
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Sara Dearing
 GSEC Practical Requirement v1.4b

 Case Study: Statd/Automountd Security Incident

 Abstract

 This is a case study of a root compromise caused by a Solaris
 vulnerability in statd that exposed a vulnerability in automountd.
 The incident occurred four months before any security advisories were
 circulated about the problem. This paper traces the steps taken to
 determine what exactly the compromise was, how it was addressed using
 CERT intruder detection and root compromise recovery documents as guides,
 and what additional security measures were added to our environment on
 an ongoing permanent basis as a result of the compromise (servers on
 isolated ports to reduce the impact of a sniffer, and installation of
 ssh).

 Background

 The security incident to be described here occurred in February of 1999
 in a university setting. We had a group of unix systems administrators
 (four full-time employees and one part-time employee) managing about 60
 Solaris 2.5.1 and 2.6 servers and workstations. We were led by a manager
 of distributed systems. In general, each administrator in the group was
 assigned primary responsibility for monitoring a particular set of our
 major services, and all administrators helped out managing faculty and
 user room workstations. All servers and workstations except our DNS
 server, were part of the same NIS domain sharing the same password and
 group databases. Workstations had no additional local users or groups
 defined, and servers had at most a half dozen local users and/or groups
 defined. We had also implemented a scheme of restricting logins to
 server machines by changing the modes on all the shell binaries to
 remove world access and changing the groupship to be "machine-name"ok.
 Only a small number of users were then added to each "machine-name"ok
 group. We used daily system reports (displaying things like disk usage,
 su attempts to root, process listings, etc.) to monitor both servers and
 workstations. We were also members of both Sun (the operating system
 vendor) and CERT security advisory mailing lists, and applied any
 security related patches immediately, while also regularly updating the
 OS and applying general OS patches usually two times during the year
 (between semesters and during the summer). The university as a whole,
 and in particular, our distributed systems group, had no stated security
 policy/document.

 Discovery of the Problem

 The morning of Thursday February 4, 1999, the administrator monitoring
 the university web and usenet news server, emailed the systems
 administrator group to say she discovered the following processes on
 the system:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 root 20786 0.0 0.3 1552 1032 ? S Feb 01 0:00
 /usr/sbin/inetd -s /tmp/bob
 root 20792 0.0 0.3 1568 1184 ? S Feb 01 0:00
 /usr/sbin/inetd -s /tmp/bob
 root 20800 0.0 0.3 1568 1184 ? S Feb 01 0:00
 /usr/sbin/inetd -s /tmp/bob

 She indicated that the processes were started on February 1, at 6:42pm.
 The file /tmp/bob no longer existed (most likely due to a daily script
 cleanup of /tmp). She had checked the last logs and found two unique
 student login attempts from a remote site (non-university address) at
 6:49pm and 6:50pm on February 1. They were immediately logged off due
 to our restricted login setup. She asked if any of us had any insight
 we could share.

 Plan of Attack

 It was decided that we were probably dealing with a root compromise,
 since one would need to be root to have started these processes, and
 none of us were responsible for doing it. The manager collected the
 group together to discuss the situation. As a group, we decided to do
 two things. First, try to determine all that we could about the
 compromise. We based our efforts on the CERT document "Intruder
 Detection Checklist" (1) Second, we needed to clean up and fix the
 problem. We decided to base these efforts on the CERT document
 "Steps for Recovering From a UNIX Root Compromise" (2) The bulk of the
 tasks involved for both efforts were divided between myself and one
 other colleague, leaving the remaining three to cover regular daily
 work and provide assistance to us as they could. Chronologically,
 we proceeded as follows:

 Thursday

 I used the truss command to see what the processes were doing. All
 were sleeping.

 Since we use sudo, I checked the sudo logs to determine if anyone had
 used to sudo to start inetd. There were no unusual entries.

 My colleague examined the wtmpx file to determine the full path of the
 remote site from which the student logins were attempted.

 I checked our own internal log of "problem" students to see if the
 userids used had been involved in some previous offense. They were
 not.

 An examination of syslog showed nothing unusual.

 An examination of messages showed:
 Feb 1 18:42:21 statd[134]: attempt to create "/var/statmon/sm/; echo
 "ingreslock stream tcp nowait root /bin/sh sh -i" >>/tmp/bob ; /usr/
 sbin/inetd -s /tmp/bob &"
 Feb 1 18:42:30 statd[134]: attempt to create "/var/statmon/sm/; echo
 "ingreslock stream tcp nowait root /bin/sh sh -i" >>/tmp/bob ; /usr/
 sbin/inetd -s /tmp/bob &"
 Feb 1 18:42:40 inetd[20792]: ingreslock/tcp: bind: Address already in

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 use
 Feb 1 18:42:40 inetd[20792]: ingreslock/tcp: bind: Address already in
 use
 Feb 1 18:42:49 statd[134]: attempt to create "/var/statmon/sm/; echo
 "ingreslock stream tcp nowait root /bin/sh sh -i" >>/tmp/bob ; /usr/
 sbin/inetd -s /tmp/bob &"
 Feb 1 18:42:49 inetd[20800]: ingreslock/tcp: bind: Address already in
 use
 Feb 1 18:42:49 maenad.csc.albany.edu last message repeated 2 times
 (latter message repeated numerous times)

 I used md5 (from a build done on our file server machine) to checksum
 /usr/sbin/inetd and compared the result against the same binary on two
 other workstations in our control. There was no difference.

 I used md5 to checksum all the executables called from inetd and all
 were the same as the other workstations.

 I killed all the inetd processes running on the system and restarted
 inetd.

 I modified the daily script to no longer remove files in /tmp (just in
 case the vulnerability were attempted again, we might catch what was in
 the file /tmp/bob)

 Friday

 We searched for setuid and setgid files and found nothing out of the
 ordinary.

 We inspected /etc/inetd.conf and found no changes.

 We inspected the local passwd and group files and found no changes.

 My colleague contacted CERT. They were willing to work with us over
 the weekend. Since we were at the latest revision of the statd patch,
 the CERT representative believed that a relatively unused security hole
 was being exploited relating to the interaction of statd and automountd.
 He indicated Sun was aware of the problem and that it involved a buffer
 overflow. We were only the third report CERT had received within a
 week. He suggested that we may find information on the vulnerability
 on the internet at hacker sites if we searched for statd and automountd.
 We were told repeatedly that we should be suspicious that a sniffer
 was installed (the two student login attempts from a remote site
 provided circumstantial evidence that a sniffer might have been
 installed). While he indicated that sniffers are more difficult to
 detect because they leave a small footprint, he suggested checking if
 the machine was in promiscuous mode, or by tearing the file system
 apart looking file by file for a log. His initial recommendations
 were to:
 - disable automountd on all hosts
 - pressure Sun for a patch
 - run the ifconfig command from a distribution CD to check for
 promiscuous mode
 - possibly tear the file system apart looking for a sniffer log
 - install secure shell to protect passwords with encryption

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 - start network logging to a low profile, restricted access host
 to guard against the removal of local logs on a compromised
 machine (logs would still be available on the remote loghost).
 - mail CERT with any information on the incident
 - review the CERT document on recovering from an incident
 - review use of rsh and .rhosts trust arrangements; think about
 kerborizing our network
 We decided to additionally:
 - check what machines would be sniffable from the compromised
 web server
 - warn others at the university to turn off automountd
 - check all our machine log files for the statd errors to see
 if there was any evidence of other machines being compromised
 - check if the two student userids used, had attempted to login
 to any other of our machines
 - run ifconfig on all our machines checking for promiscuous mode

 One of my colleagues found exploit code at a site that no longer
 exists (however, similar code can now be found at (3)).

 My colleague contacted Sun. CERT had not provided us with a Sun bugid
 so the Sun representative was unable to find any bugid associated
 with the statd/automountd vulnerability. He put a level 1 priority on
 the call and passed it to the security team but indicated we would
 most likely not hear anything until Monday.

 Three of us shut off automountd and added hard mounts as needed to
 /etc/vfstab files on all our machines.

 Saturday

 All local account passwords were changed on the web server.

 All users listed in the "machine-name"ok group were reviewed and
 those no longer needing login access were removed.

 All services in inetd.conf were reviewed and unnecessary ones were
 turned off.

 We ran various snoop tests on the web server to see what kind of
 traffic would be visible to a sniffer and did not see any evidence
 of plain text passwords (only a very small number of users were even
 allowed to login to the web server).

 I ran a script on all our machines that checked for statd and/or
 ingreslock messages in /var/adm/messages; moved the start script for
 automountd out of the way so a reboot of any machine wouldn't
 inadvertently start the automounter again; checked for extra inetd
 processes; ran ifconfig to see if any machine was in promiscuous mode.
 All machines looked okay.

 We met with one of our colleagues in the university data communications
 department to determine just what could be sniffed from the web
 server. He assured us that the web server was on an isolated port on
 the router such that it could only see its own traffic (and broadcast
 traffic). He indicated the same was true for our nis master server, new

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 web server, dns server, library server, and webct server. Our compute
 server and our file server could see each others traffic, so the
 data communications person put them on isolated ports by mid-day.
 We decided that we would rebuild at least the web server and possibly
 other major servers if there was evidence of compromise, and we would
 keep a close eye on the rest of our machines.

 We contacted CERT again and they agreed that our rebuild plan seemed
 reasonable. They again recommended using secure shell (ssh), and to
 also consider "what if ..." type questions at a later point, in order
 to develop plans for handling incidents if the circumstances were
 different from this one.

 We rebuilt our jumpstart server.

 Sunday

 We sent a message to other unix systems administrators at the
 university to briefly describe that we had been compromised, CERT
 had been notified, and that it was recommended that automountd be
 turned off.

 Following Weeks

 Over the course of the following week, we used the jumpstart server to
 rebuild our web server and dns server. The week after that we rebuilt
 our nis server. All were also upgraded to Solaris 2.6. Secure Shell
 was built and all system administrators were encouraged to use it, but
 insecure methods of logging in were not disabled (i.e. telnet, rsh, etc.)
 After a significant amount of badgering, Sun eventually indicated they
 did not have a patch for the problem yet, but advised not only stopping
 the automounter but also having statd run as a non- privileged user.
 We implemented that recommendation on all our machines, and also
 informed the other unix systems administrators on campus.

 It was not until early June that CERT released its Advisory CA-1999-05
 Vulnerability in statd exposes vulnerability in automountd (4) and Sun
 had released a statd patch for Solaris 2.5.1 which addressed the problem
 (5)

 Conclusion

 Using something as simple as a daily monitoring script, we were able to
 successfully detect a compromise. Then by following the CERT intrusion
 detection and root compromise recovery documents, we were able to
 relatively quickly outline a plan of attack for how to deal with the
 incident. We were successful in fixing the problem via the advise
 provided by CERT and Sun. We were able to enhance our overall security
 situation by moving servers not formerly on isolated ports to such ports,
 and by installing ssh.

 On the downside, we have yet to set up a low profile, limited access
 central loghost as this is a task that always gets pushed aside by more
 important tasks. We also have not eliminated insecure login methods,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 such as telnet, although we are making slow progress in that direction.
 We still have no stated university security policy, but we have recently
 gained a CIO who has since designated a security position in the data
 communications area of the organizational chart. We never did address
 the questions of "what if ..." to plan how we would address an incident
 if the circumstances were different. However, we did not run into any
 ill side effects nor does it appear we missed anything crucial by using
 the CERT documents as a guide for how to handle the incident.

 References

 (1) CERT Intruder Detection Checklist
 http://www.cert.org/tech_tips/intruder_detection_checklist.html

 (2) CERT Steps for Recovering From a UNIX Root Compromise
 now called Steps for Recovering from a UNIX or NT System Compromise
 http://www.cert.org/tech_tips/root_compromise.html

 (3) rpc.statd/automountd exploit code download available from:
 http://packetstormsecurity.nl/groups/horizon (click on statd.tar.gz)

 (4) CERT Advisory CA-1999-05 Vulnerability in statd exposes vulnerability
 in automountd
 http://www.cert.org/advisories/CA-1999-05.html

 (5) Sun Solaris Patch-ID#: 104166
 http://sunsolve.sun.com/pub-cgi/show.pl?target=patchpage
 (enter 104166 under patchfinder and click find patch)

