
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 1

A Review of Chaffing and Winnowing
David Spence
GSEC v1.4b

Abstract
This paper presents an overview of Chaffing and Winnowing as described by
Ronald Rivest. This leads onto a review of a secure Chaffing and Winnowing

scheme called Chaffinch.

Introduction

Chaffing and Winnowing was first proposed by Ronald Rivest, [1], as a means to
achieve confidentiality in message transmission.
 At the present time there were two major techniques used for preventing
adversaries from gaining information from a transmitted message:

• Encryption
This is the process of transforming the message into a random stream of
characters called a cipher text. This is done using keys to encrypt and decrypt
the message. Decryption of the cipher text is very difficult without knowledge
these keys. Techniques like this have been around for some time and
commonly used examples are DES, 3DES, RSA and AES.

• Steganography
The art of hiding a secret message within a larger one in such a way as to be
able to deny the message exists. An example is hiding a text message in a
picture file by changing the low-order pixel bits to be the message
information.

Chaffing and Winnowing introduces a novel new concept that does not use
encryption keys, and as such would not be subject to import and export
restrictions. Chaffing and Winnowing achieves privacy and confidentiality by
using authentication keys, however, these are not to be confused with encryption
keys. Authentication keys/digital signatures are not controlled by governments
and most have chosen that the disclosure of these signatures is not allowed.
They have taken this stance over authentication keys because of the danger of
unscrupulous people being able to use someone else’s personal authenticator to
take over that person’s identity!

 This paper goes over Rivest’s original paper, [1], and discusses more recent
work in the area of Chaffing and Winnowing.
 In the second half we look at a secure instance of Chaffing and Winnowing
called Chaffinch and examine the techniques used.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

1) Chaffing and Winnowing

 To understand the processes involved it is first useful to familiarize us with some
quite old words.

 Winnow – to separate out or eliminate the poor or useless parts
 Chaff – useless parts of wheat

 Winnowing is often used when referring to separating grain from chaff.

 Authenticating

When the user has a message they want to send it is broken into packets. These
packets contain the message information and header information. Within this
header is usually a serial number so that the receiver can reassemble the
message in the correct order.
 In Chaffing and Winnowing the person sending the message adds a “message
authentication code”, MAC, to each of the transmitted packets.
Both the sender and receiver calculate the Mac as a function of the packet
contents, serial number and a secret password/key that is shared.
 This MAC is attached onto the end of the packet as demonstrated in Figure 1.

 MAC Algorithm
 →
 shared key

Figure 1. This shows the process of authenticating packets. The MAC is
calculated and then put onto the end of the packet. These MAC’s are not
regarded as encryption, just authentication, as the packet is still in the
clear.

 Now that all of the packets are authenticated they are ready to be sent. If they
are sent as they are there is no security as the information is still in the clear! An
adversary need only intercept all of the packets to reconstruct the message.
Confidentiality comes from the next step…

 Chaffing

 This is the process of “adding chaff”, useless parts, to the transmitted message.
The chaff are fake packets that have the correct overall format, reasonable serial
numbers and reasonable content, however, they have MAC’s that are not valid
when computed with the shared key.

Serial
numbe
r

Information

Information

Serial
numbe
r

MAC

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 3

 These chaff packets are interspersed randomly with the good(wheat) packets to
form the transmitted data sequence. The receiver collects all of the transmitted
packets in the sequence and computes the MAC that should be associated with
each packet using the MAC algorithm and the shared key. Those packets with
MAC’s not matching those appended are discarded and the only packets left are
the wheat ones with valid MAC’s. The MAC numbers are stripped off and the
serial numbers used to reconstruct the message.

 This technique is called Clear-text Chaffing and Winnowing.
An example of the whole process is given in Figure 2.

 Message Authentication using MAC and secret key

 Serial number data MAC
 Hi Fran 1 Hi Fran 33cm0o3
 Our meeting is 2 Our meeting is 8734fj3
 In the usual place 3 In the usual place 384fjfj
 At 7pm 4 At 7pm wsl28ff
 Dave 5 Dave 202jdfi

 Transmitted Packets MAC checking by the receiver

1 Hi Fran 33cm0o3 1 valid
1 Hi Fran u3idjak 1 invalid
2 Our meeting is 8734fj3 2 valid
2 I’ll meet you 73jdlaj 2 invalid
3 In the high street hw629du 3 invalid
3 In the usual place 384fjfj 3 valid
4 At 6pm 6duajkc 4 invalid
4 At 7pm wsl28ff 4 valid
5 Dave 202jdfi 5 valid
5 Charles 5ejqp98 5 invalid

Message Reconstruction Message

Serial number data
 1 Hi Fran Hi Fran
 2 Our meeting is Our meeting is
 3 In the usual place In the usual place
 4 At 7pm At 7pm
 5 Dave Dave

Figure 2. Here we see the Chaffing and Winnowing process in all its
steps. In the example above the chaff packets are in bold. These are
added on the sender side and discarded by the receiver.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

Discussion of Clear-text Chaffing and Winnowing

The main security issues of this approach are that the information is still sent in
the clear and possible messages are easy to work out by combining all of the
information by serial number.
 A good Chaffing and Winnowing scheme will add one chaff packet for every
wheat serial number and the information of the chaff packets must make sense.
If your message is in French and the chaff was random gibberish then it would be
easy to reconstruct the message.

 General security issues of the Chaffing and Winnowing MAC approach are that
the MAC algorithm must be strong and act as a “random function” to the
adversary. As such the adversary would not be able to distinguish wheat from
chaff unless they know the shared key!

 Of course brute force approaches to find the shared key will also work but given
a complex enough key this approach will be lengthy.

Bit-by-Bit Chaffing and Winnowing

Another approach presented is to divide the entire message into single bits and
transmit these packets with serial number and MAC.
 To create the chaff the serial numbers from the wheat are added to the chaff and
the other bit value is used as the message portion along with an invalid MAC. An
example of a wheat and chaff packet can be found in Figure 3.

 Serial No. Data MAC
 Wheat 114 0 u329ewfj
 Chaff 114 1 j320894j

Figure 3. Here is an example of a wheat and chaff packet as produced in
the bit-by-bit scheme. In this scheme every wheat packet has a
corresponding chaff packet for security. The receiver checks the MAC and
discards the chaff.

Discussion

This bit-by-bit scheme offers a huge advance in confidentiali ty over the previous
approach and has been proven to meet a definition of privacy from plain-text
attack [2].

 It is an interesting point here that the creation of the chaff does not require
knowledge of the secret key! Therefore it is feasible that two people who merely
authenticate their packets and do nothing else could be using Chaffing and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

Winnowing. How? Well if someone else at each end were to look at the packets
to be transmitted and add reasonable chaff then confidentiality is achieved
without the sender and receivers knowledge. The receiver discards the chaff as it
does not have a valid MAC.

 This bit-by-bit method is highly inefficient, as, putting some sizes to the parts of
the packet, serial number 32 bits, MAC 64 bits, data one bit and possible extra
header information 32 bits. With these sizes each one bit of a message will
require a packet greater than 100bits! If I were sending a 1kb message it would
require more than 8000 packets and be over 100kb in size. Also, every wheat
packet needs a chaff packet, therefore a 1kb message becomes over 200kb for
transmission!
 A much more efficient regime was proposed in [1] and is summarized in the next
section.

Package Transform

Rivest suggested that using an “All-or nothing” (AONT) or “package” transform as
described in [3] would greatly increase efficiency whilst maintaining
confidentiality.
 This procedure works by taking the plaintext and producing a packaged
message that effectively looks like random noise. This randomized packaged
message is then split into packets and the packets authenticated. This packaging
procedure has the interesting property that the original message cannot be
reproduced unless the receiver has all of the message segments. It is important
to stress that this operation can be undone by anyone who receives all of
the packets. However, the chaffing and winnowing regime now provides a high
level of confidentiality because the adversaries ability to distinguish the genuine
message packets from the chaff is negligible and they now need every wheat
packet to generate the original message.

 This transform works as follows: consider m1, m2, …, ms plaintext blocks, H a
hash function and K’ a randomly chosen key
 The transmitted blocks are:

 mi’= mi ⊕ H(K’,i) for i = 1, 2, …s

K’ is transmitted by sending the extra value M:

 M = K’ ⊕ h1 ⊕ h2 ⊕ … ⊕ hs

Where:

 hi = H(K0, mi’ ⊕ i) for i = 1, 2, …s

And K0 is a publicly known key.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

 The mechanism represented by ⊕ is called XORing and is the process of taking
an eXclusive OR of all of the bits of two arguments in order. The process means
that if both bits are 1 then the result is zero, if one of them is 1 then the result is 1
and if both are 0 then it is 0. For example, if the two bit streams to be XORed are
1010 and 1100 then the result is 0110.
 The receiver has all m’ values and M and can work out the original message by
computing hi and XORing them together with M to recover K’. Once they have K’
this can be used with mi’ to recover mi.
 The packaged message is then appended with MAC’s and chaff added with
random contents and invalid MAC’s as before. Again no encryption has been
performed, only a pre-processing step. The random key is sent within the data
stream if you know where to look. The adversary not being able to tell wheat from
chaff generates the confidentiality. However, now they need every single packet
of wheat to reconstruct any part of the message and the transmitted information
is now randomized.

 Discussion

 It would now seem to be a confidential and secure means of communication has
been achieved. However, [2] and [4] have found some security issues with the
“package” transform as used here and in [2] they go on to prove that using a
different transform as the AONT is secure. However, this introduces encryption
into Chaffing and Winnowing and some would see this as undesirable. Other
ciphers exist that are proposed as having an All-Or-Nothing property, notably
BEAR and LION [5].

 Another interesting point to consider here are the chaff packets. These can be
randomly generated, however, in [1] Rivest suggests it would be possible to
multiplex two streams of wheat from different sources, one acts as chaff for the
other. The two groups of people communicating would only receive the
messages that are destined for them. This arises because the people receiving
the packets compute the MAC’s and only keep the ones for which their secret
key has generated the same MAC’s. This in turn generates an interesting
consequence that if the people communicating are forced to reveal their
messages they can reveal one of them and the other would remain buried in the
‘chaff’. This is similar to the technique of “deniable encryption” [6] proposed by
Canetti et al. This is discussed further in the next section.

Proof of Concept

 At the present time there are only two proof of concept Chaffing and Winnowing
programs available [7] and [8]. These are written in PERL and JAVA and are only
proof of the Chaffing and Winnowing scheme, they do not use an AONT as a
pre-processing step.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

2) Chaffinch [9]

 This is a system proposed in [4] and based on the original Chaffing and
Winnowing scheme but introduces several new ideas to improve security and to
also allow the passing of concurrent messages.
 In their construction they attempt to use no keys so that the scheme cannot be
viewed as encryption.

Design of Chaffinch

 Chaffinch is designed in such a way as to be able to send multiple messages
within a single communication.
 An innocuous cover message is always sent, which may or may not be
accompanied by other messages. In the face of legal threats the cover message
is always revealed first, it would be “plausibly deniable” that any other messages
exist!

 The method of sending messages is the same, the message is split into sections
and then each section is signed with a secret key so that the receiver can identify
them. The chaff can be random material, OR it can be composed of further
messages signed using a different secret key. The resulting sections act as chaff
for the cover message and the cover message acts as chaff for them.
 So can we remove chaff altogether? The answer is no as otherwise revealing
the next to last message would also reveal the last. We can however reduce the
number of random chaff packets needed and so reduce bandwidth requirements.
 Figure 4 shows a small part of the Chaffinch communication to give an idea of
how it works. Note that the message sections are always in the correct order, but
the way in which they are interleaved is random, i.e. the first section of message
two occurs before the first of message one.

Message 2 Section 1 Message 2 Authenticator
Message 1 Section 1 Message 1 Authenticator

Random Random
Message 3 Section 1 Message 3 Authenticator

Random Random
Message 1 Section 2 Message 1 Authenticator
Message 2 Section 2 Message 2 Authenticator
Message 3 Section 2 Message 3 Authenticator

Random Random
Message 1 Section 3 Message 1 Authenticator

Figure 4. View of part of a Chaffinch block

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

Differences from Chaffing and Winnowing

 There are two major differences from the original Chaffing and Winnowing
scheme:

• Use of a different authenticator on the packets, i.e. no MAC

They use a different authenticator to try to reduce the bandwidth needed for
message transmission. In [1] Rivest suggests using a 64 bit MAC for security, in
Chaffinch they use the agreed secret authentication key to prime a stream cipher
along with a random session value that is used for all the messages being sent at
the same time and is sent to the receiver in the clear. They propose that 10 bits
of the cipher stream is enough for this approach to work securely. The receiver
checks the stream cipher and discards those packets that don’t match the
expected sequence.
 Although now they identify another problem, as there are only 10 bits of
authenticator there is a much higher probability of a chaff packet being mistaken
for a valid authenticator. Using an All-Or-Nothing transform along with this 10-bit
authenticator would mean that not all of the messages would get through as you
need every packet in order to produce the message. Whilst proposing a solution
in the paper to stop chaff being identified as part of the message they decide not
to use this. Instead they let the recipient do a brute force search of all the
possible combinations of valid message segments, and the correct arrangement
is detected when a valid message is generated.

• Use of an alternate pre-processing step

 In Chaffinch they do not use a “package transform” as the AONT for the pre-
processing step as they identify a weakness of Rivest’s proposal. If an attacker is
conducting a brute force search of chaff and wheat packets then the package
transform does not generate as much work as expected because the values of hi,
see page 5, can be calculated once and then reused for any trail arrangement
that incorporates the same section of the message in the same position. In [5]
they propose a solution to this to make sure that the attacker has more work.
This modification is to hi:

 hi = H(K0, mi’ ⊕ Z) for i = 1, 2, …s

Where:

 Z = HASH(m1’,m2’,…ms’)

HASH can be any ‘secure’ hash function like SHA-1 or MD5.
 Although this method could be used they do not go on to use it in Chaffinch,
instead they opt to use a secure block cipher called BEAR [5]. BEAR takes the
whole message and turns it into a sea of random bits like the “package”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

transform, however there is no key sent to the receiver in BEAR as it is used in a
keyless manner (in “package” transform a key, K’, is transmitted in M, page5).

Discussion

 Using BEAR in a keyless manner means that anyone that receives all of the
message segments can reconstruct the message, confidentiality is achieved by
the difficulty in an adversary picking out the correct message segments in a
communication stream. Another benefit of using BEAR in this way is that if the
communicating parties are taken to court the whole packaging process is
keyless. Court scrutiny of the “package” transform as a non-encrypting step may
be clouded due to the fact that a key is required even if it is sent with the
message (if you know where to look).

 The mechanisms behind Chaffinch described in the paper provide a way for two
communicating parties to have a stream of communication that would be
plausibly deniable. The use of an innocuous cover message means that although
there may be further secret messages in the stream the users can deny they
exist. So long as the parties are using secure algorithms that have a good degree
of psuedo-randomness and are willing to lie then it would be incredibly difficult to
prove any further communication happened.

 If Chaffinch users were caught and actually gave up all of their message keys to
the authorities in an attempt to show that they had nothing to hide their actions
could be in vain if they are not careful. Giving up al l their messages would reveal
the added random chaff packets. Even though the users know they have no
messages left the authorities could, quite rightly, think they had been lied to. This
seems like a bad situation to be in if you are the users so it may be desirable for
users to be able to prove that there are no more messages by using a seed or
traceable mechanism to generate the chaff. Upon questioning they could also
give up this seed so as to clear them from further suspicion.

 As Chaffinch provides plausible deniability for communication if a user comes
under suspicion they are likely to have their computer seized and a detailed
analysis of the hard drives conducted. If there are more messages found on the
disks than have been declared by the parties involved then they could be forced
to reveal the existence of the extra messages.
 To provide system wide deniability it would be essential to have no easy way for
files to be found on a computer. This could be achieved by using a
steganographic file system like StegFS[10]. This file system provides several
levels of plausible deniability with each level password protected.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

Conclusion

 This paper has gone through the implementation of an idea and presented a
secure and confidential communication scheme based on Chaffing and
Winnowing.
 This scheme can handle many messages concurrently and has the advantage of
not using any encryption.
 Although this is also debatable as it depends on the definition of encryption that
you use. In [2] they use the term “encryption scheme” to define “any mechanism
whose goal is to provide privacy”. Clearly under this definition the key for the
MAC is the decryption key even though its use here is in providing
authentication. The same arguments would appear to follow in the case of
Chaffinch.
 However, governments seem to have a different way of viewing things. For the
regulation of encryption, governments have decided to restrict the mechanisms,
i.e. the algorithms, used and put no restrictions on other processes that achieve
the same goal as encryption. Under the rules by which we are governed
Chaffinch users would be safe from giving up their keys (for now anyway).
 The discussion of whether Chaffing and Winnowing constitutes encryption will
probably be argued for some time to come in the academic World whilst being
ignored in the political. This will probably continue until such a time that it will
probably only be settled by the first big court case. This in turn may even change
the way governments define encryption in their policies.
 After all, if known terrorists were accused of using Chaffinch to plot an
assassination, and you were on the jury, what would you think?

References

[1] Rivest, Ronald. ”Chaffing and Winnowing: Confidentiality without Encryption”,
URL http://theory.lcs.mit.edu/~rivest/chaffing.txt

[2] Bellware, Mihir and Boldyreva, Alexandra. “The Security of Chaffing and
Winnowing”, ASIACRYPT 2000, 2000: 517-530.

[3] Rivest, Ronald. ”All or Nothing Encryption and the Package Transform”, Fast
Software Encryption 1997, Lecture Notes in Computer Science Vol. 1267,
Springer-Verlag, 1997: 210-218.

[4] Clayton, Richard and Danezis, George. “Chaffinch: Confidentiality in the Face
of Legal Threats”, Lecture Notes in Computer Science Vol. 2578, Springer-Verlag
2002: 70-87.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

[5] Anderson, Ross and Biham, Eli. “Two Practical and Provably Secure Block
Ciphers: BEAR and LION”, Fast Software Encryption (proceedings Third
International Workshop), Springer-Verlag 1996: 114-120.

[6] Canetti, Ran, Cynthia Dwork, Moni Noar, and Rafail Ostrovsky. “Deniable
Encryption”, Proceedings CRYPTO 1997, Springer 1997: 90-104.

[7] Fogel, Karl and Sussman, Mike. “Chaffing and Winnowing”, Chaffwin, URL
http://www.red-bean.com/~sussman/downloads/chaffwin.tar.gz

[8] Annis, William. Chaffe. “Chaffing and Winnowing”, 25 June 1998 URL
http://www.biostat.wisc.edu/~annis/creations/Chaffe.html

[9] Danezis, George. “Chaffinch”, 4 October 2002 URL
http://www.cl.cam.ac.uk/~gd216/chaffinchHome.html

[10] McDonald, Andrew. “StegFS-a Steganographic File system for Linux”. 5
October 2002 URL http://www.mcdonald.org.uk/StegFS/

