
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Worms as Attack Vectors: Theory, Threats, and Defenses

A Practical Assignment, submitted in partial requirement for GSEC certification
(GIAC Security Essentials Certification [GSEC], Version 1.4b, Option 1)

Matthew Todd, Ph.D.
January 31, 2003

Abstract

Self-replicating, self-propagating, malicious programs (worms) are described in
the context of being likely attack mechanisms for a variety of illicit or illegal
activities. A brief discussion of what constitutes a typical worm is given, along
with a brief history of worms, reasons they may be released, and who might gain
from their use. A proposal for future worms is presented. Finally, current and
future (proposed) defenses are presented and discussed in light of potential new
threats.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 2

Contents
1 Introduction..4

2 Worms ...5
2.1 Components of Worms ...5

2.1.1 Autonomy ..5
2.1.2 Replicability ...5

2.1.3 Reconnaissance Capabilities ..6
2.1.4 Attack Capabilities ...6

2.1.5 Multiple Attack Capabilities..6
2.1.6 Defense ...7

2.1.7 Command Interface ...7
2.1.8 Polymorphism..7

2.2 Virulence vs. Payloads ...7
2.2.1 Virulence ...7

2.2.2 Payloads..8
2.3 A Brief History of Worms ..8

2.4 Why Worms?..9
2.4.1 “Just Because”...10

2.4.2 Fame ...10
2.4.3 Crime...10

2.4.4 Politics/Religion ...10
2.4.5 Sabotage ...10

2.4.6 Intelligence Gathering/Espionage..11
3 Worms of the Future ..11

3.1.1 Reconnaissance Capabilities ..11
3.1.2 Multiple Attack Capabilities..12

3.1.3 Defense ...12
3.1.4 Command Interface and Communication13

3.1.5 Polymorphism/Adaptation/Expansion ..13
3.1.6 Payload ...13

3.1.7 Intelligence ..13
3.1.8 One Possible Scenario ..13

4 Defense – Present and Future...14

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 3

4.1 Patches...14
4.2 Firewalls and Routers ...15

4.3 Network-based IDS...15
4.4 Host-based IDS ..15

4.4.1 Checksum-based Detection ..15
4.4.2 Signature-based Detection ..16

4.5 Host-based IPS ..16
4.6 Tarpits and Honeynets..16

4.7 Centralized Monitoring and Management ...17
4.8 Social Awareness ...17

5 Trends ...17
6 Notes ...19

7 References ..23

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 4

1 Introduction

Self-replicating, malicious software has been a topic of interest ever since Ken
Thompson’s discussion of placing self-replicating code within a C compiler in
1984.1 The first known incidence of a self-replicating, self-propagating program
occurred in 1988 with the Morris worm, which had, at the time, a devastating
effect on the early Internet.2,3 Since that time, numerous worms have been
observed in the wild. At present, the concept of the worm (in terms of the
Internet) is so well known that Merriam Webster defines the term as “a usually
small self-contained computer program that invades computers on a network and
usually performs a malicious action.”4
Worms, in their most basic form, present a fascinating computational challenge.
Much like biological viruses, worms propagate by infecting a host and causing
the host to create images of the worm to infect other hosts. Similarly, worms
take advantage of weaknesses in the hosts’ defenses to propagate. In many
cases, simply propagating has detrimental side effects – much like the fatal
effects of viruses that cause AIDS or Ebola, worms can damage or shut down
hosts or networks simply by how they propagate (examples include the Morris
worm5 and the very recent MS-SQL Server Worm6). Unfortunately, worms can
go beyond simple replication, and can contain payloads designed with specific,
malicious intent such as back doors, DDoS (distributed denial of service) tools,
drive erasers, or even espionage tools.7
Scores of tools have been developed to fight worms and their close cousins,
computer viruses. Unfortunately, as observed by George Smith, “while every
warm-blooded living thing has an immune system for fighting invaders, …silicon
immunology – despite outbursts of unwarranted ebullience – remains only
awkwardly workable.”8
Recently, SANS asked a number of security experts to opine on the trends for
security in 2003.9 Their predictions portend a potentially bleak future on the
Internet. Among other experts, Schneier predicts that the next big security trend
will be “Real crime. On the Internet… Just as Willie Sutton robbed banks
because ‘that's where the money is,’ modern criminals will attack computer
networks.”10 Murray predicts that “small improvements in software quality will be
overwhelmed by increases in software… We will continue to try and patch and fix
our way to security; we will continue to fail.”11 Spafford predicts that “we will see
destructive political cyber attacks.”12 All indications seem to point towards an
increase in malicious activity on the Internet, made possible by the continuing
presence of numerous vulnerable systems and processes. Worms are poised to
take advantage of these vulnerabilities to provide opportunities for such malicious
activity.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 5

2 Worms

Worms present an effective, automated means towards malicious activity on the
Internet. They can be used to identify and take advantage of attack vectors into
networks and hosts, streamlining the access necessary to perpetuate crime or
other illicit activity. In this section, we discuss the essential components of a
worm, give a brief history of significant worms, and discuss the potential sources
(and reasons) for worms.
It is important to briefly describe the relationship between worms and viruses.
Commonly, they are differentiated by their means of propagation: worms are self-
propagating, whereas viruses require some form of human interaction. There are
several noted cases, however, where a malicious piece of software may be
worm-like in some situations, and virus-like in others (see examples of “mail
worms,” below). In the context of this paper, any piece of software capable of
self-replication in some form is discussed in the context of being a worm
(regardless of its title).

2.1 Components of Worms
Two excellent sources describe the essential components of worms. The first, “I
don’t think I really love you, or writing internet worms for fun and profit,” by
Zalewski, describes some general characteristics of worms, and takes the reader
step-by-step through the creation of a worm. 13 The second, “The Future of
Internet Worms,” by Nazario, Anderson, Wash, and Connelly, gives another view
of the essential components of a worm. 14 Nazario, et al., also defines some
useful terms that will be used below, including a “worm network” (“a network of
systems which have been compromised by a particular worm”) and a “node” (any
single host that has been infected by the worm).15 Discussed in these two
papers, a worm consists of the (often overlapping) components described
(briefly) below. (The interested reader is encouraged to read Zalewski and
Nazario, et al., for more complete discussions.) The first four components are
requirements for a worm to function; the subsequent components represent more
sophisticated components which make worms more virulent, more difficult to
eradicate, or even more dangerous.
Not listed among the components is the purpose of a worm (perhaps more a
meta-component than an actual component). All worms have some reason for
being. This is discussed under payloads as well as under Why Worms?, below.

2.1.1 Autonomy
At its core (and by definition), a worm is an autonomous entity. Once released, it
is designed to function and propagate without human interaction.

2.1.2 Replicability
A worm is designed to replicate itself on other hosts (also by definition). It may
not necessarily replicate itself in an identical form (see polymorphism, below).
Replication may occur via simplistic means (e.g., copying files from a source to a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 6

destination) or via more elegant means (see Thomson’s self-replicating code
discussion16).

2.1.3 Reconnaissance Capabilities
A worm must be able to identify potential targets for repl ication.17 To do so, a
worm typically has an exploit database, consisting of known vulnerabilities for
known software or hardware systems. The worm commonly uses network
components within its host node to send packets to a potential victim to
determine the presence of known vulnerabilities.
Not all worms have specific reconnaissance capabilities, per se. The Melissa
macro virus acts much like a worm to some systems, where email browsers were
configured to automatically open attachments (one might argue that some human
interaction was necessary at some point).18 However, as a worm, Melissa does
not actively search for new nodes by looking for known vulnerabilities. It simply
sends copies of itself to the first 50 entries in all available Microsoft Outlook MAPI
address books, regardless of the type of destination. Thus, the Melissa-as-worm
spreads without itself knowing of the presence of a known vulnerability at the
target. Other so-called “mail worms” include the Love Letter worm,19
VBS/OnTheFly (Anna Kournikova),20 and SirCam.21

2.1.4 Attack Capabilities
Once a potential victim node is identified, a worm must have the means to take
advantage of the known vulnerability to infect the host. This often consists of two
steps. First, the worm makes use of a vulnerability to gain access to the host.
Some examples of entry paths include buffer overflow vulnerabil ities in software,
as in the case of Code Red22 or the recent SQL 2000 worm,23 web server
vulnerabilities such as directory traversal, as in the case of the sadmind/IIS
Worm,24 and email systems (see above).
Once the worm has gained access, it causes code to be executed to establish
itself at the host and proceed with further attacks. Often, this involves the use of
root kits to elevate privilege (see, for example, a detailed analysis of the Code
Red II worm at eEye25), but it may simply use a well-established tool like an email
browser (as in the case of Melissa26 or Love Letter27). (It should be pointed out
that email worms such as those mentioned generally do more than simply
propagate via email – see payloads, below.)
These first four components must exist (with the caveats mentioned) for a worm
to function. The following capabilities, known to exist in present-day worms,
increase the sophistication of a worm, and subsequently its effectiveness.

2.1.5 Multiple Attack Capabilities
Rather than one possible attack vector, a sophisticated worm makes use of
knowledge about a variety of vulnerabilities to attack multiple different kinds of
systems. For example, the Morris worm made use of known vulnerabilities both
in Sendmail on Unix systems and finger on VAX systems.28 Nimda spread via

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 7

email, file shares, IIS vulnerabilities, and even back doors left “open” by Code
Red II and sadmind/IIS.29
Similarly, a sophisticated worm can exist on multiple different architectures: for
example, the sadmind/IIS worm exists on both Windows and Solaris servers30
(although sadmind/IIS does not propagate from infected IIS servers).

2.1.6 Defense
A well-crafted worm has some means to avoid detection. Many worms use root
kits to avoid detection, making use of existing tools to mask worm processes as
critical system processes (as in the case of the ExploreZip Trojan Horse31), or
even substituting new versions of critical system tools (as was the case in
SirCam32). Some worms attempt to foil anti-virus/anti-worm tools: the Magistr
worm (variant b) attempts to disable ZoneAlarm (unsuccessfully),33 while
W32/Goner attempts to disable and delete many anti-virus tools from the infected
host.34 Similarly, a properly crafted worm will act to protect the worm network
(see communication, below), by making the act of detecting parents or children
(the infector of a node or those nodes infected by a node, respectively) difficult.
For example, the Tribe FloodNet 2000 (TFN2K) tool, introduced in December,
1999, makes use of “features to confuse attempts to locate other nodes in a
TFN2K network by sending ‘decoy’ packets.”35 (Such a tool might be used as the
payload of a worm; see payloads, below.)

2.1.7 Command Interface
Sophisticated worms provide command interfaces for subsequent action. For
example, the Apache/mod_ssl Worm uses a UDP communications channel to
“share information on other infected systems as well as attack instructions” (as
part of a DDoS network).36

2.1.8 Polymorphism
Similar to defense, above, well-designed worms avoid capture and termination by
being polymorphic – that is, assuming a variety of forms. Magistr contains a
polymorphic engine to change the structure of its code to help avoid both
detection and debugging.37

2.2 Virulence vs. Payloads
The damage caused by a worm can be measured by two key components: the
virulence and the payload. Worms can be harmful without being virulent (not
many examples exist, but the potential is there) or without having a payload (as
in the case of the recent SQL worm38).

2.2.1 Virulence
Virulence is a measure of how rapidly a worm spreads. Especially virulent
worms either use a variety of vulnerabilities to spread (increasing the variety,
and therefore the number, of potential victims), or compromise especially popular
(or common) software and systems with unpatched vulnerabilities. Nimda is an

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 8

example of the former, spreading via email, network shares, web sites, and
CodeRed II back doors.39 Email worms such as Melissa,40 KAK,41 and
VBS/OnTheFly (Anna Kournikova)42 were especially virulent because they used
a popular email tool (Microsoft Outlook). The latter also preyed upon users’
interest in a popular tennis star to increase the likelihood of being executed.
Virulence by itself typically affects resources such as network bandwidth, router
CPU/memory, or email server availability. In extreme cases, extremely virulent
worms have caused or forced the shutdown of critical systems (e.g., email
gateways or core routers).

2.2.2 Payloads
The payload is the portion of the worm not necessarily used for propagation. It
can be a directly malicious action, such as deleting or forwarding files (as in the
case of Magistr43 and SirCam44) or “tagging” of a site by altering web server
pages (as in the case of Ramen45), installation of a back door for future action (as
in the case of CodeRed II46), or installation of a keystroke logger (as in the case
of BadTrans47).
Not all worms have payloads, instead existing only to propagate.

2.3 A Brief History of Worms
The following is a by no means exhaustive history of worms, including some
proof-of-concept worms not actually seen in the wild.
1988 The first known instance of a worm seen in the wild, the Morris worm

was released on 11/2/88.48
1989-98 Relatively little happened during this period, with two notable

exceptions. In 1992, DAME (Dark Avenger Mutation Engine) was
created as the first toolkit for making a virus polymorphic.49 In 1998,
Back Orifice was developed as a ready-to-use back door for Windows
95 and 98.50 It was developed by the Cult of the Dead Cow (cDc,
http://www.cultdeadcow.com).

1999 Melissa, a Word 97 macro virus that spread via email, was first
observed in the wild on 3/26/99.51 It was extremely virulent, but
required that a user open an attachment to execute. Bubbleboy,
released as a proof-of-concept later that year, was a VBScript virus
that only required that a message be previewed to execute.52
Bubbleboy was never actually observed in the wild. Later, KAK used
the Bubbleboy concept and was extremely virulent.53

2000 The 911 worm (4/4/00) spread via unprotected Win 98 shares,
specifically for the purpose of a denial of service attack against the 911
system (thankfully, it was ineffective).54 The Love Letter virus/email
worm (5/4) was extremely virulent, as it spread via "electronic mail,
Windows file sharing, IRC, USENET news, and possibly via web
pages."55

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 9

2001 2001 was an extremely busy year. Ramen (1/17/01) attacked Red Hat
Linux installations.56 AnnaKournikova/OnTheFly (2/12) was another
email worm that took advantage of the popularity of a public figure –
effectively, a “social attack.”57 Gnuman (2/26) was the first worm to
spread via a peer-to-peer network, in this case the Gnutella network.58
sadmind/IIS (5/8) was the first worm to act on both Windows and
Solaris.59 Mac.Simpson (June) was the first Applescript worm, and
spread via email.60 PeachyPDF (8/7) was the first PDF worm. It
required a full version of Acrobat (effectively limiting its virulence), and
spread via email.61 2001 also saw some spectacularly virulent,
potentially dangerous, and sophisticated worms. Magistr (3/13) was
polymorphic, and emailed copies of randomly selected (potentially
confidential) documents to email addresses found on the host.62
SirCam (7/25) contained its own SMTP engine, and potentially
revealed or deleted files on Windows systems.63 CodeRed (7/19)
spread via IIS, and attempted to perform a DDoS attack against
www.whitehouse.gov.64 CodeRed II (8/4) also spread via IIS, and
created a Trojan into the host system.65 Nimda (9/25) spread via a
variety of means, making it extremely virulent.66 BadTrans (11/27)
was an email worm that logged keystrokes on affected hosts.67

2002 Donut (1/9/02) was the first known .NET worm.68 SQLSpider
(January) infected Microsoft SQL servers and stole NT passwords and
network information.69 Benjamin (5/19) was the first worm known to
spread via the KaZaa peer-to-peer network.70 Scalper (6/28) was a
proof-of-concept worm (not apparently observed in the wild) that
attacked Apache running on the FreeBSD operating system. It was
designed to create a “flood net,” and was capable of flooding via TCP,
UDP, DNS, and email.71

2003 SQL worm (1/25) attacks Microsoft SQL servers. It is purely memory-
resident, and can thus evade most anti-virus scanners.72

2.4 Why Worms?
Worms began as an interesting idea to create a self-replicating program, and
have become an extremely effective means to attack systems. The potential
reasons for worms vary from “because it is possible” all the way to warfare and
espionage. Some motivations for the creation of worms are outlined below.
Understanding the motivations as well as the sources of the worms can help
security professionals plan defenses.
A key point is this: worms present efficient means to identify attack vectors into
systems, attack the systems themselves, and streamline (later) access to those
systems for a variety of purposes. With that in mind, worms may provide one of
the most efficient means for system compromise, superceding other, more
manual methods. Thus, any potential reason for compromising a computer
system can be applied to a worm.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 10

2.4.1 “Just Because”
Some worms simply exist as a proof of concept, as in the case of the Morris
worm.73 There is no particular malicious intent, although the worm may have
damaging effects.

2.4.2 Fame
Similar to “just because,” some worm authors may create the worm to give
themselves some fame or notoriety. Many worms include some sort of signature,
such as Melissa’s reference to Kwyjibo,74 or Ramen’s reference to the “Ramen
crew.”75 Worms also may be used as a means for bragging rights among
competing hackers. Ramen, for example, closed the holes used to gain access
on compromised systems, keeping other hackers from using the same exploit,
and logged compromised systems by sending email to Yahoo! and Hotmail
accounts.76

2.4.3 Crime
Schneier predicts that the next big trend will be “real crime. On the Internet.”77 In
Secrets and Lies, Schneier further describes the prospects for crime on the
Internet by relating it to the world of bricks and mortar.78 The same kinds of
crimes one might find committed in the real world can easily be extended to the
Internet, where real commerce occurs every day. Robbing a convenience store
may net a few hundred dollars, whereas “robbing” an online merchant could net
thousands of credit cards. Fraud, blackmail, and thievery – all are possible on a
grand scale on the Internet. A worm could be designed specifically to work its
way into a network with the sole purpose of committing a crime.

2.4.4 Politics/Religion
The Internet provides a ready means of expression to political and religious
groups. In extreme cases, particularly motivated political or religious groups
could use a worm to spread a particular message or slogan. As the Internet
does not generally pose any barriers between political or geographic areas, it
would be much easier to have a vast audience through the use of a worm on the
Internet than via any other, more traditional broadcast medium. (Such a worm
would probably also generate interest in the press, managing to provide
additional exposure for free.)
Note that political or religious groups may also wish to make their presence
known by more drastic means; see sabotage, below.

2.4.5 Sabotage
Any number of groups may wish to use worms to sabotage another party.
Governments could use a specially targeted worm to disable the computer
infrastructure of an enemy, to spread disinformation, or otherwise confound or
disrupt the activity of an enemy government. Political or religious groups may
similarly attack an enemy, perhaps as an act of terrorism. Corporations may act

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 11

against competing organizations to hinder operations. Individuals (e.g.,
disgruntled employees) may even act to damage a company’s assets,
infrastructure, or image. Worms are particularly adept at spreading quickly and
causing disruptions in networks and systems.

2.4.6 Intelligence Gathering/Espionage
Governments, companies, and other groups wishing to gain access to
confidential or secret data often use computer hacking techniques to gain illicit
access to databases or other sources of information. Individuals have stolen
personal data for purposes of identity fraud. Such actions can be automated
through the use of worms (as has been demonstrated in the case of SirCam,79
Magistr,80 and BadTrans81).

3 Worms of the Future

Worms can be expected to become more virulent, more sophisticated, and more
flexible. Below, we discuss some possible avenues for future development of
worms, first describing enhancements to existing components as well as some
not previously mentioned. The sophistication of worms is only limited by network
bandwidth, memory and CPU on a victim node, and the imagination of the
authors. Unfortunately, all are steadily increasing.

3.1.1 Reconnaissance Capabilities
Identifying potential targets takes time, especially when a random scanning
method is used (linear scans of sequential ports or IP addresses are blocked by
most firewalls, and are thus extremely inefficient for the spread of a worm). At
the same time, the act of reconnaissance can expose the worm to network
listening devices.
Several means of reconnaissance have been proposed to greatly enhance the
speed of propagation of a potential worm. The Warhol Worm concept describes
how a worm’s initial attack can be coordinated by gathering a large number of
potentially susceptible hosts prior to attacking (an initial population), and then
using a partitioning technique to limit the range of hosts a given node would scan
and attack. 82 The Flash Worm elaborated on the Warhol Worm concept by
proposing that a potentially complete list of vulnerable hosts could be obtained,
and a massive, simultaneous attack could be launched. 83 Curious Yellow was
proposed as a worm with an efficient, coordinated attack mechanism, using a
distributed hash table design.84
Note that mass-email lists can be easily obtained, presenting a substantial initial
population for any worm with email-based capabilities.
Particularly intelligent worms could gather intelligence before attempting to infect
additional nodes. CodeRed II is one example of this, specifically identifying and
attacking a local network:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 12

Instead of searching only randomly selected addresses, Code Red 2
preferentially probed for machines on the same subnet and nearby
subnets. As a result, once a single machine within a corporate firewall was
infected, it would quickly probe virtually every machine within the firewall
and since it was attacking an on-by-default service, Code Red 2 quickly
infested entire corporate networks.85

As an extension of this, a worm may watch network connections to and from an
infected node, gathering information about local and adjacent networks, before
attempting to compromise additional hosts (see, for example, Nazio, et al.86).
Thus, if such a worm managed to infect a web server resident within a DMZ, it
might gain knowledge of a back-end database on a protected network by
watching how the web server communicates. It could then potentially use a
known vulnerability to attack the database server, masquerading as the web
server and potentially eluding discovery.

3.1.2 Multiple Attack Capabilities
Sophisticated worms will have a large cache of known vulnerabilities for both
reconnaissance and attack, and will have some means of obtaining new
vulnerability signatures to use. Thus, a worm might manage to compromise one
system and stealthily wait for a new vulnerability to come available in order to
progress further. New vulnerabilities may be passed via some communications
mechanism (see below), or may be made available in a specific location for
pickup (a “drop box”).
Newer attack mechanisms may make use of old ideas, e.g., communications
hijacking (as demonstrated by Mitnick87). A worm might substitute packets within
a stream or otherwise masquerade as an expected source to infect a new host.

3.1.3 Defense
Worms may use a variety of means to defend themselves against detection or
removal in addition to those described above. Worms could use a network
smokescreen during a coordinated attack, hiding the true nature of an attack
under a barrage of apparent “script-kiddie” activity that overwhelms the
responses of a network or IT group.
Worms could use encryption to authenticate communications between nodes of a
worm network, ensuring that updates came from proper (and not disruptive)
sources. Such encryption could also be used to ensure that one node does not
reveal other nodes within the network.88
Worms could create redundant networks. When crossing a network boundary
(e.g., in to a private network, as evidenced by a difference between an apparent,
Internet-facing IP and the local IP address of the node), a worm could establish
“lieutenant” nodes as redundant points for communications up or down the worm
network. Then, child nodes could communicate with any of the lieutenants for
updates, and the failure of any one lieutenant would not disrupt the
communications channel.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 13

3.1.4 Command Interface and Communication
Given the premise that worms will be used for illicit activities, future worms will
likely have sophisticated command interfaces. These interfaces could be used to
communicate orders (“Attack at dawn!”), distribute new vulnerability signatures,
or distribute new modules (see below). Command interfaces will likely also make
use of secure communications mechanisms to avoid compromise. Worms could
make use of optimized and redundant communications mechanisms to ensure
efficient, fault tolerant communication between nodes.

3.1.5 Polymorphism/Adaptation/Expansion
Future worms will not only be polymorphic to avoid detection, they may also be
capable of adapting to a hostile environment (e.g., by mimicking existing
applications) and could be designed in a modular fashion so as to easily receive
and incorporate new functions from the worm network.

3.1.6 Payload
Payloads may be carried by a worm, or may be distributed at a later time over
the worm network. Regardless, payloads will be the key to a successful targeted
worm attack. Nodes of a worm network intended for thievery may listen intently
to network communications in search of personal information, passwords, or
bank codes, or they may actively seek out databases and probe directly for
information. This information could be passed to a parent node that may then
coordinate a response (e.g., one node may be responsible for intelligence
gathering, while another will cause the bank to transfer $1M to an offshore
account). Worm units dedicated to sabotage might contain instructions for
changing voltages or temperatures on specific devices, harming them physically,
or they may act in a more subtle fashion by injecting misinformation into
communication streams between an enemy’s hosts.

3.1.7 Intelligence
Many of the proposed features of future worms are akin to artificially intelligent
systems. Given the ever-increasing capabilities of systems and networks, it is
not entirely outside of the realm of possibility to see truly self-adapting worms in
the future. Worm nodes may be adaptable and intelligent by themselves, or in
concert with other nodes within the worm network.

3.1.8 One Possible Scenario
Consider the following possible scenario: A worm much like the recent SQL
worm is launched. It is extremely virulent, causes a substantial amount of
network traffic, and causes disruptions to networks, but has no apparent payload.
It rapidly affects thousands of vulnerable systems, and security professionals
quickly identify the vulnerability. Systems administrators apply the patch, shore
up their border controls, reboot their systems, and finally rest, assured that they
have fixed the problem. Security news groups discuss the worm as “another
example of what could have been a spectacular problem.”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 14

Meanwhile, it turns out that the publicly observed worm is really a cover for
another, much more targeted, worm that takes advantage of the same
vulnerability. Unlike the “big” worm, the much lower-profile worm carries a
substantial payload, consisting of sophisticated communications packages and
intelligence gathering routines. Also unlike the publicly observed worm, the
secret worm does not vanish with a patch and a reboot, and it is sophisticated
enough to seek out alternate means of communications should firewalls be
altered. It quietly sits and gathers confidential information and reports up the
worm network via secure channels.

4 Defense – Present and Future

Worms take advantage of known vulnerabilities to propagate. As new
technologies or extensions to existing technology arrive, new vulnerabilities are
exposed – it is simply not possible to account for all vulnerabilities in a system
prior to its release. At the same time, IT departments lack the skills or resources
to stay on top of all known vulnerabilities (as is demonstrated with every new
worm attack), and users limit the effectiveness of defenses by making extensive
use of web browsers (forcing HTTP access across firewalls), instant messaging
systems, and peer-to-peer networks. To mitigate risk, organizations must make
use of the concept of Defense in Depth to build up layers of security. 89 It is
critical to remember that no defense is foolproof, and that vulnerabilities wi ll
always exist.
A sampling of technologies or programs especially associated with worms is
presented below, including some proposals for emergent technologies. The
defenses are described in terms of being proactive or reactive – obviously,
proactive technologies typically provide better defenses than reactive. Where
appropriate, sample technologies are provided, but the list is by no means
comprehensive, and the samples do not necessarily reflect any preference or
endorsement.

4.1 Patches
A diligent program of monitoring vendor patch releases and applying relevant
patches in a timely manner is a substantial, proactive defense. Most worms
attack vulnerabilities that have been known about and patched for some time.
Unfortunately, many IT departments lack the skill or resources to keep abreast of
all relevant patches, and important updates are ignored or overlooked.
New patches are made available via a variety of channels, but most commonly
via Internet sites. Most vendors supply security patches for their products for
free. In some cases, software packages can proactively notify the user of newly
available updates; see, for example, Microsoft’s “Automatic Updates” tool
available in Windows 2000 and XP, as well as the on-line English version at
http://v4.windowsupdate.microsoft.com/en/default.asp, or Apple’s “Software
Update” (on-line at http://www.info.apple.com/support/downloads.html). Most
operating system vendors have email distributions for patch notification.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 15

Numerous email distributions are available that discuss newly discovered
vulnerabilities even before they are patched. For example, Security Focus
maintains the “bugtraq” mailing list
(http://www.securityfocus.com/popups/forums/bugtraq/intro.shtml).

4.2 Firewalls and Routers
Packet-filtering firewalls and routers provide proactive defense against network-
based attacks by promoting a “least privilege” approach, providing access to only
those packets that are specifically approved. Stateful-inspection firewalls (e.g.,
Check Point, http://www.checkpoint.com) are more sophisticated than simple
packet filters in that they examine packets in the context of other packets or other
connections, ensuring that packets pass only if they are appropriate for that
particular TCP connection, or if their contents match approved characteristics
(like a session ID). Unfortunately, attacks based on buffer overflows (for
example) can appear to both types of firewalls as “expected” traffic.
Proxying firewalls (e.g., Symantec’s Velociraptor, http://www.symantec.com)
make use of application proxies to avoid situations like buffer overflows.
Unfortunately, such devices don’t typically support secure protocols such as
HTTPS. Proxying firewalls also do not protect against logical failures (e.g.,
parameter substitution).
Other proxy solutions exist that can be tailored to an application as a proactive
measure. For example, AppShield (from Sanctum, Inc.,
http://www.sanctuminc.com) provides an application proxy that makes use of
specific user-defined rules to enforce application logic.

4.3 Network-based IDS
Network-based intrusion detection systems (IDS) are either proactive or reactive,
depending on their configuration. Generally, network based IDS have a large
number of false positives, and are therefore not designed to automatically block
attacks, but instead notify upon particular conditions. They typical ly make use of
published rules that look for intrusion signatures to detect particular attacks (e.g.,
SNORT at http://www.snort.org) or look for trends or violations of policies (e.g.,
StealthWatch at http://www.lancope.com).

4.4 Host-based IDS

4.4.1 Checksum-based Detection
Checksum-based host IDS tools are proactive defenses against worms that
make changes to files on disk. Such IDS tools create a database of file
signatures (checksums) for critical system and application files, and compare this
database against existing files to ensure that they have not changed.
Unfortunately, checksum-based tools suffer from two key limitations: (a) they
cannot react to memory resident worms (e.g., the recent SQL worm), as such
worms do not alter any files on the disk; (b) they are not continuously active, and
can only react to an intrusion based on the scanning schedule. Still, checksum-

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 16

based tools do not rely on known attack signatures, and they can easily detect
inappropriate changes to critical systems files or environment settings. See, for
example, Tripwire (http://www.tripwire.com).

4.4.2 Signature-based Detection
Anti-virus tools are the best-known signature-based tools. They make use of
published attack signatures to quickly detect, block, and clean up after worms
and viruses. Unfortunately, they are generally reactive tools, based on known
attacks. In many cases, heuristic engines are available, allowing tools to look for
malicious activity that resembles known signatures (aiding in the discovery of
polymorphic worms or viruses). See, for example, McAfee VirusScan
(http://www.mcaffee.com) or Symantec AntiVirus (http://www.symantec.com).

4.5 Host-based IPS
IPS, or intrusion prevention systems, are relatively new but powerful, proactive
defenses. Software tools such as Entercept (http://www.entercept.com) ensure
that system and application calls adhere to strict policies of accepted behavior.
Attempted activity outside of defined rule sets (e.g., elevation of privilege,
modification of systems files, etc.) is blocked outright, and an alert is given. In
some ways, IPS tools provide a “trusted operating system” (TOS). A TOS
provides a hardened kernel with fine-grained access control (e.g., TrustedBSD at
http://www.trustedbsd.org).
The Trusted Computing Platform Alliance (TCPA,
http://www.trustedcomputing.org) is an “open alliance… formed to work on
creating a new computing platform for the next century that will provide for
improved trust in the PC platform.”90 One of the proposed technologies is a
hardware co-processor and dedicated memory that are capable of performing
secured functions, such as performing a cryptographic hash using a hardware-
specific key. This co-processor could mediate operating system activities and
only allow actions if the kernel had not been changed since a hash was
established (even memory-resident routines could be fingerprinted and
monitored). Because the hardware is separate from that running the (main)
operating system, it is protected from harm, and can act as an “external monitor.”

4.6 Tarpits and Honeynets
Tarpits and Honeynets, while not strictly defenses against worms, can be used in
an overall defensive posture. Tarpits (see, for example,
http://www.hackbusters.net/LaBrea) are blocks of IP addresses that “pretend” to
be vulnerable systems, but which in fact do nothing. They can be used to hinder
the progress of a worm by making it attack without the possibility of harm.
Honeynets (see http://project.honeynet.org) are groups of systems (servers,
routers, and firewalls) that are used to monitor and research real world attacks.
In both cases, systems are set up as separate from “production” systems, so that
any traffic hitting these servers is, by default, unexpected.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 17

Neither tarpits nor Honeynets can stop the action of a worm; however, when
used in conjunction with a centralized monitoring and management tool (see
below), they may act as detectors and help to quickly analyze the nature of the
attack (by isolating the attack from other sorts of traffic).

4.7 Centralized Monitoring and Management
Centralized monitoring tools take multiple events from a variety of sources, and
attempt to determine if there is any significant correlation. For example, a
centralized monitor might collect events from two devices on opposite sides of a
firewall, each running SNORT, and determine that an attack was occurring based
on traffic patterns across the firewall. (See, for example, Symantec’s ManTrap,
http://www.symantec.com.) Some even make use of a “network honeypot” to
detect anomalous traffic (e.g., NetScreen-IDP, http://www.netscreen.com).
Future centralized monitoring and management tools might correlate host-based
as well as network-based events to detect anomalous activities. Co-processors
on hosts could communicate securely with a central management console to
report on activity, and receive instructions to block certain events.

4.8 Social Awareness
Raising individual user awareness of vulnerabilities and risks presents a unique
but important challenge. If all users proactively patched their systems, updated
their anti-virus tools, and installed desktop firewalls, worms would have a much
more difficult time propagating. Unfortunately, the popularity of the Internet
combined with consumers’ (regrettably naïve) expectations that computers be as
simple and secure as a television “out of the box” means that home (and even
office) users will often have vulnerable (and more and more powerful) computers
available for worms to use as nodes.

5 Trends

In the SANS newsletter mentioned in the introduction, Rob Clyde, VP & Chief
Technology Officer, Symantec Corporation, believes that “we will see a rise in
more ‘professional’ types of attackers, targeting specific, crucial onl ine systems
and posing great potential dangers.”91 Thankfully, he and other experts predict
that there will be a corresponding increase in the sophistication of defenses. For
example, Clyde predicts that we will “see the emergence and initial deployment
of … new proactive technologies.”92 Tom Noonan, Chairman, President, and
CEO, Internet Security Systems, predicts that

Intrusion detection technology [will advance] into intrusion protection. This
technology will combine pattern matching, several layers of protocol
analysis, pre-emptive behavioral inspection, anomaly detection and
firewall blocking to not only detect online threats, but also to block them
altogether.93

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 18

He also believes that “Individual protection agents will protect the enterprise
systems from the entire spectrum of Internet threats…”94 Gil Shwed, Chairman
and Chief Executive Officer, Check Point Software Technologies Ltd., proposes
that “Technology to consistently manage and enforce security policies must be
deployed both in front of and behind the perimeter to secure all access points,”
and further states that new correlation technologies are “essential.” 95
Worms will continue to exist, taking advantage of ever emerging vulnerabilities in
new and dangerous ways. Thankfully, we can expect that present and emerging
defenses, when properly administered, will guard against the threat.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 19

6 Notes

1 Thompson, Ken. “Reflections on Trusting Trust.” September 1995. URL:
http://www.acm.org/classics/sep95/ (29 January 2003)
2 Weaver, Nicholas. “A Brief History of The Worm.” 26 November 2001. URL:
http://online.securityfocus.com/infocus/1515 (29 January 2003)
3 “Virus History” URL: http://www.cknow.com/vtutor/vthistory.htm (29 January 2003)
4 Merriam-Webster OnLine Dictionary. http://www.m-w.com (29 January 2003), definition 6 for
“worm”
5 See notes 2, 3.
6 Carnegie Mellon Software Engineering Institute CERT® Coordination Center. “CERT® Advisory
CA-2003-04 MS-SQL Server Worm.” 27 January 2003. URL: http://www.cert.org/advisories/CA-
2003-04.html (29 January 2003)
7 See note 2.
8 Smith, George. “Lessons from the Laboratory.” 06 January 2003. URL:
http://online.securityfocus.com/columnists/133 (29 January 2003)
9 SANS NewsBites, Bonus Issue (email sent from NewsBites@sans.org). “Experts Predict the
Future of Computer Security.” 13 December 2002
10 See note 9.
11 See note 9.
12 See note 9.
13 Zalewski, Michal. “I don’t think I really love you, or writing internet worms for fun and profit.” ©
1998-2000. URL: http://lcamtuf.coredump.cx/worm.txt (29 January 2003)
14 Nazario, Jose; Anderson, Jeremy; Wash, Rick; Connelly, Chris. “The Future of Internet
Worms.” 20 July 2001. URL: http://www.crimelabs.net/docs/worms/worm.pdf (29 January 2003)
15 See note 14, pg. 3.
16 See note 1.
17 See note 14, pg. 5.
18 Carnegie Mellon Software Engineering Institute CERT® Coordination Center. “CERT®
Advisory CA-1999-04 Melissa Macro Virus.” 31 March 1999. URL:
http://www.cert.org/advisories/CA-1999-04.html (29 January 2003)
19 Carnegie Mellon Software Engineering Institute CERT® Coordination Center. “CERT®
Advisory CA-2000-04 Love Letter Worm.” 09 May 2000. URL: http://www.cert.org/advisories/CA-
2000-04.html (29 January 2003)
20 Carnegie Mellon Software Engineering Institute CERT® Coordination Center. “CERT®
Advisory CA-2001-03 VBS/OnTheFly (Anna Kournikova) Malicious Code.” 13 February 2001.
URL: http://www.cert.org/advisories/CA-2001-03.html (29 January 2003)
21 Carnegie Mellon Software Engineering Institute CERT® Coordination Center. “CERT®
Advisory CA-2001-22 W32/Sircam Malicious Code.” 23 August 2001. URL:
http://www.cert.org/advisories/CA-2001-22.html (29 January 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 20

22 Carnegie Mellon Software Engineering Institute CERT® Coordination Center. “CERT®
Advisory CA-2001-19 "Code Red" Worm Exploiting Buffer Overflow In IIS Indexing Service DLL.”
197 January 2002. URL: http://www.cert.org/advisories/CA-2001-19.html (29 January 2003)
23 See note 6.
24 Carnegie Mellon Software Engineering Institute CERT® Coordination Center. “CERT®
Advisory CA-2001-11 sadmind/IIS Worm.” 10 May 2001. URL: http://www.cert.org/advisories/CA-
2001-11.html (29 January 2003)
25 eEye Digital Security. “CodeRedII Worm Analysis” 04 August 2001. URL:
http://www.eeye.com/html/Research/Advisories/AL20010804.html (29 January 2003)
26 See note 18.
27 See note 19.
28 See note 14, pg. 10.
29 Carnegie Mellon Software Engineering Institute CERT® Coordination Center. “CERT® Advisory
CA-2001-26 Nimda Worm.” 25 September 2001. URL: http://www.cert.org/advisories/CA-2001-
26.html (29 January 2003)
30 See note 24.
31 Carnegie Mellon Software Engineering Institute CERT® Coordination Center. “CERT® Advisory
CA-1999-06 ExploreZip Trojan Horse Program.” 14 June 1999. URL:
http://www.cert.org/advisories/CA-1999-06.html (29 January 2003)
32 See note 21.
33 F-Secure Security Information Center. “F-Secure Computer Virus Information Pages: Magistr.”
06 September 2001. URL: http://www.f-secure.com/v-descs/magistr.shtml (29 January 2003)
34 Carnegie Mellon Software Engineering Institute CERT® Coordination Center. “CERT® Incident
Note IN-2001-15.” 04 December 2001. URL: http://www.cert.org/incident_notes/IN-2001-15.html
(29 January 2003)
35 Carnegie Mellon Software Engineering Institute CERT® Coordination Center. “CERT® Advisory
CA-1999-17 Denial-of-Service Tools.” 03 March 2000. URL: http://www.cert.org/advisories/CA-
1999-17.html (29 January 2003)
36 Carnegie Mellon Software Engineering Institute CERT® Coordination Center. “CERT®
Advisory CA-2002-27 Apache/mod_ssl Worm.” 11 October 2002. URL:
http://www.cert.org/advisories/CA-2002-27.html (29 January 2003)
37 See note 33.
38 See note 6.
39 See note 29.
40 See note 18.
41 Symantec. “Symantec Security Response – Wscript.KakWorm.” 24 June 2002. URL:
”http://www.symantec.com/avcenter/venc/data/wscript.kakworm.html (29 January 2003)
42 See note 20.
43 See note 33.
44 See note 21.
45 Symantec. “Symantec Security Response –Linux.Ramen.Worm.” 15 April 2002. URL:
http://service1.symantec.com/sarc/sarc.nsf/html/Linux.Ramen.Worm.html (29 January 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 21

46 See note 25.
47 Carnegie Mellon Software Engineering Institute CERT® Coordination Center. “CERT® Incident
Note IN-2001-14 (W32/BadTrans Worm).” 27 November 2001. URL:
http://www.cert.org/incident_notes/IN-2001-14.html (29 January 2003)
48 See notes 2, 3.
49 F-Secure Security Information Center. “F-Secure Computer Virus Information Pages: Cryptlab.”
http://www.f-secure.com/v-descs/mte.shtml (29 January 2003)
50 Symantec. “Information on Back Orifice and NetBus.” URL:
http://www.symantec.com/avcenter/warn/backorifice.html (29 January 2003)
51 See note 18.
52 Symantec. “Symantec Security Response – VBS.BubbleBoy.” URL:
http://www.symantec.com/avcenter/venc/data/vbs.bubbleboy.html(29 January 2003)
53 See note 41.
54 Carnegie Mellon Software Engineering Institute CERT® Coordination Center. “CERT® Incident
Note IN-2000-03 (911 Worm).” 04 April 2000. URL: http://www.cert.org/incident_notes/IN-2000-
03.html (29 January 2003)
55 See note 19.
56 See note 45.
57 See note 20.
58 Symantec. “Symantec Security Response – W32.Gnuman.Worm.” 15 April 2002. URL:
http://www.symantec.com/avcenter/venc/data/w32.gnuman.worm.html (29 January 2003)
59 See note 24.
60 Sophos. “Sophos virus analysis: AplS/Simpsons-A.” URL:
http://www.sophos.com/virusinfo/analyses/aplssimpsonsa.html (29 January 2003)
61 Symantec. “Symantec Security Response – VBS.PeachyPDF@mm.” 15 April 2002. URL:
http://www.symantec.com/avcenter/venc/data/vbs.peachypdf@mm.html (29 January 2003)
62 See note 33.
63 See note 21.
64 See note 22.
65 See note 25.
66 See note 29.
67 See note 47.
68 Proland Software. “Win32/Donut.A Worm.” URL:
http://www.pspl.com/virus_info/win32/donut.htm (29 January 2003)
69 Sophos. “Sophos virus analysis: W32/SQLSpider-A.” URL:
http://www.sophos.com/virusinfo/analyses/w32sqlspidera.html (29 January 2003)
70 Symantec. “Symantec Security Response – W32.Benjamin.Worm.” 22 November 2002. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.benjamin.worm.html (29 January
2003)
71 Symantec. “Symantec Security Response – FreeBSD.Scalper.Worm.” 01 July 2002. URL:
http://www.symantec.com/avcenter/venc/data/freebsd.scalper.worm.html (29 January 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 22

72 See note 6.
73 See notes 2, 3.
74 See note 18.
75 See note 29.
76 See note 29.
77 See note 9.
78 Schneier, Bruce. Secrets and Lies, Digital Security in a Networked World. New York: John
Wiley & Sons, Inc., 2000. 15-16.
79 See note 21.
80 See note 33.
81 See note 47.
82 Weaver, Nicholas C. “Warhol Worms: The Potential for Very Fast Internet Plagues” 13
February 2002. URL: http://www.cs.berkeley.edu/~nweaver/warhol.html, (29 January 2003)
83 Staniford, Stuart; Grim, Gary; Jonkman, Roelof. “Flash Worms: Thirty Seconds to Infect the
Internet.” 16 August 2001. URL: http://www.silicondefense.com/flash (29 January 2003)
84 Wiley, Brandon. “Curious Yellow: The First Coordinated Worm Design.” URL:
http://blanu.net/curious_yellow.html (29 January 2003)
85 See note 2.
86 See note 14, pg. 14.
87 Shimomura, Tsutomu. “Tsutomu Shimomura's newsgroup posting with technical details of the
attack described by Markoff in NYT.” 25 January 1995. URL:
http://www.gulker.com/ra/hack/tsattack.html (29 January 2003)
88 See note 14, pg. 16 , and note 84.
89 VanMeter, Charlene “Defense In Depth: A Primer.” 19 February 2001. URL:
http://www.sans.org/rr/start/primer.php (29 January 2003)
90 Trusted Computing Platform All iance. URL: http://www.trustedcomputing.org (29 January 2003)
91 See note 9.
92 See note 9.
93 See note 9.
94 See note 9.
95 See note 9.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 23

7 References

Thompson, Ken. “Reflections on Trusting Trust.” September 1995. URL:
http://www.acm.org/classics/sep95/ (29 January 2003)
Weaver, Nicholas. “A Brief History of The Worm.” 26 November 2001. URL:
http://online.securityfocus.com/infocus/1515 (29 January 2003)
Computer Knowledge. “Virus History” URL:
http://www.cknow.com/vtutor/vthistory.htm (29 January 2003)
Merriam-Webster OnLine Dictionary. http://www.m-w.com (29 January 2003),
definition 6 for “worm”
Carnegie Mellon Software Engineering Institute CERT® Coordination Center.
“CERT® Advisory CA-2003-04 MS-SQL Server Worm.” 27 January 2003. URL:
http://www.cert.org/advisories/CA-2003-04.html (29 January 2003)
Smith, George. “Lessons from the Laboratory.” 06 January 2003. URL:
http://online.securityfocus.com/columnists/133 (29 January 2003)
SANS NewsBites, Bonus Issue (email sent from NewsBites@sans.org). “Experts
Predict the Future of Computer Security.” 13 December 2002
Zalewski, Michal. “I don’t think I really love you, or writing internet worms for fun
and profit.” © 1998-2000. URL: http://lcamtuf.coredump.cx/worm.txt (29 January
2003)
Nazario, Jose; Anderson, Jeremy; Wash, Rick; Connelly, Chris. “The Future of
Internet Worms.” 20 July 2001. URL:
http://www.crimelabs.net/docs/worms/worm.pdf (29 January 2003)
Carnegie Mellon Software Engineering Institute CERT® Coordination Center.
“CERT® Advisory CA-1999-04 Melissa Macro Virus.” 31 March 1999. URL:
http://www.cert.org/advisories/CA-1999-04.html (29 January 2003)
Carnegie Mellon Software Engineering Institute CERT® Coordination Center.
“CERT® Advisory CA-2000-04 Love Letter Worm.” 09 May 2000. URL:
http://www.cert.org/advisories/CA-2000-04.html (29 January 2003)
Carnegie Mellon Software Engineering Institute CERT® Coordination Center.
“CERT® Advisory CA-2001-03 VBS/OnTheFly (Anna Kournikova) Malicious
Code.” 13 February 2001. URL: http://www.cert.org/advisories/CA-2001-03.html
(29 January 2003)
Carnegie Mellon Software Engineering Institute CERT® Coordination Center.
“CERT® Advisory CA-2001-22 W32/Sircam Malicious Code.” 23 August 2001.
URL: http://www.cert.org/advisories/CA-2001-22.html (29 January 2003)
Carnegie Mellon Software Engineering Institute CERT® Coordination Center.
“CERT® Advisory CA-2001-19 "Code Red" Worm Exploiting Buffer Overflow In
IIS Indexing Service DLL.” 197 January 2002. URL:
http://www.cert.org/advisories/CA-2001-19.html (29 January 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 24

Carnegie Mellon Software Engineering Institute CERT® Coordination Center.
“CERT® Advisory CA-2001-11 sadmind/IIS Worm.” 10 May 2001. URL:
http://www.cert.org/advisories/CA-2001-11.html (29 January 2003)
eEye Digital Security. “CodeRedII Worm Analysis” 04 August 2001. URL:
http://www.eeye.com/html/Research/Advisories/AL20010804.html (29 January
2003)
Carnegie Mellon Software Engineering Institute CERT® Coordination Center.
“CERT® Advisory CA-2001-26 Nimda Worm.” 25 September 2001. URL:
http://www.cert.org/advisories/CA-2001-26.html (29 January 2003)
Carnegie Mellon Software Engineering Institute CERT® Coordination Center.
“CERT® Advisory CA-1999-06 ExploreZip Trojan Horse Program.” 14 June
1999. URL: http://www.cert.org/advisories/CA-1999-06.html (29 January 2003)
F-Secure Security Information Center. “F-Secure Computer Virus Information
Pages: Magistr.” 06 September 2001. URL: http://www.f-secure.com/v-
descs/magistr.shtml (29 January 2003)
Carnegie Mellon Software Engineering Institute CERT® Coordination Center.
“CERT® Incident Note IN-2001-15.” 04 December 2001. URL:
http://www.cert.org/incident_notes/IN-2001-15.html (29 January 2003)
Carnegie Mellon Software Engineering Institute CERT® Coordination Center.
“CERT® Advisory CA-1999-17 Denial-of-Service Tools.” 03 March 2000. URL:
http://www.cert.org/advisories/CA-1999-17.html (29 January 2003)
Carnegie Mellon Software Engineering Institute CERT® Coordination Center.
“CERT® Advisory CA-2002-27 Apache/mod_ssl Worm.” 11 October 2002. URL:
http://www.cert.org/advisories/CA-2002-27.html (29 January 2003)
Symantec. “Symantec Security Response – Wscript.KakWorm.” 24 June 2002.
URL: ”http://www.symantec.com/avcenter/venc/data/wscript.kakworm.html (29
January 2003)
Symantec. “Symantec Security Response –Linux.Ramen.Worm.” 15 April 2002.
URL: http://service1.symantec.com/sarc/sarc.nsf/html/Linux.Ramen.Worm.html
(29 January 2003)
Carnegie Mellon Software Engineering Institute CERT® Coordination Center.
“CERT® Incident Note IN-2001-14 (W32/BadTrans Worm).” 27 November 2001.
URL: http://www.cert.org/incident_notes/IN-2001-14.html (29 January 2003)
F-Secure Security Information Center. “F-Secure Computer Virus Information
Pages: Cryptlab.” http://www.f-secure.com/v-descs/mte.shtml (29 January
2003)
Symantec. “Information on Back Orifice and NetBus.” URL:
http://www.symantec.com/avcenter/warn/backorifice.html (29 January 2003)
Symantec. “Symantec Security Response – VBS.BubbleBoy.” URL:
http://www.symantec.com/avcenter/venc/data/vbs.bubbleboy.html (29 January
2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 25

Carnegie Mellon Software Engineering Institute CERT® Coordination Center.
“CERT® Incident Note IN-2000-03 (911 Worm).” 04 April 2000. URL:
http://www.cert.org/incident_notes/IN-2000-03.html (29 January 2003)
Symantec. “Symantec Security Response – W32.Gnuman.Worm.” 15 April
2002. URL:
http://www.symantec.com/avcenter/venc/data/w32.gnuman.worm.html (29
January 2003)
Sophos. “Sophos virus analysis: AplS/Simpsons-A.” URL:
http://www.sophos.com/virusinfo/analyses/aplssimpsonsa.html (29 January
2003)
Symantec. “Symantec Security Response – VBS.PeachyPDF@mm.” 15 April
2002. URL:
http://www.symantec.com/avcenter/venc/data/vbs.peachypdf@mm.html (29
January 2003)
Proland Software. “Win32/Donut.A Worm.” URL:
http://www.pspl.com/virus_info/win32/donut.htm (29 January 2003)
Sophos. “Sophos virus analysis: W32/SQLSpider-A.” URL:
http://www.sophos.com/virusinfo/analyses/w32sqlspidera.html (29 January
2003)
Symantec. “Symantec Security Response – W32.Benjamin.Worm.” 22
November 2002. URL:
http://securityresponse.symantec.com/avcenter/venc/data/w32.benjamin.worm.ht
ml (29 January 2003)
Symantec. “Symantec Security Response – FreeBSD.Scalper.Worm.” 01 July
2002. URL:
http://www.symantec.com/avcenter/venc/data/freebsd.scalper.worm.html (29
January 2003)
Schneier, Bruce. Secrets and Lies, Digital Security in a Networked World. New
York: John Wiley & Sons, Inc., 2000. 15-16.
Weaver, Nicholas C. “Warhol Worms: The Potential for Very Fast Internet
Plagues” 13 February 2002. URL:
http://www.cs.berkeley.edu/~nweaver/warhol.html (29 January 2003)
Staniford, Stuart; Grim, Gary; Jonkman, Roelof. “Flash Worms: Thirty Seconds
to Infect the Internet.” 16 August 2001. URL: http://www.silicondefense.com/flash
(29 January 2003)
Wiley, Brandon. “Curious Yellow: The First Coordinated Worm Design.” URL:
http://blanu.net/curious_yellow.html (29 January 2003)
Shimomura, Tsutomu. “Tsutomu Shimomura's newsgroup posting with technical
details of the attack described by Markoff in NYT.” 25 January 1995. URL:
http://www.gulker.com/ra/hack/tsattack.html (29 January 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 26

VanMeter, Charlene “Defense In Depth: A Primer.” 19 February 2001. URL:
http://www.sans.org/rr/start/primer.php (29 January 2003)
Trusted Computing Platform Alliance. URL: http://www.trustedcomputing.org (29
January 2003)

