 26,
2003)

[3] Carson, Debbie. "Web Application Security" The Java Web Services Tutorial. August
7, 2002. URL:
http://java.sun.com/webservices/docs/1.0/tutorial/doc/WebAppSecurity.html (January
26, 2003)

[4] Curphery M. and others. "A Guide to Building Secure Web Applications." The Open
Web Application Security Project. September 11, 2002. URL:
http://prdownloads.sourceforge.net/owasp/OWASPGuideV1.1.1.pdf?download
(January 26, 2003)

[5] Dageforde, Mary. "Trail: Security in Java 2 SDK 1.2" The Java Tutorial. November 25,
2002. URL: http://java.sun.com/docs/books/tutorial/security1.2/index.html (January
26, 2003)

[6] Kunene, Glen. "Software Engineers Put .NET and Enterprise Java Security to the
Test." URL: http://archive.devx.com/enterprise/articles/dotnetvsjava/GK0202-1.asp
(January 26, 2003)

[7] No author sited. "AppShield." Sanctum. URL:
http://www.sanctuminc.com/solutions/appshield/index.html (January 26, 2003)

[8] No author sited. "APS 100." Stratum8. URL:
http://www.stratum8.com/docs/aps_datasheet.pdf (January 26, 2003)

[9] No author sited. "Introduction to Web Application Security." Visual Basic and Visual
C# Concepts. URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vbcon/html/vbconintroductiontowebformssecurity.asp (January 26, 2003)

[10] No author sited. "NC-1000 Product Information." NetContinuum. URL:
http://www.netcontinuum.com/products/nc1000.html#prevent (January 26, 2003)

[11] No author sited. "SecureIIS Web Server Protection". eEye Digital Security. URL:
http://www.eeye.com/html/Products/SecureIIS/Features.html (January 26, 2003)

[12] No author sited. "The Ten Most Critical Web Application Security Vulnerabilities." The
Open Web Application Security Project. January 13, 2003. URL:
http://prdownloads.sourceforge.net/owasp/OWASPWebApplicationSecurityTopTen-
Version1.pdf?download

[13] Northcutt, S. and others. Threat and the Need for Defense in Dept - Security
Essentials Day 2 - SANS Track One. The SANS Institute

[14] Peace and Simitian. BILL NUMBER: SB 1386. February 12, 2002. URL:
http://info.sen.ca.gov/pub/01-02/bill/sen/sb_1351-
1400/sb_1386_bill_20020926_chaptered.html (January 26, 2003)

[15] Poulsen, Kevin. "California disclosure law has national reach." SecurityFocus.
January 6, 2003. URL: http://online.securityfocus.com/news/1984 (January 26, 2003)

[16] Pritchard, Carl L. Risk Management: Concepts and Guidance. Arlington: ESI
International, 2001.

[17] Sapiro, Benjamin. "Application Level Content Scrubbers." August 22, 2001. URL:
http://www.sans.org/rr/firewall/scrubbers.php (January 26, 2003)

[18] Suddeth, S. Brian. "Database - The Final Firewall". January 28, 2002. URL:
http://www.sans.org/rr/appsec/final.php (January 26, 2003)

[19] The Open Web Application Security Project (OWASP). URL: http://www.owasp.org/
[20] The Open Web Application Security Project (OWASP) software and documentation

repository. URL: http://sourceforge.net/projects/owasp (January 26, 2003)
[21] WebInspect, SPI Dynamics. URL: http://www.spidynamics.com (January 26, 2003)
[22] White, Kelley and Chon, Yong-Gon. "Wide Open on Port 80." Information Security

January 2003: 32 - 41

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

