
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A 2nd Generation Honeynet – Introduction, Ingredients, Setup,
Deployment and Brief Results

By Kobus Jooste

0. Abstract

This report details the author’s foray into the relatively new field of Honey
Networks – an Information Security tool geared for research into the nature of
threats.
The report starts off with an introduction to Honeypot/Honeynet technology.
The document continues to describe an experimental setup deployed by the
author to investigate the technology and presents how the traffic control
device was set up and configured. The traffic control rules and its interaction
with an inline IDS is explained fairly detailed (utilising flow diagrams) but the
actual scripts implementing the configuration is not included due to their
length (as is the detailed results).
Note: During the course of the author’s studies (and work on this assignment)
the Honeynet Project made a “Snort-Inline Toolkit” available with similar
functionality as the work described in this report. Please see the “Tools”
section of their webpage for further details.

1. Introduction
The term “honeynet” was coined by “The Honeynet Project” [1,2], a non-profit
research organisation dedicated to learning the tools, tactics, and motives of
the blackhat community and committed to share the lessons learnt in the
process. The group primarily use these “honeynets” to gather their
information.
Honeynets evolved from honeypots and the formal definition of a honeypot is:
A honeypot is a security resource whose value lies in being probed, attacked
or compromised. [3]
This offbeat approach may seem contrary to security measures applied to
normal production resources, as these should be actively guarded from
probes or attacks in any way possible.
Honeypots are flexible tools that can be applied in different situations: They
can be employed to prevent attacks (through deception), similar to
conventional access control devices like firewalls. They can be used to detect
attacks, a task normally performed by intrusion detection systems. Another
use is to capture and analyse automated attacks and or act as early indication
or warning sensors.
 Honeypots have no production role outside their security scope. As such no
other person, application or resource should communicate with them and any
activity to or from them is suspect by nature.
While honeypots can have production roles as information security measures,
honeynets are a development of honeypots designed primarily for research
purposes – i.e. to gather information on attackers.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

They differ from production honeypots and are categorised as high-interaction
research honeypots. They are not necessarily better solutions but have a
different purpose - these systems gather information on threats.
A honeynet is usually a network of multiple systems subjected to probes and
exploits from attackers. They utilise multiple systems at the same time like
Unix and Windows systems and network hardware like routers and switches.
Honeynets recreate production networks and provide a type of laboratory
where actions of would-be attackers can be carefully monitored to allow study
of attackers’ tools and techniques.
The technology, first employed by The Honeynet Project in 1999, continues to
evolve and it is outside the scope of this assignment report to completely
introduce the technology. The interested reader is referred to a white paper,
[4], that gives a comprehensive explanation of the technology as well as its
development.
A honeynet deployment needs to fulfil at least two critical requirements: Data
control and data capture.
The first requirement prevents the honeypot from introducing an unacceptable
amount of risk into the environment and the second requirement enables
gainful research into the attackers’ nature. Without these the honeynet
merely becomes a relatively save, sponsored playing ground for attackers.
Data control is employed to mitigate the risk of a compromised system being
used as a stepping-stone for further attacks against a 3rd (non-honeynet)
party. It has to be implemented without compromising interactivity or raising
attackers’ suspicions.
The second requirement is to capture as much data around attackers’
activities as captured data is essential to allow any sensible analysis of the
tools and methods of attackers. Again, the challenge is to capture as much
data as possible, without raising the attackers’ suspicions.
The Honeynet Project has created a guideline document [5] that defines these
two (and some other) requirements in detail.
 Honeypot technology has currently reached its second major stage of
development. The next section discusses this, more advanced (or 2nd
generation) variants in more detail.

2. 2nd Generation Honeynets
The 2nd generation of honeynets evolved from fairly capable first generation
technologies and the requirements can now be met with a system that is
easier to deploy and yet, more difficult to detect.
Improved and more granular data control measures enables honeynet
administrators to allow would-be attackers some more interactiv ity while, at
the same time, keeping these measures relatively stealthy and difficult to
detect from the attackers point of view.
The separate IDS system used for data capture and detection in previous
honeynet architectures was integrated with the control device. Fulfilling the
requirements with a single device, simplified deployment as all data control

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

and capture are handled by a single resource. The control device used in
previous honeynet incarnations (an IP firewall) evolved into a layer 2 gateway
device with several advantages over the conventional control device.
Layer 2 devices (like bridges and switches) are difficult to detect at the IP
level (OSI Layer 3), as they do not have IP stacks. They do not route traffic
and consequently there is no TTL decrement in the IP packets’ headers.
These devices are generally far stealthier than conventional firewalls.
Another advantage is that all inbound and outbound traffic have to traverse
the single device, making it the ideal location to control and capture data.
Figure 1, below, depicts a typical layout of a second-generation honeypot
network.

Figure 1 - Layout of a second-generation honeynet

Advanced data control enhances honeynets’ abilities to mitigate risk
associated with attackers’ activities. Instead of merely limiting active outbound
connections, more complex conditions can be specified under which activities
should be allowed or disallowed. Some of these criteria allow these activities
to be limited according to their possible intent.
For example, only FTP connections that exhibit signs of possible exploits can
be blocked. The data control features in second-generation honeynets allow
the IDS component to test the payloads of IP packets for common types of
exploit codes and drop these packets.
Due to the integration of the IDS and the data control device, the IDS rules
can be integrated, to a certain extent, with the packet filtering capabilities of
the data control measure.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Another enhancement is that, instead of simply blocking connections,
activities can be modified or throttled, rendering attacks ineffective. These
enhanced measures are more difficult to detect.
Inline packet modifications further mitigate the risk without interfering
unnecessarily with interesting activities. A layer 2 gateway can accomplish
this by modifying the payload of suspicious packets. The attack is allowed to
proceed but it will no longer be effective.
The more advanced capturing and control capabilities are implemented in two
ways. The first tool is Hogwash. It is an IDS Gateway [6] that monitors and
analyses packets and modifies or block them according to IDS signatures.
Hogwash is based on Snort [7], a lightweight intrusion detect ion system. It
installs onto a gateway system and gives that system layer 2 bridging
capabilities, making it invisible to attackers and able to identify and disable
attacks. The advantage of Hogwash is that it is a single software solution.
A second solution is to combine a special version of Snort recently made
available, Snort-inline, with the network traffic filtering capabilities built into the
Unix kernel such as iptables on Linux.
The combination produces the same functionality as Hogwash but it is slightly
(in the author’s opinion) more developed and stable technology at the time of
writing. The disadvantage is that it requires two sets of configurations and
requires two pieces of software to be running as opposed to one – iptables
and snort-inline.
The honeynet built for this assignment did not use the data gathering features
of the inline IDS. Instead it uses tcpdump software [8], an extremely flexible
and capable network traffic sniffer that prov ides compatibility with virtually
every network traffic analyser capable of reading binary dump files.
The Linux in-kernel network traffic filtering infrastructure, netfilter [9] and the
bandwidth management utilities, tc, were combined with Snort-inline. A
complete description of the honeynet control device is presented in the next
section.
The setup utilised for the experimental honeynet uses an iptables
configuration script to configure the gateway as a bridging firewall and
employs the queuing mechanism of the netfilter kernel subsystem to queue
appropriate traffic from kernel space into user space where the snort-inline
IDS application further handles the network traffic.
The honeynet examined for this assignment employed a second layer of data
control that throttles various categories’ bandwidth instead of merely allowing
or disallowing attacks. So instead of just blocking specific attacks, the amount
of activity can be allowed but restricted
Throttling limits the capabilities for denial of service attacks or mass scanning
and gives the appearance of a saturated network that increases latency.
Bandwidth limitation is implemented with the in-kernel facilities and it is not
documented. Refer to Project Honeynet’s web pages for details of
implementing bandwidth limiting under various operating systems.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

3. Honeynet Configuration
Figure 2 shows the network diagram of the assignment’s honeynet
deployment. This section details the configuration of this particular honeynet
and will proceed along the annotated numbers in the numbered diagram.

3.1 Internet Connection
The Internet connection is via a normal, medium sized business Internet
connection. The main connection is via a telecomm company leased line and
the backup connection is v ia ISDN.
The bandwidth is shared with all normal Internet traffic as the honeynet was
deployed in a non-production DMZ. The bandwidth made available to
honeynet traffic was only a tiny fraction on the total capacity.

3.2 Border Router
The border router is a 1600 series Cisco unit capable of handling the
switchover to standby connection in case of failure.

Figure 2 - Layout of research honeynet

The router was properly configured with suitable egress and ingress ACL’s.
Figure 3, shows the honeynet in relation to the rest of the network
infrastructure. It also lists the network hardware used each segment.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 3 - Network Position of Honeynet

The diagram shows that the systems in the honeynet were basically directly
exposed to the Internet. The next diagram, Figure 4, shows the IP addresses
used in the honeynet setup (after sanitation) and should be useful for
reference while following the descriptions ahead.

Figure 4 - Honeynet IP addresses and those in the vicinity

3.3 Honeynet Sensor and Control Device
The control device used Linux as network operating system and more
specifically the Redhat 7.3 distribution of this operating system. The

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

distribution is an ordinary server installation with the addition of the libpcap
and bridge-utils packages.
The hardware for the control device consisted of a PC with a 700MHz Intel
Pentium III microprocessor, 128MB RAM and 6GB IDE hard disk drive. The
computer was fitted with three ethernet network interfaces., a Realtek 8139-
based card, an Intel EtherExpress Pro and a 3Com 3c905tx.
The control device used a slimmed down, custom compiled kernel but the
standard Redhat kernel source package was used as it already included the
ethernet bridging capabilities not found in the main tree of the 2.4 stable
kernel. No kernel patches were neccesarry. In addition to this, normal
responsible host security was implemented such as the disabling of
unnecessary services, proper logging etc.
The recompiled kernel merely removed the subsystems and drivers that were
not needed in the kernel for the control device. The essential kernel features
are:

• enable development features

• enable kernel loadable modules

• choose suitable features for support of disk subsystem, character
devices,other hardware and supported filesystems.

• enable networking
• enable the kernel module for each type of ethernet interface

• enable network packet filtering

• enable TCP/IP networking

• enable ethernet bridging

• enable filtering with ethernet bridging

• enable Quality of Service network feature

• enable the TBF filter under Quality of Service
• enable connection tracking for netfilter

• enable userspace queuing under netfilter

• enable netfilter’s iptables support

• enable iptables’ –limit match

• enable iptables’ connection state matching

• enable packet filtering for netfilter

• enable the reject target for packet filtering
• enable full masquerading support under netfilter

• enable the masq and reject masquerading targets

• enable netfilter’s logging target

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The network configuration was enabled via a network startup script. The
startup script ensured that every subsystem was correctly configured and that
the necessary software and services ran at all times.
The specifics of the network configuration scripts will not be presented, but
the next few paragraphs will attempt to explain the logic behind the
configuration of the rules guiding the control measures. The flow of network
traffic will be explained with the aid of flow diagrams.
Figure 5 shows the equivalent flow diagram for the processing that is
performed for traffic arriving from the Internet and heading for one of the
honeypots. The decisions made in these flow diagrams are implemented in
the control device via firewall rules and the chain of events is as follows:

• A packet arrives at the external (Internet facing) interface. The packet
is received from the Internet and headed toward one of the honey pot
systems behind the control device.

• The control device acts as a layer 2 bridging device so it will intercept
the packet even tough it is not involved in the IP exchange between the
two hosts. The control device accepts the packet on behalf of the
destination honeypot.

• The external ethernet interface, denoted with eth2 in the firewall rules,
does not have an IP address. It is invisible to both the sender of the
packet and the receiving honeypot.

• After the packet is intercepted it is subject to decisions and processing
steps that determine whether it will eventually be forwarded or not.

• The first decision made by the control device is whether the source
address is valid or not; if not the packet is dropped and processing
ceases immediately.

Figure 5 - Processing of Incoming Honeynet Traffic

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Valid source addresses are any addresses except the border router
(192.168.100.1) and firewall (192.168.100.2), as we do not want these
sensitive resources probed by a compromised honeypot.

• If valid, the packet is passed along to the IDS where it will be subject to
inspection to see if it matches any signatures contained in the IDS’s
database. Regardless of whether it matches or not, the IDS will pass
the packet along for further processing.

• At last the packet is passed on to the inside interface, eth1, on the
honeypot network’s side from where it will reach its destination. The
interface performs bandwidth limiting as a final step before the packet
is put onto the network cable.

Figure 6, further on, shows the equivalent flow diagram for the processing that
is performed for traffic destined for the Internet and originating from one of the
honeypots. The chain of events is as follows:

• A packet arrives at the internal (honeypot facing) interface. The packet
is headed towards the Internet and originated from one of the honeypot
systems behind the control device.

• The control device acts as a layer 2 bridging device so it will intercept
the packet even tough it is not involved in the IP exchange between the
two hosts. The control device accepts the packet on behalf of the
destination system.

• The internal ethernet interface, denoted with eth1, in the firewall rules,
does not have an IP address. It is invisible to both the source and
destination hosts.

• After the packet is intercepted it is subject to a number of decisions and
processing steps that determine whether it will eventually be forwarded
or not.

• The first decision made by the control device is whether the source
address is valid or not, and, if not the packet is dropped and processing
ceases immediately.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 6 - Processing of Outgoing Honeynet Traffic

• Valid source addresses are any addresses in the range of the
honeypot systems, i.e. 192.168.100.33-46. Source addresses outside
this range indicate that something out of the ordinary happened, either
a network failure or misconfiguration but more likely it means that an
attacker is using a compromised honeypot and faking a source address
while trying to communicate with the outside world.

• The next decision made by the control device is whether the
destination address is valid or not. If not the packet is dropped and
processing ceases immediately.

• Valid destination addresses are any addresses except the border
router (192.168.100.1) and firewall (192.168.100.2) as we do not want
these sensitive resources probed by a compromised honeypot. If valid
the packet is passed on.

• The next decision made by the control device is whether the t raffic is a
DNS related query to the ISP’s name server, if so the packet is queued
to the IDS (see latter points for IDS processing) if not he packet is
passed along for further processing.

• The next decision made by the control device is whether the traffic is
broadcast traffic, if so the packet is queued to the IDS (see latter points
for IDS processing) if not he packet is passed along for further
processing.

• The next decision made by the control device is whether the packet
initiates a new connection, if not if means that the packet is part of an
already established connection that was allowed at a previous stage so
the packet is sent on to IDS processing. (see latter points for IDS
processing)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• If a new connection is attempted the packet is passed on to the
connection rate limiting logic.

• The connection rate limiting logic determines whether the new
connection is under or above the threshold that limits the rate and
number of new connections. If the connection exceeds the rate
limitations the packet is dropped and processing ceases, but if the
connection is within limits it is passed on to the IDS processing step.

• IDS examines packets passed along to it and compares it to known
exploits stored in the IDS’s databases. If any matches are encountered
the packet is dropped and processing ceases but if the IDS regards the
packet as not malicious, the packet is passed along once more.

• At last the packet is passed on to the outside interface, eth2, on the
Internet from where it will be routed, first by the border router and them
all they way to its destination on the Internet. The interface performs
bandwidth limiting as a final step before the packet is put onto the
network cable.

The complete statement-by-statement description of the network configuration
script won’t be presented but it can be summarised in the following steps:

• Load kernel modules

• Ensure IDS is running

• Initialise network interfaces

• Enable and configure bandwidth limiting

• Configure ethernet bridging

• Flush stale firewall rules

• Install suitable firewall rules (the description via the flow diagrams gave
a good overview of these rules)

• Initialise the network traffic capturing software

• Initialise the bridge

3.4 Honeypot network Hub
This particular honeynet used a 10/100Mbps ethernet switch to connect the
honeypots to the network and to the control device. The control device was
connected to a monitoring port on the switch so that it would be able to
observe and capture all traffic on the honeypot network. So from the control
device’s perspective if was indeed a hub but the other systems operated in a
normal switched environment.

3.5 Honeypot 1, hp01, 192.160.100.34
Operating System:

Microsoft Windows 2000 SP2
Configuration:

• Standard IP services running

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Default IIS webserver running

• Default MS FTP service running

• Default SMTP service running

• Configured as Microsoft client
• No filesharing configured

• Disabled NetBios over TCP/IP

3.6 Honeypot 2, hp02, 192.160.100.35
Operating System:

Microsoft Windows 2000 SP2
Configuration:

• snmp service running

• message queuing enabled

• rip (routing) service enable

• Unix print services enabled

• Configured as Microsoft client
• Configured with Microsoft filesharing

• Configured with NetBios over TCP/IP

3.7 Honeypot 3, hp07, 192.160.100.40
Operating System:

Sun Solaris 8 on Sun Ultra 5 workstation
Configuration:

• Default install

• DNS service enabled

• SSH service enabled

3.8 Honeypot 4, hp11, 192.160.100.44
Operating System:

Linux, Redhat 7.2
Configuration:

• Default Installation

4. Some Results
This section very briefly mentions some of the interesting detects captured by
the inline intrusion detection system employed on the control device. Even
brief discussions supported by minimal packet traces are too voluminous to
include in this report. Traffic is divided into subsections according to their IP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

protocol. The capitalised words, below, indicates the category of the matching
rule in the IDS rule base.

4.1 ICMP
ICMP unreachable messages elicited by portscans were filtered out of the
total number of ICMP detects as these messages are not attacker generated
traffic but is generated according to the Internet Control Message Protocol
mostly in response to portscans directed to non-listening hosts and services.
The remaining ICMP traffic is about a total of 1000 ICMP Ping (code 8, type 0)
and ICMP Echo Reply (code 8, type 0) packets in roughly a 1:1 ratio. These
messages emanated from roughly 110 different source addresses. Giving and
average of roughly 5 pings sent per host.

4.2 UDP
The majority of traffic is RPC related confirming RPC’s place in the “top 20
most vulnerable or prone to attack services” [10] list.
RPC attacks:

• RPC portmap request status

• RPC portmap request sadmind

• RPC EXPLOIT statdx

• EXPLOIT ntpdx overflow attempt
Note: None of these attacks were successful

4.3 TCP
The list below present some interesting TCP traffic captured by the inline IDS.
The majority of traffic was proxy scanning (not presented here) with web
related (MS and UNIX) attacks in 2nd place. Here are some of the web related
detects:

• WEB-IIS ISAPI .ida access

• WEB-MISC /etc/passwd
Another interesting detect was not specifically attack generated but
nevertheless attempted to misuse some internet service:

• POLICY SMTP relaying denied
The total number of detects are too numerous to present in this report, even in
a digested form.
Note: None of these detected attacks were successful. The author chose fairly
conservative honeypot configurations.

References

1. Honeynet Project, "HoneyNet Prioject” URL: http://project.honeynet.org/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2 The Honeynet Project, Know Your Enemy: Revealing the security tools,
tactics, and motives of the Blackhat community, Addison Wesley 2002, p 9-17
3 Spitzner, Lance, Honeypots, Tracking Hackers, Addison Wesley 2003, p 40
4. Honeynet Project , "Know Your Enemy: Honeynets” 7 Jan 2003 URL:
http://project.honeynet.org/papers/honeynet/
5. The Honeynet Alliance, " Honeynet Definitions, Requirements, and
Standards” Version 1.5.0, 7 Jan 2003 URL:
http://project.honeynet.org/papers/alliance/requirements/
6. Larsen, J., "Hogwash” URL: http://hogwash.sourceforge.net/
7. Roesch, M. & Caswell B. “snort.org” URL: http://ww.snort.org/
8. “TCPDUMP public repository” 12 Dec 2002 URL: http://www.tcpdump.org/
9 Frost, S. & The Netfilter Web Team “netfilter/iptables” URL:
http://netfilter.samba.org/
10. The SANS Institute, “SANS / FBI The Twenty Most Critical Internet
Security Vulnerabilities” Version 3.21 17 Oct 2002 URL:
http://www.sans.org/top20/

