
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Robert D’Agnolo ______________ (Page 1) ______________ GSEC Practical 1.4b

Robert D’Agnolo ______________ (Page 1) ______________ GSEC Practical 1.4b

IMPLEMENTING sudo TO REPLACE su :
(A Case Study Also Involving NIS and RDIST)

INTRODUCTION:
Greetings, reader! I am about to relay to you the occurrence of actual events that
transpired at my place of work sometime between September and October of
last year (2002). It is essentially the beginning of a still on-going saga about a
group of customers who are slowly being introduced to the concepts of
network/system security in an environment where very little had existed before.
Namely though, it involves the implementation of sudo to replace su access on
two key Sun/Solaris servers used by a small group of scientists who do
research and development for a major US manufacturer. Please note that while
this story is true and accurate to the best of my recollection, the names of every
participant involved, including the companies, employees, vendors, customers,
administrators, computers, and even myself, have been changed to protect our
confidentiality as well as to thoroughly “sanitize” the data contained herein.

Incidentally, my name is Trevor, and I am a Systems Administrator employed by
an IT outsourcing firm called “System Operators At Large” (also known as
SOAL). My current assignment is working on SOAL’s “TEAM “project which
stands for Technically Enhanced Administration & Management. TEAM is an
enhanced service offering that SOAL provides above and beyond its usual plain-
vanilla support packages. Specifically, TEAM is geared toward the support of
highly technically users (usually engineers and scientists) in their hi-tech
environments (usually laboratories and research facilities). In this service
offering scenario, the customer pays a premium price and receives premium IT
support in return. In short, whatever IT needs our customers require in order to
complete their research and/or produce their prototypes, TEAM is contractually
obligated to provide. It is important to note that, unlike typical IT support models,
TEAM is based upon “best efforts” as opposed to “response times”. Thus,
TEAM’s Systems Administrators are not penalized for failing to furnish pre-
defined deliverables within agreed-upon timeframes. Rather, we are
encouraged to provide the all-around best possible service to our customers in
the most timely manner that is humanly possible. In short, our customers are
used to getting things THEIR way. It is within this framework that sudo was to
be introduced to a customer requiring (and in some cases even demanding) su
access on key servers to do their work, and also accustomed to using it at will.

BACKGROUND:
Some of the obvious questions you, the reader, may have are: Why did they
need su access on their servers anyway? And did they truly need it? How in
the world did they ever get it in the first place? How does a sophisticated group
of corporate users exist with such a lax security stance? And finally, how does
“the new guy” raise the consciousness level of security among those who’ve
gone with so little of it for so long. I think the best way to answer these
questions is to provide a brief historical retrospective on my customer, The XYZ

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Robert D’Agnolo ______________ (Page 2) ______________ GSEC Practical 1.4b

Robert D’Agnolo ______________ (Page 2) ______________ GSEC Practical 1.4b

Corporation’s “POISE” group.
BEFORE SNAPSHOT:
One of SOAL’s prize customers is The XYZ Corporation. XYZ is a leading
manufacturer of digital cameras & photographic printers. Most XYZ users
subscribe to SOAL’s plain vanilla IT support package, which is fine for its sales
staff and clerical personnel. However, some XYZ users require a much more
comprehensive support model. One such group is POISE, an acronym for
Printing Operations & Imaging Science Engineers. The POISE group exists as
one of several small but important R&D groups within the XYZ corporate
structure. POISE is a close-knit group of 30 imaging scientists that once existed
as a research firm-for-hire, until it was acquired by XYZ sometime in the late
90’s. POISE specializes in developing high-quality image rendering software &
firmware as it relates to the high-end printer and scanner market for the printing
& publishing industry.

Until its acquisition by XYZ, POISE’s IT support was provided by one of their in-
house programmers named Steve Adams. Steve is still a major code-writer for
the group and continues to play a key role in all of POISE’s hardware and
software procurement decisions. (Side Note: It was Steve who originally
ordered POISE’s Sun/Solaris servers and named them after characters from
George Orwell’s “Animal Farm”.) When, Steve Adams stepped aside as SysOp,
my immediate predecessor, Fab Cuttia took over as Sys Admin from early 2000
to mid 2002. Fab continued to run POISE’s IT department similarly to how
Steve had, with much user autonomy, minimal security, but with outstanding
documentation! Fab still works at XYZ in a facility nearby, and is usually only a
phone call away. Being so familiar with the POISE group’s systems, Steve and
Fab have been excellent mentors to me. And it is a rare opportunity when a
newly assigned Systems Administrator gets to speak with the previous IT
support staff. But let us get back to the POISE group.

As a historically semi-autonomous user community, conducting research on its
own, mostly in isolated labs, and separate from the main production lines, the
POISE group has enjoyed an usually high level of freedom. And among these
freedoms are, not only Administrator privileges on their personal Windows/Intel
workstations, but also su access on their Sun/Solaris servers! This is rather
ironic, given that most XYZ users must observe very strict adherence to that
corporation’s security policies. Later, I will show you actual excerpts from those
policies.

Furthermore, because of the potential danger associated with su access (more
on this later), many companies, both large and small, strictly limit its use on ALL
production servers. And on those rare occasions, when su access is allowed,
its use is strictly limited to that of certain authorized/qualified members of the IT
support staff, and then only at the systems’ consoles! So, to say that granting
su access to regular users is contrary to the security policies of most major US
corporations (not to mention the conventional wisdom among many security

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Robert D’Agnolo ______________ (Page 3) ______________ GSEC Practical 1.4b

Robert D’Agnolo ______________ (Page 3) ______________ GSEC Practical 1.4b

professionals) is indeed an understatement. It was for this reasons above all,
that made me realize that the lunatics had been running the asylum long
enough. It was high time that the POISE group joined the rest of the security-
conscience world. Just like TEAM, SOAL, and the rest of The XYZ Corporation
before them.
DEFINING su VS sudo - DIFFERENCES & SIMILARITIES:
For those of you who may not be familiar with either the su or sudo utilities, lets
take time to briefly describe each. For each command (or capability) I will give a
short, dictionary-type definition from a reputable source on the Internet. Then I
will follow up with brief summaries in plain English. It is my hope that the
combination of these definitions will give you, the reader, a thoroughly fleshed-
out understanding of su & sudo, plus how they fit together in the big puzzle of
UNIX Systems Administration.

The introductory terms section of the Red Hat Docs web site defines su like so:
“The command su gives you access to the root account or other accounts on
your system. When you type su to switch to your root account while still inside
your user account shell, you have access to important system files that you can
change, or damage, permanently. Logging in with the su – command makes
you root within the root account shell. Use caution when you are logged in as
root.” (Referenced Source: “The Official Red Hat Linux 8.0 Getting Started
Guide” found at http://www.redhat.com/docs/manuals/linux/RHL-8.0-
Manual/getting-started-guide/s1-starting-intro-terms.html.)

So su traditionally stands for “switch user” but more literally means “SuperUser”,
which in the UNIX world is tantamount to God. Basically, the SuperUser enjoys
complete administrative control over the UNIX machine. (It may be helpful to
MS-Windows users to think of su as the analog to the local machine
Administrator on NT, 2K, or XP systems.) But along with this amazing control
comes the awesome responsibility to wield it with great care. For, along with
the capability to fix most UNIX problems, the SuperUser has the equivalent
ability to break the system beyond repair. Simply entering the wrong command
by a single character can have disastrous results! For example, typing the “rm
<dir>” command when you meant “rm –i <dir>” is the difference between
purposely deleting unwanted files when prompted –or– accidentally blowing
away an entire directory you may never get back. (Actually, it was a similar case
of a user who typed the wrong command as su that is one of the main scenarios
on which this paper is based…But more on that later). Again, the importance of
being vigilant while using su cannot be overstated.

Another major problem with su usage is its infamous lack of accountability.
Meaning, a Systems Administrator can login directly to a UNIX system’s console
without having to provide his/her own username and/or password. I’m sure you
can see the problem this potentially creates. For, if that same Systems
Administrator mistakenly types the wrong command, thereby wreaking havoc on
the system, there is no reliable audit trail to tell us who did what. Sure, there’s

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Robert D’Agnolo ______________ (Page 4) ______________ GSEC Practical 1.4b

Robert D’Agnolo ______________ (Page 4) ______________ GSEC Practical 1.4b

the sulog (located in a Solaris system’s /var/adm/ directory). But sulog can only
tell us that SOMEBODY logged into the system as root at a particular date &
time, but that’s all it tells you. Clearly, such a powerful tool as su needs to be
tracked much more closely than that! So, wouldn’t it be nice to have a utility
that gives Administrators the power of su, plus auditing for greater
accountability? Wouldn’t it be helpful to track whenever the root account is
misused, and by whom? How about something that already utilizes syslog?
Enter sudo!
DEFINING su VS sudo - DIFFERENCES & SIMILARITIES (continued):
The “What You Need To Know About “ web page has a “Focus on Unix” section
that defines sudo like this: “sudo (Super User DO), a public domain program,
provides a flexible solution to giving partial root privileges. It allows selective root
access to be given by user, machine, or command, and keeps copious logs
every time these privileges are used.” (Referenced Source: “Focus On Unix:
Managing Root Access With sudo” at
http://unix.about.com/library/weekly/aa102500a.htm)

I like to think of sudo as a kinder, gentler version of su. sudo essentially gives
Sys Admins (and sometimes regular users) the ability to wield the power of root
in a far more prudent manner (one command at a time) and for limited time
periods (5-minute sessions by default). This interposes significantly less risk
associate with unattended consoles. While you would never want anyone
walking away from a console without locking it; if they did forgot, the odds of
them leaving the system completely wide-open and vulnerable are dramatically
reduced.

Unlike su, which merely logs its successful and failed uses in the sulog file
(mentioned earlier), sudo provides a highly-configurable auditing process that
records its information into UNIX’s built-in System Log, called the syslog file.
(Note: On Sun/Solaris systems, the syslog file is located in the /var/adm/
directory). By default, sudo only logs failed attempts of its use, but it can be
modified to track a great deal more. For starters, it has the capability to record
where it was invoked (machine), when it was invoked (date & time), and who
invoked it (user). How’s that for accountability? With sudo, Systems
Administrators can be reasonably certain that su access is NOT being granted
to just anybody.

DURING SNAPSHOT:
This is where the trouble began: One Tuesday morning in September of 2002, I
returned to work from a three-day weekend. As usual, I began by checking the
/var/adm/messages logs on POISE’s two main Solaris servers, Napoleon and
Snowball. (Aside: Windows Server Administrators might find it handy to think of
the UNIX messages file as the functional equivalent of the Microsoft Event
Viewer logs found on NT, 2K, and XP machines.) Their purpose also being the
recording of events that occur on the machine such as system messages,
application errors, or security alerts. But on this day an “ls –la /var/adm/”

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Robert D’Agnolo ______________ (Page 5) ______________ GSEC Practical 1.4b

Robert D’Agnolo ______________ (Page 5) ______________ GSEC Practical 1.4b

command run on each box, revealed that both of their messages files were 0
bites large. And viewing the files via “more /var/adm/messages” confirmed they
were indeed empty. No system, app, nor security messages of any kind had
been logged since Friday of the previous week. Furthermore, “ps –elf | grep sys”
commands revealed that syslogd, (The UNIX syslog daemon: the process
responsible for recording messages into the messages file), was not running.
Somebody, intentionally –or– unintentionally must have turned off the syslog
facility. While this is a difficult enough event to trace, it was exasperated by the
fact that all POISE users had su access to Napoleon and Snowball. In short, all
30 of my users were suspects, and my only clue was a one-line entry in sulog.
All I knew was that SOMEBODY accessed su SOMETIME the previous
Friday…that’s all. Still, some kind of investigation was necessary.
THE INVESTIGATION:
I began by phoning my friend, colleague, predecessor, and backup, the previous
Sys Admin for the POISE group, Fabrizio Cuttia. After a brief conversation with
Fab, it was clear that he was not the culprit, nor did he know who was any more
than I did. However, he was just as concerned as I was that this was a very
serious problem. To paraphrase his thoughts: Turning off syslog is like disabling
a bank’s alarm. Whether or not it’s accidental, it’s always bad news. So, great
pains must be taken to avoid it from ever happening.

Due to several reasons, I already knew it would be nearly impossible to track
down the guilty party. Sure, I asked everyone who was working Friday if they
had “su-ed” that day. But most couldn’t honestly remember whether they had or
not. And those that could recall couldn’t really know if it was one of their
commands that stopped syslogd. As stated earlier, with su, it takes only one
mistyped command to cause a problem. My theory is that someone tried to halt
a job with the pkill command by grep-ing for a process name containing the
letters “sys”, or “log”. Anyway, the horse was already out of the barn. I decided
to move on to the future prevention stage of the game. So, without further ado,
let’s walk through the nuts & bolts.

INSTALLING & CONFIGURING sudo ON SERVER #1 (NAPOLEON):
Obviously, I will need to go into detail as to how sudo was implemented from
start to finish. But the entire installation and configuration process can be
summarized as follows: “[1] Download the source code. [2] Prepare the source
code for compilation. [3] Compile the source code and install. [4] Modify the
search path. [5] Configure sudo. [6] Use sudo.” (Referenced Source: “Solaris
Resources at Kempston: Installing and Configuring sudo on Solaris 7 and
Solaris 8”, quoted from http://www.kempston.net/solaris/sudo.html). This
delineates a generic method of installing sudo locally on a single UNIX box.
Normally, that would be fine, but I needed something that would allow me to
install sudo on one server (Napoleon), distribute it to another (Snowball), and
allow all POISE users to run it from any directory on any Sun/Solaris box in our
domain. We needed a solution that would not demand us to run the
command’s full path (/usr/local/bin/sudo) on specific machines (Napoleon or

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Robert D’Agnolo ______________ (Page 6) ______________ GSEC Practical 1.4b

Robert D’Agnolo ______________ (Page 6) ______________ GSEC Practical 1.4b

Snowball). To be sure, our primary focus was giving the Exceed users the
freedom to run sudo on our main servers (Napoleon & Snowball). But we also
wanted our users to have the option of running it from older, low-end Sparc
workstations (Boxer and Clover). And, of course, we wanted all this without
having to install it on every Solaris box in the POISE domain. So it was decided
to employ the RDIST facility, and utilize our NIS auto-mount maps to make it all
come together. But first things first. Let’s verify some of our prerequisites.

INSTALLATION REQUIREMENTS: It’s important to note up-front, that before I
began, I had to confirm that I had the following prerequisites available to me on
the Napoleon server’s console: root access, gzip & gzcat, a working C compiler
(like gcc), and a functional make utility. Please Note: This is where the #which
gzip and #which make commands came in handy. Once these confirmations
were made; I was ready to get down to the nitty-gritty of downloading and
installing.
sudo INSTALLATION DETAILS:

(1) Download the source code:

The latest version of sudo (1.6.6 at the time of this writing) can be obtained free
via http or ftp at several sites on the Internet. However, it is always wise to
obtain software from sites that are deemed both well-know and reputable
among your security industry peers. This in itself, may not be an absolute
guarantee that the software is completely virus-free, but it is one of you safest
bets. Two such reputable and well-known sources of sudo for Sun and other
popular platforms are ftp://ftp.sudo.ws/pub/sudo and
http://www.sunfreeware.com. From either of these sites you would download
the sudo source code in the form of a tape archive (or tar) file that has been
compressed using GNU’s zip (or gzip) utility. Thus, the file would be named
“sudo-1.6.6.tar.gz”. It is this file that I downloaded to the Napoleon server.

(Extra NIS Step) Create directory & auto-mount map:

All users in the POISE domain have access to a common auto-mount called
“/software”. It is here where many of POISE’s commonly used programs are
located. First, to create a directory to house the sudo program, I ran the
command, #mkdir /u01/software/sudo on Napoleon as root. Then I logged into
our NIS master (Squealer) to modify and push-out (as root) the NIS map named
“auto.software”.

[ROOT on SQUEALER] # vi /nis/maps/auto.software
(add entry: napoleon,snowball:/u01/software/sudo)
[ROOT on SQUEALER] # cd /var/yp
[ROOT on SQUEALER] # make

(2) Prepare the source code for compilation:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Robert D’Agnolo ______________ (Page 7) ______________ GSEC Practical 1.4b

Robert D’Agnolo ______________ (Page 7) ______________ GSEC Practical 1.4b

Then, as root on Napoleon, I copied the gzipped tar file to the /tmp directory via
the # cp sudo-1.6.6.tar.gz /tmp command. Furthermore, I “sourced” my .cshrc &
.login files, so that even as root, I would have my normal user environment
variables. The following two commands made the path to GNU’s C Compiler
(gcc) visible to root:

[ROOT on NAPOLEON] # source ~tdaniels/.cshrc
[ROOT on NAPOELON] # source ~tdaniels/.login

Next, I used the GNU Zip gzcat command piped to the tar command. I did this
in order to uncompress the “/tmp/sudo-1.6.6.tar.gz” archive while extracting it to
the /tmp/sudo-1.6.6 directory at the same time:

[ROOT on SQUEALER] # cd /tmp
[ROOT on SQUEALER] # gzcat sudo-1.6.6.tar.gz | tar xvf –
[ROOT on SQUEALER] # cd sudo-1.6.6

sudo INSTALLATION DETAILS (cont.):

(3) Compile the source code and install:

The “configure” utility provides a daunting number of sudo program options that
can be run at installation time. There is even one that berates you with “Hal
2001-like insults when an incorrect password is entered”. (Source: “Sudo
Installation Notes” from http://www.courtesan.com/sudo/install.html.) However,
we’re most concerned with the - -prefix= and - -sysconfigdir= arguments, which
allow us to change the default locations of the installation and configuration
directories respectively.

[ROOT on NAPOLEON] # pwd (to confirm that we are still in /tmp/sudo-1.6.6)
[ROOT on NAPOLEON] # ./configure - -prefix=/software/sudo - -sysconfigdir=/software/sudo
[ROOT on NAPOLEON] # make
[ROOT on NAPOLEON] # make install

(4) Modify the search path:

I actually skipped this step because I had already addressed the path issue by
creating an auto-mount directory (napoleon:/u01/software/sudo), then modifying
and pushing the appropriate NIS map (squealer:/nis/map/auto.software). At this
point, the #sudo –V command was entered to confirm that this was indeed the
case. Note: “The -V (version) option causes sudo to print the version number
and exit.” (Referenced Source: #man sudo “The sudo man pages” by Todd
Miller, et. al.)

(5) Configure sudo:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Robert D’Agnolo ______________ (Page 8) ______________ GSEC Practical 1.4b

Robert D’Agnolo ______________ (Page 8) ______________ GSEC Practical 1.4b

The /etc/sudoers file (or the /software/sudo/etc/sudoers file in our particular
case) is the heart of the sudo configuration. Nearly all of its access controls and
options are controlled via modifying this file. So it shouldn’t surprise anyone that
you must be root to edit it. Please note that editing this file must be
accomplished using a vi-like editor called visudo. (That’s
/software/sudo/sbin/visudo in our case.)

Below is a glimpse of our /software/sudo/etc/sudoers file. Please note that it is
not much larger or terribly different from the original “sample sudoers file” that
comes with the program by default. Observe how ordinary users, like Jacques
Moiré and Steve Adams are only permitted to run sudo from the four servers
specified in the SERVERS1 group. Moreover, these regular users are prohibited
from running any “shells” or so-called “danger” commands via sudo. While
Systems Administrators like Fabrizio Cuttia and me (Trevor Daniels) are allowed
to run ALL commands via sudo from ALL machines in the domain. Of course
there are scores more options we can chose at a later date, but this is enough
for now. The two important points I want to stress are: (a) The default options
pre-set in the sample sudoers file allows us to get sudo up & running very
quickly. (b) The power and flexibility of sudo is made possible by changing this
incredibly small and easily editable sudoers file.

sudoers file.
#
This file MUST be edited with the 'visudo' command as root.
#
See the sudoers man page for the details on how to write a sudoers file.

Host_Alias SERVERS1=napoleon, snowball, boxer, clover

Cmnd_Alias SHELLS=/bin/sh,/bin/csh,/bin/ksh,/usr/bin/ksh,\
/usr/bin/csh,/usr/bin/sh,/sbin/sh,/bin/tcsh,/usr/bin/tcsh

Cmnd_Alias DANGER=/bin/su,/usr/bin/su,/bin/rsh,/usr/bin/rsh,\
/bin/login,/usr/bin/login,/usr/sbin/snoop,/software/bin/visudo

jmoire SERVERS1=ALL,!SHELLS,!DANGER
sadams SERVERS1=ALL,!SHELLS,!DANGER
tdaniels ALL=(ALL) ALL
fcuttia ALL=(ALL) ALL

(6) Use sudo:

Two more factors in deciding to go with sudo were its cost (free BSD License),
and its ease of use. XYZ is experiencing financial difficulties, so procurement of
a costly software solution, however necessary, would have been impossible at

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Robert D’Agnolo ______________ (Page 9) ______________ GSEC Practical 1.4b

Robert D’Agnolo ______________ (Page 9) ______________ GSEC Practical 1.4b

this time. Plus, requests for time & money to send users to training would have
been flatly denied. But sudo is so simple to use that this brief e-mail memo was
all that was needed to educate our customers on it uses. In these cost-
conscience times, it’s no wonder why great “open source software solutions”
like sudo are gaining popularity.

From: Daniels, Trevor
Sent: Monday, October xx, 2002 7:59 AM
To: “USA POISE GROUP”
Subject: IMPORTANT: sudo REPLACING su

To improve security, POISE is implementing sudo to replace the functionality of
su.
The sudo command will give you the same root access su does, but with less
risk.

sudo is very easy to use & works on a command-by-command basis (see
below).
NOTE: It requires you to enter your password before it runs your command.

% sudo <command> [options | arguments]
password: <my_unix_account_password>

This will greatly reduce the risk of dangerous typos related with su-ing to root.
Please let me know if you have any difficulties. Thank you for your cooperation.
INSTALLING sudo VIA rdist ON SERVER #2 (SNOWBALL):
For purposes of system redundancy and network load-balancing, POISE group
users equally utilize both the Napoleon and Snowball servers. Therefore, since
we’ve already installed sudo on Napoleon, we must have an identical installation
of it on Snowball. But how do we accomplish this without performing the exact
same keystroke-per-keystroke installation? ANSWER: rdist! “RDIST is an open
source program to maintain identical copies of files over multiple hosts. It
preserves the owner, group, mode, and mtime of files if possible and can update
programs that are executing. Almost all versions of UNIX include rdist.”
(Referenced Source: “Introduction to RDIST Homepage” at
http://www.magnicomp.com/rdist.)

Basically, our entire rdist mechanism works on the basis of three files: the
executable rdist program (/usr/bin/rdist), the rdist configuration file
(/etc/export/admin/rdist.conf), and a root cronjob that ties them all together
(/var/spool/cron/crontabs/root). Please see the sample file fragments below:

napoleon:/etc/export/admin/rdist.conf:

software: /u01/software -> snowball
install -R /u01/software/;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Robert D’Agnolo ______________ (Page 10) ______________ GSEC Practical
1.4b

Robert D’Agnolo ______________ (Page 10) ______________ GSEC Practical
1.4b

#############################
/var/spool/cron/crontabs/root
#############################
#ident "@(#)root 1.14 97/03/31 SMI" /* SVr4.0 1.1.3.1 */
#
20 20 * * 6 /usr/bin/rdist -f /export/admin/rdist.conf | fgrep -v -e "no password" | fgrep -v -e "no name"

AFTER SNAPSHOT:
In terms of this case study, it would not be completely unfair to say that sudo
was sprung upon the POISE group, that is to say; “implementation after the
fact”. But this was decided for several reasons. [1] Something had to be done.
The continued use of su couldn’t go on. It was contrary to both XYZ’s security
policies and common sense. Nowhere in my experience were regular users
granted Systems Administrator access to key servers. [2] Although I didn’t
expect great resistance; I nevertheless prepared for it. There was no doubt in
my mind that if push came to shove, and the POISE user community revolted
against the implementation, I could rely on reinforcement from their superiors
within the upper echelons of XYZ’s IT Infrastructure. The fact was that, up until
this point, POISE was the only group of UNIX users at XYZ who weren’t using
sudo instead of su. So, I knew I was on very solid ground. [3] Because sudo is
so simple to use, there wouldn’t be any training resources required. A short and
simple mail note would provided sufficient user education, and downtime (if any)
would be minimal. [4] It’s free! Since sudo is a freely distributed, open source
program, it was a solution a financially troubled company could afford. We were
even spared the licensing & procurement hassles that go along with purchasing
commercial software for a large corporation.
sudo’s IMPACT (THE “GOOD” NEWS):
It didn’t take long for the positive effects of sudo to manifest themselves. Almost
immediately, I began noticing its alerts in the /var/adm/messages file. I also
liked being able to test sudo’s effectiveness by intentionally entering the wrong
password. This way I could verify that it was working (by denying unauthorized
users) and recording the errors via syslog whenever I wanted. I could even track
occasional attempts of non-POISE XYZ users trying to access our systems from
within the corporate firewall. Below, in bold, is one such recent example of sudo
on the job.

snowball:/var/adm/messages:
Dec 17 09:23:52 snowball sudo: tdaniels : 3 incorrect password attempts ; TTY=pts/18 ;
PWD=/home/tdaniels/temp; USER=root ; COMMAND=/software/bin/top
Dec 17 09:23:56 snowball tdaniels : SA testing sudo logging on the line above

Dec 17 13:42:57 snowball sudo: dbrown : command not allowed ; TTY=pts/31 ;
PWD=/u10/misc/fs2/images/finals ; USER=root ; COMMAND=/usr/bin/su sadams

Also in the “plus column” was my customers’ acceptance of sudo. I had braced
myself for a backlash that, fortunately, never came. Maybe it was Murphy’s Law

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Robert D’Agnolo ______________ (Page 11) ______________ GSEC Practical
1.4b

Robert D’Agnolo ______________ (Page 11) ______________ GSEC Practical
1.4b

at work, but I prefer to think that it was sudo’s “ticketing system” that played a
part in customer satisfaction. You see, I had anticipated complaints like: “You
mean I have to type my password for every su/root command?!?!” But, instead
they appreciated how the “ticketing system” gave them full five-minute sessions
with each password. At any rate, I’d like to show you the e-mail note I was
prepared to send in the event of a user revolt. Note my heavy reliance on
excerpts, quoted chapter and verse, from the actual security policies posted on
XYZ’ internal web site.

From: Daniels, Trevor
Sent: <DRAFT: MESSAGE NEVER SENT>
To: “USA POISE GROUP”
Subject: Using sudo To Comply with Security Policy

Dear Customers,

I regret the inconvenience some of you have experienced resulting from our
switch to sudo. It‘s never the intention of SOAL, TEAM, or myself to hamper
your product- ivity in any way. Rather, the decision to replace su was based
entirely on improving security, and complying with XYZ security policies.
Please take a moment to read from your company’s security policies below. I
hope it helps you understand why we had to switch to sudo, and why we can
never go back to using su. If then, you still have complaints, I will help you
escalate them to XYZ Corporate Security.

Thank You. -Trevor

(DRAFT: MESSAGE NEVER SENT continued)

Section 3 - Electronic Information System Security (Subset 6: Access Control):
==
=
"Security safeguards for Electronic Information Systems must be installed to
ensure access control, identification, authentication, and authorization...Access
to XYZ Confidential and XYZ Third Party Confidential information must be
restricted to individually authenticated persons."

Section 3 - Electronic Information System Security (Subset 8: User
Identification):
==
=

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Robert D’Agnolo ______________ (Page 12) ______________ GSEC Practical
1.4b

Robert D’Agnolo ______________ (Page 12) ______________ GSEC Practical
1.4b

"For tracking purposes; personal identifiers (IDs) must be used to identify
people, data, and resources...All systems and information must be easily
matched to an individual...IDs must be employed to restrict system privileges
based on job function...IDs must be uniquely assigned to an individual and/or
system...All Users are personally responsible for the usage of his or her User-
IDs and their associated passwords, and must therefore never share them with
others."

Section 5 - Authorized Use (Subset 10: Authentication):
==
=
"Approved authentication techniques must be employed on XYZ Electronic
Information Systems to prevent unauthorized access to XYZ Classified
Information, or the unauthorized use, control, or administration of the
system...Strong Authentication mechanisms must be employed on Electronic
Information Systems especially when said business system has high
dependencies upon valid identities."

Section 5 - Authorized Use (Subset 12: IS Responsibilities):
==
=
"...bypassing Electronic Information Systems security measures are
prohibited...A User shall not access or attempt to access an Electronic
Information System unless he or she is authorized to do so...A User shall not
represent himself or herself as another person...Information Users are required
to maintain the Confidentiality, Integrity, and Availability of information
accessed."

<END OF
MESSAGE>

It was probably one of the most effective notes I never sent. Overall, the POISE
users were very understanding, and had no great qualms about doing things a
little differently than they’d been used to. I suppose I may have underestimated
my customer’s ability to adapt. But I also think it goes to show you that users
can surprise you in more ways than one.
sudo’s VULNERABILITIES (THE “BAD” NEWS):
Obviously my struggle to attain network security doesn’t end here. Although
sudo is very cool, it is by no means the answer to every network administrators’
prayer. Like many free software programs (I did mention that it’s fee? Didn’t I?),
sudo has some drawbacks that one simply cannot ignore. And I think it would
be remiss of me to sing its praises for ten pages without mentioning a few of its
vulnerabilities. So here is a short list of sudo’s security shortcomings, along

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Robert D’Agnolo ______________ (Page 13) ______________ GSEC Practical
1.4b

Robert D’Agnolo ______________ (Page 13) ______________ GSEC Practical
1.4b

with a few ideas on how to combat them. (a.) sudo traverses passwords in
clear text. Fortunately, we use switches at XYZ to minimize the risk of
password sniffing and port snooping. But for those firms who are still utilizing
hubs, sudo may be more of a curse than a blessing. Still, it is making me
seriously consider the introduction of some form of password encryption
mechanism, like Kerberos or SSH, as my next major project. (b.) Since sudo
uses NIS for name resolution, and NIS has some notorious security problems,
naturally it brings those problems along to the party. I will have to give much
consideration as to how to effectively combat this issue. Should I use IP
addresses or aliases instead of the actual hostnames? Or would that decrease
security further? Would sudo still work if we switched to the more-secure NIS+?
Suffice to say, I will have to do a lot more research and consult more of my
security colleagues on this subject before I react to it. (c.) There is a real danger
that sudo users could alter the sudoers file and “help themselves” to even more
privileges. Fortunately, you can safeguard against this, by configuring the
sudoers file to make the visudo editor one of the so-called DANGER
commands, so regular users can’t run it. (Please note that we did this in our
sudoers file; seen at the top of page 8.) (d.) From a hacker’s perspective, the
root passwords are no longer the only targets of temptation. Now we have to be
concerned with vigilantly protecting the password of each and every sudo user.
As usual, this is yet another case for having a strong password policy and
enforcing it with login scripts and/or user account properties. Fortunately, all
UNIX users at XYZ are forced to change their passwords every 30 days.
Furthermore, those passwords must be at least 8 characters long and contain at
least 2 non-alphanumeric characters. Plus, they are only acceptable if they are
sufficiently different from the previously used password. Even so, we may still
benefit from the addition of TCP Wrappers and PAM to our Solaris systems.

FINAL THOUGHTS:
So as you can see, we’ve only just begun to fight. A lot more has to be done
before we call our systems truly secure (or at least sufficiently hardened). But
as we were taught in the SANS-GSEC classes, the quest for attaining security is
never-ending, and it must occur via a multi-layered approach. So I think it is
only appropriate to close with the words of the legendary sixth century Chinese
philosopher, and teacher of Confucius, Lao Tzu, who said: “A journey of a
thousand miles begins with a single step”. So, if you can think of this quest for
security as the thousand mile journey; then implementing sudo to replace su is
an excellent first step.

BIBLIOGRAPHY / REFERENCES:

THE BOOKS:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Robert D’Agnolo ______________ (Page 14) ______________ GSEC Practical
1.4b

Robert D’Agnolo ______________ (Page 14) ______________ GSEC Practical
1.4b

Ambro, Darrell. Solaris 8 System Admin Exam Cram. Scottsdale,AZ: Coriolis,
2001.

Cook, Randy. Sun Certified Systems Administrator for Solaris 8.0 Study Guide
(Exams 310-011 & 310-012). Berkeley, CA: McGraw-Hill, 2001.

Cooper, Michael. Overhauling Rdist for the ‘90s. Long Beach, CA: U of SC,
1992.

Stern, Hal. Managing NFS and NIS. Sebastopol, CA: O’Reilly & Associates,
2001.

Winsor, Janice. Solaris System Administrator’s Guide. Palo Alto, CA: Sun,
2000.

Winsor, Janice. Solaris 8 Advanced System Administrator’s Guide. Palo Alto,
CA: Sun/Prentice Hall, 2001.

THE WEB:

“Introduction to Rdist Homepage.” http://www.magnicomp.com/rdist (January
2003).

Miller, Todd. “Sudo Installation Notes.”
http://www.courtesan.com/sudo/install.html

Russell, Kathy. “Focus On Unix: Managing Root Access with Sudo.” (October
2000) http://unix.about.com/library/weekly/aa102500a.htm (January 2003)

“The Compaq Tru64 UNIX rdist Man Page.”
http://www.tru64unix.compaq.com/docs/base_doc/DOCUMENTATION/V40G_HTML/MAN/MAN1/0305____.HTM

“The Official Red Hat Linux 8.0 Getting Started Guide.” (November, 2003)
http://www.redhat.com/docs/manuals/linux/RHL-8.0-Manual/getting-started-guide/s1-starting-intro-terms.html

“Solaris Resources at Kempston: Installing and Configuring sudo on Solaris 7

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Robert D’Agnolo ______________ (Page 15) ______________ GSEC Practical
1.4b

Robert D’Agnolo ______________ (Page 15) ______________ GSEC Practical
1.4b

and Solaris 8.” (April 2000) http://www.kempston.net/solaris/sudo.html
(January 2003)

