
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 1 of 17

Windows 2000 Access Control Lists – A peek under the hood.
GSEC Practical Assignment v.1.4b

Ahmed Farouk AbdulAzim
December 27, 2002

Abstract

Access Control Lists is an extremely important element of the Access Control
Model, and understanding it well helps administrators to set correct and more
secure permissions on resources, and to understand the weakness and default
behavior of Windows 2000. In-depth knowledge of the operating system is the
“basic” tool to maintain more secure networks. One of the immutable laws of
security administration is “The most secure network is a well-administered one”
[1]. This law can’t be observed without “looking under the hood” of the operating
system. This paper provides the reader with a look at a critical part of every
Windows 2000 based computer, Access Control Lists.

What are Access Control Lists?

Since Windows 2000 supports C2-Level security as defined by the US
Department of Defense “Orange Book” [2], it is mandated that the operating
system meet certain requirements, of which the following directly relate to the
subject of this paper:

1. Access to a resource, be it granting or denying, to a user or group of
users, should be possible to control.

2. It should be possible to audit security related events.

Both the above requirements are implemented in the Windows NT/2000/XP
Access Control Model. This model is composed of various components and
tasks, of which Access Control Lists (ACL) is a key component. An ACL, in most
cases, is attached to a securable object, and contains a list of who is allowed
access to the object, who is denied access to the object, what level of access is
either allowed or denied, and if any security related action regarding the object
should be audited in a security log. A securable object is any object that could
have a security descriptor, which in turn is a structure that contains certain
security related information. An ACL is part of this security descriptor that is
attached to securable objects. Examples of securable objects range from named
objects such as files, folders, Active Directory objects and registry keys, as well
as non-named objects such as processes and threads.

Components of Access Control Model

The two main components of the Access Control Model are:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 2 of 17

1. Access Tokens
2. Security Descriptors.
Access tokens provide the security context that users and processes use to

interact with securable objects. They are created by the Local Security Authority
when authentication of a user login is successful. Any process running on behalf
of the user carries a copy of the user’s access token. The access token is
composed of the following components:

• User SID. This is the Security Identifier of the user, and is unique within
the computer (non domain) or throughout Active Directory (domain
model). Windows 2000 refers to users and groups by their SIDs rather
than by their names.

• Group SIDs. A list of the SIDs of the groups that the user is a member of.
• Privileges or rights held on the local computer by the user and the groups

that the user is a member of. Rights can be modified through the Local
Security MMC snap-in. Several security rights exist such as the right to
take ownership of files and other objects, which is by default given to the
Administrators group.

• Primary group that the user is a member of. This is only used by the
POSIX subsystem of Windows 2000 and is otherwise ignored.

• Default Discretionary ACL. This ACL is used in the creation of new objects
by the user when no other ACL is defined or available. By default, this
ACL gives Creator Owner (user who created the object) and System (the
local computer system) full control over the newly created object.

• Source process that created the access token. This could be for example
the LAN Manager or the RPC Server.

• Type of token. A token could be of two types, primary or impersonation.
Primary tokens represent the security context of the user. While an
impersonation token could be used by a thread of a service to temporarily
adapt a different security context than the parent process. Impersonation
is especially useful in client/server operations.

• Impersonation Level. Various levels of impersonation exist, and this field
provides a value of to which level can a service adopt the security context
of a user. This level can range from Anonymous, being the lowest level,
up to Delegate, being the highest level. Anonymous is where the service
can impersonate the user, but the impersonation token contains no
information about the user. While Delegate is a level where the service
can impersonate the user when accessing resources on the same
computer as the service, or any resource on any other computer.

• Statistics about the access token itself which Windows uses internally.
• Restricting SIDs, which is an optional list of SIDs that is attached to the

token by a process that has the authority to create a restricted token,
which can be used to give a thread a lower security context to run in than
the user.

• Session ID. This value is used to indicate if the token is associated with a
Terminal Services session.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 3 of 17

Security Descriptor, which is a structure containing security related
information, and which is attached to securable objects. Parts of this data
structure include:

• Header, which contains information such as a revision number, memory
layout, and which elements are present.

• Owner SID. This is the SID of the owner of this object.
• Primary group SID. As in access tokens, this is the SID of the primary

group that the owner of the object belongs to.
• Discretionary ACL (DACL). This is a list usually containing several Access

Control Entries (ACE). An ACE is a structure containing information
regarding granting or denying access to a user or group as well as the
level of access.

• System ACL (SACL). Similar to the DACL structure. SACLs also contain
ACEs but rather than containing information on granting or denying
access, they contain information on what action to audit, type of action
(success or failure), and which user or group to audit. In addition, SACLs
can only be controlled by users or groups that have the privilege to
manage audit and security logs, which by default is only given to the
Administrators group.

• Layout in memory. This could be either self-relative or absolute, and a flag
in the header part indicates which layout it is.

Components of an ACL

Both DACLs and SACLs have identical format on the higher level. ACLs are
composed of:

1. An ACL structure that contains various information about the ACL
including:

a. ACL Revision. The ACL structure for all revisions is the same, but
what might vary is the structure of ACEs. This is used in cases
when an object specific ACE exists. An example of this is Active
Directory objects.

b. ACL size. This includes the size of the header plus ACEs.
c. ACE Count. This is the number of ACEs that exist in the ACL.

2. ACEs. In the case of DACLs, ACEs are the specific entries that determine

which users and groups have access to the object, and what level of
access is granted or denied. In the case of SACLs, ACEs provide the
specific entries that determine what users or groups to audit, what actions
to audit, and if the audit trigger is a success or failure action.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 4 of 17

In Windows 2000, eight types of ACEs exist, two of which are reserved for future
use with SACLs. The remaining six could be divided into generic ACEs and
object specific (Active Directory) ACEs. Object specific ACEs build upon the
same structure as generic ACEs but also adds three more fields to the structure.
The basic fields present in both generic and object specific ACEs are:

• ACE Header. This header contains information about the type of ACE and
its size. It is made up of three parts:

- ACE Type. This could be one of six values, depending on if the
ACE is generic or object specific, if the ACE is an allowed or
denied ACE, and if the ACE is for a SACL (Appendix, Table 1).

- ACE Flags. This field specifies if the ACE should be inherited or
not, whether it is effective on the current container and in the case
of SACLs if the ACE is a successful or failure attempt ACE
(Appendix, Table 2).

- ACE size in bytes.
• Access Mask. This field is a double-word structure containing a value that

maps to a right that’s allowed, denied or audited. For instance, if the
“write” bit is set, and the ACE is an “allow” ACE, the access mask would
“allow write” (Appendix, Table 5).

• SID of the user or group that the ACE controls access for, or audits.

If the ACE is an object specific (Active Directory) ACE, three other fields exist.
These fields offer a more fine-tuned control over Active Directory objects. Only
two types of generic objects exist, containers and non-containers. Container
objects are ones that can contain other container or non-container objects. While
non-containers are objects that cannot contain any objects. Simple examples of
generic objects are folders and files. Folders are container objects; they could
contain other sub-folders or files. Files are non-container objects that cannot
contain any other objects. Generic ACEs can differentiate between container and
non-container objects only. Active Directory holds many different types of objects
with different attributes. For example an Organizational Unit (OU) is a container
object that can contain a non-container object such as a User and a Computer
object. Object specific ACEs could be attached to the OU, and allowed to be
inherited only by Computer objects. Also object specific ACE can grant or deny
access to a specific property or property set of an object. For example, a Domain
Administrator might give a user the right to edit his own telephone number field in
Active Directory (this is a property), or give the user the right to change all
personal information (this is a property set) that included address, telephone, fax,
etc. This is an example of the granularity of access that object specific ACEs
give, and I have found out by experience that this is extremely beneficial in
delegating administrative tasks.

The three object specific fields are:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 5 of 17

• Flags. These flags tell if the following two fields are present in the ACE or
not. The following two fields govern what type of object is controlled by the
ACE, and what type of object should inherit the ACE.

• Object Type. Five types of object types exist as in Appendix Table 3.
• Inherited Object Type. This field specifies which type of child object can

inherit the ACE. This builds over and above the normal container and non-
container inheritance flags in generic ACEs.

Objects, properties, and property sets in Active Directory are referenced by a
Globally Unique Identifier (GUID). GUID is Microsoft’s implementation of the
Universal Unique Identifier (UUID) which is used in the Open Software
Foundation’s Distributed Computing Environment (DCE). UUIDs are 128 bit long
unique numbers. The uniqueness of UUIDs is guaranteed by combining the
hardware (MAC) address of the network card of the host that generated the
UUID with a time stamp, and applying random seeds [12]. SIDs are still used by
newer Microsoft Windows products such as Windows 2000 and XP only for
backward compatibility, and is suppose to be phased out some time in the future.

ACLs in action

Now that we have covered the elements of ACLs as well as other components of
the Access Control Model, let us look at how these components and elements
interact together to maintain access control.

Objects are controlled by object managers. Each object type has a different
object manager that controls access to the object, and provides default security
permissions when no other permissions are available. A list of object types and
object managers is available in Appendix Table 4.

When a process or process thread tries to access an object, the object’s
manager calls the API function AccessCheckAndAuditAlarm, which handles the
functionality of checking the object access rights and either granting or denying
access. This function takes in consideration three types of access masks:

• Requested Access Mask: This maps to the rights that the thread or
process want to gain and carry out on the object, for instance “Read”.

• Object Access Mask: Each ACE in the objects ACL has an access mask
that maps to the right the ACE is allowing, denying or auditing.

• Granted Access Mask: This is initially set to zero, i.e. an empty access
mask, and as ACEs are reviewed against the requested access mask,
matching bits are set in the granted access mask.

After reviewing all ACEs in the object ACL, AccessCheckAndAuditAlarm returns
either an empty granted access mask, which denies access to the object, or a
granted access mask that’s exactly the same as the requested access mask,
which grants access.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 6 of 17

Before explaining in details how AccessCheckAndAuditAlarm reviews ACLs, it is
important to understand that an object could have an empty ACL or no ACL at
all. An empty ACL is one that contains no ACEs. This would deny everyone
access to the object, including the object owner and Administrators, however
Administrators and object owners can still gain access to the object by modifying
the ACL and adding an allow ACE. On the other hand, null ACLs (non existent)
would allow everyone full control to the object. Null ACLs is a rare case that
could occur if during the object’s creation no ACL was provided by the creating
process, nor was a default ACL found. Object creation and how ACLs are
attached to newly created objects is covered later on in this paper.

In details, AccessCheckAndAuditAlarm does the following:

1. If the object’s security descriptor contains no ACL, the granted access
mask is set to match the requested access mask, and the granted access
mask is returned to the object manager, effectively giving the calling
thread the rights it requested to the object.

2. If the object’s security descriptor does contain an ACL, the ACE Count
field is checked. If this field equals to zero, this means that no ACEs exist
in the ACL, i.e. denying access to everyone. The granted access mask is
all set to zero, denying access, and is returned to the object manager. By
design, this step comes before the owner of the object is checked; hence
this is why even the object owner is denied access to the object.

3. The requested access mask is reviewed, if it is empty, this means that the
requesting thread did not specify what level of access is required, and
hence AccessCheckAndAuditAlarm sets the granted access mask to zero,
denying access, and returns it to the object manager.

4. If the AS bit is set in the requested access mask, the privileges field of the
requestor access token is reviewed. If this field contains the privilege to
manage auditing and security log, the AS bit in the granted access mask
is also set. The corresponding AS bit is reset in the requested access
mask. If the requested access mask becomes all zeros, access checking
stops.

5. If the change permissions, read permissions or modify owner bits are set
in the requested access mask, the user and group SID of the requestor
are compared to the object owner user and group SID. If a match exists,
the bit is turned on in the granted access mask, and turned off in the
requested access mask. If any bits in the requested access mask are still
on, access checking continues, or else it ends.

6. A counter is set to equal ACE Count. This is used to go through each ACE
in the ACL.

7. If the counter equals (ACE Count + 1), the granted access mask is all set
to zeros and access checking stops. This effectively denies access to the
object. This is because the end of the ACL was reached yet not all the
requested permissions were granted. By design when such a situation is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 7 of 17

encountered the system revokes any bits granted in the granted access
mask and ends access checking.

8. ACE[Counter] is reviewed, if the INHERIT_ONLY flag is set this means
that ACE is not an effective ACE and is only present for inheritance, hence
the ACE is skipped. The counter is incremented and the function returns
to step 7.

9. The access token user and group SIDs are compared against the ACE
user and group SIDs. If the SIDs don’t match, the ACE is skipped and the
function returns to step 7 after incrementing the counter. This is because
the ACE does not apply to the current user/group and hence the function
need not review it.

10. If the ACE is a deny ACE, the requested and ACE access masks are
compared. If any bit is set on both masks, the granted access mask is
reset to zeros and access checking stops, denying access. This is
because the requestor tried to gain a permission that was denied, and
hence all granted access was revoked. If no matches exist, the function
increments the counter and goes back to step 7. This is because even
though the requestor was denied a certain permission, but the requestor
did not try to gain that specifically denied permission, and hence access
checking continues.

11. If the ACE is an allow ACE, the ACE and requestor access masks are
compared. If a match exists, the matching bit is turned on in the granted
access mask, and off in the requested access mask. If the requested
access mask is all zeros, then all requested permissions have been
granted, hence the there is no need to continue in the ACL, and access
checking stops. If however the requested access mask is not all zeros, the
counter is incremented and the function returns to step 7, to review the
rest of the ACL.

Flow chart 1 in the appendix shows the steps carried out when
AccessCheckAndAuditAlarm reviews an object’s DACLs.

The steps above explain how DACLs are reviewed. SACLs differ in the way they
are checked. Auditing comes after access check is completed and the granted
access mask returned to the object manager. This is because the system needs
to audit actions after they are taken. It is important to note that when auditing the
function does not terminate until all ACEs are reviewed. Below are the detailed
steps of auditing and reviewing an object’s SACL:

1. The SACLs ACE Count field is checked. If it equals to zero, then the
SACLs is empty and there is no need to continue since no auditing entries
are attached to the object. The function ends.

2. A counter is set to equal the ACE Count. This counter is used to pass
through all the ACEs in the SACL.

3. If the counter is equal to (ACE Count + 1), the function ends. This means
that the end of the SACL has been reached, hence auditing is stopped.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 8 of 17

4. ACE[Counter] is reviewed, if the INHERIT_ONLY flag is set, there is no
need to review the rest of the ACE since this ACE is non-effective on the
current object and is only kept to be inherited by child objects. The counter
is incremented and the function returns to step 3.

5. The user and group SIDs of the thread’s access token is compared to the
ACE[Counter] SID. If they do not match, this means that this ACE is not
relevant to the current user and group, hence is skipped by incrementing
the counter and returning to step 3.

6. If the user and/or group SIDs of the thread’s access token match those in
the ACE[Counter], the ACE[Counter] access mask is reviewed against the
requested access mask. If a bit is turned on in the ACE access mask and
the same bit is turned off in the requested access mask this means that
the permission requested by the thread is not audited by the current ACE.
The counter is incremented and the function returns to step 3.

7. The ACE is reviewed to check what type of system ACE it is (success or
failure). If the flag SUCCESSFULL_ACCESS_ACE_FLAG is set, the ACE
access mask is compared to the granted access mask. If a bit is set on
both, this means that the thread did gain access to the object. The
function would record a successful entry in the security log, and will
consider information from the thread’s access token (who triggered the
event?) as well as the permission corresponding to the matching bit (what
action was audited). The counter is incremented and the function returns
to step 3.

8. If the flag FAILED_ACCESS_ACE_FLAG is set in the current ACE, the
ACE access mask is compared to the granted access mask. If a bit is
turned on in the ACE access mask and the same bit is turned off in the
granted access mask this means that the object failed to gain the specific
permission to the object. A failure event is logged in the security log, with
relevant information from the thread’s access token and the ACE access
mask. The counter is incremented and the function returns to step 3.

Flow chart 2 in the appendix shows the steps carried out when
AccessCheckAndAuditAlarm reviews an object’s SACLs.

Creation of ACLs

Part of the creation of an object, is the creation of the security descriptor that
attaches to the newly created object. The information needed in the constructing
of the security descriptor include object owner, ACL, as well as inheritance
properties. The sources used to collect this information include one or more of
the following:

• Subject, which is the process or thread that created the object. The
subject’s access token would provide information such as owner SID and
default ACL. The owner SID of the access token becomes the owner of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 9 of 17

the newly created object. The ACL is constructed from the default ACL as
well as any inheritable ACEs as we will see later.

• Object Managers. As explained earlier, different types of objects are
controlled by different object managers (Appendix Table 4). The object
manager of the newly created object is referenced to provide an ACL if
none are provided by the subject or through inheritance.

• Parent Objects. The newly created object can inherit the ACL from its
parent. For example a new file created within a folder, could inherit the
ACL of the folder.

It is quite easy to see the manipulation of ACLs through the NTFS file system.
The creator of a folder could for example block the inheritance of permissions
from the parent folder. Or the administrator could allow the inheritance of
permissions from a parent, and then stop the child object from receiving any
changes in the parent permissions. Permissions could be set to be inheritable or
not, and could also be tuned to be inherited by containers or non-containers.

It is important to note that permissions could be inherited or explicit. A sub-folder
could have all its ACL inherited from the parent folder, as well as having ACEs
that are applied directly on the sub-folder. An extremely important and yet
dangerous default behavior in Windows 2000 and XP puts explicit ACEs ahead
of inherited ACEs. As any Windows 2000 administrator knows, a deny entry
overrides any other allowed entry. This is because of the way ACEs are sorted in
a DACL. However the Windows interface hides certain aspects that could be
manipulated using APIs. For instance, the Windows interface puts deny ACEs
ahead of allow ACEs, but if the ACL was constructed through a program, it could
sort ACEs as it wants, and override the default behavior of deny ACEs coming
before allow ACEs. Even though that breaking the default behavior is not
recommended by Microsoft, it is quite easy for anyone with programming
knowledge and the correct APIs to override this behavior.

All explicit ACEs come before inherited ACEs. This would mean that an explicit
allow ACE supersedes an inherited deny ACE. An example of this could be seen
in Image 1 in Appendix. In this example I created a folder and named it “Test
Folder” and removed all inherited permissions from the parent. I created a sub
folder “Sub Folder” under the “Test Folder”. On “Test Folder” I denied access to
user Farouk, and at the same time allowed the same user access on “Sub
folder”. Image 1 shows the order that the ACEs are reviewed by the function
AccessCheckAndAuditAlarm for “Sub Folder”. The bottom two ACEs are
inherited ones. The top ACE is the explici t ACE. Even though Farouk is denied
access to “Sub Folder” at the parent “Test Folder” level, if the user typed the full
path of the folder (example C:\Test Folder\Sub Folder\) he will gain instant
access.

When permissions on a parent folder are changed, the system automatically
propagates the changed permissions to children objects, but according to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 10 of 17

inheritance rules (a child object might be configured to block inheritance of
permissions). This does not remove explicit permissions. If it is required to
remove explicit permissions, the option “Reset permissions on all child objects”
would force all child ACLs to be removed and replaced by inherited ACLs from
the parent.

In Active Directory the construction of ACLs differs in two ways:

• The Active Directory schema could provide a security descriptor for the
created object. This is because the schema stores a default security
descriptor attribute for every object class defined.

• Since ACE could be object-specific, these object specific ACE are only
inherited by the specified object types. This is over and above the two
generic types of objects (container and non-container).

Conclusion

Access Control is a critical aspect of any operating system. Understanding
Access Control Lists in Windows 2000 and its default behavior greatly helps
administrators to set correct resource access control, and safe guard against
mis-configurations.

References

[1] Culp, Scott. “The Ten Immutable Laws of Security Administration”.
Microsoft Security Essays. November 2000. URL:
http://www.microsoft.com/technet/columns/security/essays/10salaw
s.asp

[2] US Department Of Defense. “Department Of Defense Trusted

Computer System Evaluation Criteria”. Department Of Defense
Standard. December 1985. URL:
http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-STD.html.

[3] Microsoft Corp. “Access Control”. Windows 2000 Server Distributed

Systems Guide. URL:
http://www.microsoft.com/technet/prodtechnol/windows2000serv/re
skit/distsys/part2/dsgch12.asp

[4] Microsoft Corp. “Access Control Components”. Platform SDK.

October 2002. URL: http://msdn.microsoft.com/library/en-
us/security/security/access_control_components.asp

[5] Microsoft Corp. “Access Tokens”. Platform SDK. October 2002.

URL: http://msdn.microsoft.com/library/en-
us/security/security/access_tokens.asp

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 11 of 17

[6] Microsoft Corp. “Security Descriptors”. Platform SDK. October
2002. URL: http://msdn.microsoft.com/library/en-
us/security/security/security_descriptors.asp

[7] Microsoft Corp. “ACL”. Platform SDK. October 2002. URL:

http://msdn.microsoft.com/library/en-us/security/security/acl.asp

[8] Microsoft Corp. “ACE”. Platform SDK. October 2002. URL:
http://msdn.microsoft.com/library/en-us/security/security/ace.asp

[9] Microsoft Corp. “ACE_HEADER”. Platform SDK. October 2002.

URL: http://msdn.microsoft.com/library/en-
us/security/security/ace_header.asp

[10] Microsoft Corp. “Object-Specific ACEs”. Platform SDK. October

2002. URL: http://msdn.microsoft.com/library/en-
us/security/security/object_specific_aces.asp

[11] Microsoft Corp. “ACCESS_ALLOWED_OBJECT_ACE”. Platform

SDK. October 2002. URL: http://msdn.microsoft.com/en-
us/security/security/access_allowed_object_ace.asp

[12] Microsoft Corp. “AccessCheckAndAuditAlarm”. Platform SDK.

October 2002. URL: http://msdn.microsoft.com/library/en-
us/security/security/accesscheckandauditalarm.asp

[13] Microsoft Corp. “Understanding Container Access Inheritance Flags

in Windows 2000”. Microsoft Knowledge Base. October 10, 2002.
URL: http://support.microsoft.com/default.aspx?scid=KB;EN-
US;Q220167&

[14] Zenkov, Igor P. “COM+ Glossary”. URL:

http://www.geocities.com/izenkov/Ref/Com-uuid.htm

[15] Pedestal Software. “Windows 2000 Access Control”. NTSEC
Security Tools. URL:
http://www.pedestalsoftware.com/ntsec/ntsecfaq2000.htm

[16] Microsoft Corp. “Objects and Object Managers”. Windows 2000

Server Help.

[17] Microsoft Corp. “Microsoft Official Curriculum: Designing a Secure
Windows 2000 Network - Workbook”. Microsoft Corp. June 2000.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 12 of 17

Appendix

Table 1 ACE Types [8]

Value Description
ACCESS_ALLOWED_ACE_TYPE Generic ACE allowing access.

ACCESS_DENIED_ACE_TYPE Generic ACE denying access.

SYSTEM_AUDIT_ACE_TYPE Generic ACE for SACLs.

ACCESS_ALLOWED_OBJECT_ACE_TYPE Object specific ACE allowing
access.

ACCESS_DENIED_OBJECT_ACE_TYPE Object specific ACE denying
access.

SYSTEM_AUDIT_OBJECT_ACE_TYPE Object specific ACE for SACLs.

Table 2 ACE Flags [9]

Value Description
CONTAINER_INHERIT_ACE Child container objects inherit this ACE

as an effective ACE.
OBJECT_INHERIT_ACE Child non-container objects inherit this

ACE as an effective ACE. If the child
object is a container object, it will also
inherit it (to pass it to grandchildren)
but it will not be effective on the non-
container.

INHERIT_ONLY_ACE Indicates that the ACE is not effective
on the current object and is present
only to be inherited.

NO_PROPAGATE_INHERIT_ACE If this flag is set, the ACE is inherited
by the child object, but on the child
object the ACE flags that allow the
ACE to be inherited are cleared. This
prevents the next level of objects
(grandchildren) from inheriting the
ACE.

INHERITED_ACE The ACE is inherited. The system sets
this flag when propagating an ACE.

SUCCESSFUL_ACCESS_ACE_FLAG Used in SACLS to audit success
operations on the object that the ACE
is attached to.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 13 of 17

FAILED_ACCESS_ACE_FLAG Used in SACLS to audit failure
operations on the object that the ACE
is attached to.

Table 3 ACE Object Types [11]

Value Description
ADS_RIGHT_DS_CREATE_CHILD The ACE controls if the user or group

can create a specific type of child
object.

ADS_RIGHT_DS_READ_PROP The ACE controls if the user or group
can read a specific property or
property set.

ADS_RIGHT_DS_WRITE_PROP The ACE controls if the user or group
can write a specific property or
property set.

ADS_RIGHT_DS_CONTROL_ACCESS The ACE controls if the user or group
can perform a specific extended right
on the object. Extended rights are
ones that are not covered by the
standard access rights. For example
the right to send mail on another user’s
behalf is an extended right.

ADS_RIGHT_DS_SELF The ACE controls if the user or group
can perform a special validated write
operation. A validated write is different
from a normal write operation because
it requires that the system check that
the value to be written is valid, for
example within a certain range.

Table 4 Object Managers [14]

Object type Object manager

Files & Folders NTFS file system

Active Directory objects Active Directory

Shares Server service

Registry keys The registry

Services Service controllers

Printer Printer spooler

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 14 of 17

Table 5 Access Mask format [3]

Bit number Corresponding permission

0 – 15 Object-specific access rights

16 – 22 Standard access rights

23 Right to access the SACL.

24 – 27 Reserved for future use.

28 Generic All (read, write & execute)
rights.

29 Generic execute.

30 Generic write.

31 Generic read.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 15 of 17

Object DACL e xists? Grant Access END

Deny Access

D

E

E

Yes

No

Yes

NoBit 23 set in
requested A.M?

Privelages of A. T.
contain "Manage

Audit"?

Yes

Yes

No

Change perm./read
perm./modify owner
bits set in re quested

A.M?

No

No

ACE Count = zero?

Yes

No

Legend:
A.T = Acc ess Token
A.M = Acc ess Mask
Perm. = Permission

START

User/group SID of
A.T = owner SID of

object?

Requested A.M
empty?

D

-set bit 23 in granted A.M on
-set bit 23 in requested A.M off

Any bits in
requested A.M still

on?
E

-set bit in granted A.M on
-set bit in requested A.M off

Any bits in
requested A.M still

on? set counter=ACE
Count

counter = ACE
count + 1?D

ACE[Counter] has
INHERIT_ONLY flag

set?

No

Yes

Incr ement counter

A.T User/group SID
= ACE user/group

SID?

No

Yes

Yes

No

Deny ACE? Any bit in requested
A.M matches bit in

ACE A.M?

D

Check bits in ACE A.M
against requested A.M.

Match exists?

Set matched bits in
granted A.M. Reset

matched bits in
requested A.M.

Any bits still set in
requested A.M.? E

Allow ACE?

Incr ement counter

E

No

NoYes

YesYes

No No

YesNo

Yes

Yes

No

No

No

Yes

Yes

No

NoYes

Flowchart 1 DACL in action

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 16 of 17

Start

ACE Count = zero?

set counter=ACE
Count

counter = ACE
count + 1?

ACE[Counter] has
INHERIT_ONLY flag

set?

No

Yes

Incr ement counter

No

Yes

No

A.T User/group SID
= ACE user/group

SID?

ACE A.M bits on &
corr esponding

requested A.M bits
off?

ACE is
SUCCESSFULL_AC

CESS_ACE?

Compare ACE A.M
with granted A.M

Matching bit turned
on in both A.M.s?

Log SUCCESS
event in security log

No

Yes

Yes

Yes

Yes

No

No

ACE is
FAILURE_ACCESS

_ACE?

Compare ACE A.M
with granted A.M

Bit turned on in ACE
A.M & same bit turned

off in gr anted A.M?

Log FAIL URE event
in security log

No

No

Yes

Yes

End

Yes

No

Legend:
A.T = Acce ss Token
A.M = Acc ess Mask

Flowchart 2 SACL in action

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
Page 17 of 17

Image 1 Explicit vs. inherited ACEs.

