
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 1 -

GIAC Security Essentials (GSEC)
Practical Assignment, Version 1.4b, Option 2
Jon M. Budoff

Security and functionality enhancements to Tripwire Academic Source
Release (ASR) - A Case Study

Abstract

One element of a "defense in depth" strategy is to have host-based intrusion
detection systems in place, also known as "file integrity monitors". Over the last
three years, our host-based intrusion detection strategy has changed and
improved considerably. This paper gives an overview of where we started, what
improvements we have made to the system, and we are today.

We began with Tripwire Academic Source Release (ASR) installed on only a few
multi-user machines, each with its own independent configuration file, and with
each tripwire database stored on the local machine insecurely. Approximately
one year ago, we undertook a project to develop a method for securing the
tripwire databases. This project grew into designing an entire framework around
the base ASR code that allows us to run the entire process from a central
console, to store the databases securely, and to have significantly increased
functionality.

Prior to the project initiation, we had made several "incremental" improvements
to our monitoring system. This can be considered a "Pre-project" phase, and is
briefly described in the "Before snapshot" section. The majority of this paper
focuses on the implementation and results of the project, and our current
situation.

Before snapshot

NOTE: Although the author of this paper was the primary architect and
implementer of the changes described in this paper, I have chosen the
convention of using the term "we" throughout the paper. This is because the
changes were not made in a vacuum. Other administrators were involved with
brainstorming sessions, and have provided valuable feedback throughout this
process.

The improvements to our host-based intrusion detection strategy evolved over
time. Initially, our host-based intrusion detection system had the following
characteristics.

 Tripwire ASR on several multi-user hosts, but the majority of hosts (~40 at
the time) unmonitored

 Configuration file unique to each machine

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 2 -

 Only monitoring key OS files
 Database not kept on secured media

During the two years leading up to kickoff of the main project discussed in this
paper, we had made a number of incremental improvements in how we used
tripwire, many of which were incorporated in the new design or provided a
learning experience critical to moving forward with the project. These "pre-
project" improvements are summarized below.

Pre-project improvements - summary

 Installed tripwire ASR on all hosts
 Began using central configuration file distributed to each machine
 Began watching files in /local
 Developed simple parsing scripts to allow updating directly from an email

or file created from redirecting output or tripwire run.

At this point, we were monitoring all hosts and had made strides in easing the
management burden by using a central configuration file, but the database was
still residing on the local machines and was therefore insecure.

During snapshot

This project was originally intended as a way of storing the tripwire databases in
a secure location. As we began evaluating design options, we decided to go
further than the original project charter and remove tripwire from the local
machines entirely and run it remotely from a central console (hereafter referred to
as the tripwire console), putting the necessary files in place each time tripwire is
run and then removing them after the run is complete.

The project had to support two distinct types of functionality. The first was the
automated tripwire check which occurs daily and which alerts the administrators
when there are changes. Because this is automated, and therefore hands-off, it
presented unique challenges. The second functionality was for the
administrators to be able to interface with the system and perform the three main
functions associated with tripwire; these are running tripwire (aka "integrity
checking"), updating the database, and initializing the database.

A number of questions had to be answered; these included:

 How do we put the files in place on the remote machine from the tripwire
console?

 How will the automated job run? How will it get the correct privileges to
run tripwire correctly?

 Are we opening up new security holes with this new system?
 For the automated check, how do we send the information on changes to

the administrators?
 How will the administrators interface with the new system? From where?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 3 -

 When updating or initializing, how does the updated database get back to
the tripwire console?

 How will we be assured that the automated job is actually running
correctly? How will the administrators be informed when there are errors?

 How will the system clean up after itself if something goes wrong?

Phase I Design decisions

Since we already had a kerberos infrastructure in place, we made the decision
early to take advantage of this. We decided to use kerberos rcp to copy the
appropriate files onto each machine from the tripwire console, and then use
kerberos rsh to initiate the appropriate processes on the remote machine. Two
of the key questions that had to be answered were 1) how to have tripwire run as
root on the remote machine; and 2) how to get the updated databases back to
the tripwire console. We chose to address these questions differently for the
automated process than for the processes the administrators would be doing.

Tripwire must run as root on the remote machine to have the correct privileges to
access all directories. For the automated process, we chose to utilize sudo, in
conjunction with kerberos, to allow this to happen. A new user, twuser, was
created on each machine, including the tripwire console. Along with this, a new
kerberos instance was created for this user. On the tripwire console, the
automated job is run via the tripwire user's crontab. In the tripwire user's home
directory, there is a "stashed" keytab, which allows the cron job to get a ticket
without having to provide a password. The keytab is encrypted and is readable
only by the tripwire user via the appropriate kerberos command. After the
appropriate files are put in place on the remote machine, the tripwire binary is run
on the remote machine using sudo, so that it has the appropriate permissions.
This is possible because the sudoers file on the remote machine contains a line
allowing this user to run this command without a password. Of course, the user
can run only this file via sudo without a password (specified with the absolute
pathname), and the tripwire binary itself has been renamed to something
innocuous.

Other options considered for the automated job were:

 Option 1: Running the automated tripwire job out of root's crontab on the
tripwire console and utilizing stashed root kerberos credentials. This
would be advantageous because we would not have to create a new
kerberos instance and put a new user account on all of the hosts. Having
a current root ticket would give the appropriate privileges for tripwire to run
correctly on the remote machines. We deemed this unacceptable
because if the tripwire console was ever compromised and someone was
to gain a root ticket via the stashed credentials, they would then have root
access on all of our machines.

 Option 2: Running the automated job out of the tripwire user's crontab on
the tripwire console and utilizing stashed credentials for the tripwire user's

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 4 -

kerberos instance. Instead of using sudo on the remote hosts, the
kerberos instance for the tripwire user would be listed in the /.k5login of all
remote hosts. This would give the user the ability to run as root on all
machines. This was also considered unacceptable for security reasons.

For the administrators' interaction, we chose a different solution. Since all of the
administrators have root kerberos instances, we decided to keep things simple
and let the administrators run tripwire via root kerberos tickets. This meant that
an administrator would get a root ticket and then initiate the tripwire functions as
root, eliminating any permission problems.

Operational considerations

Originally, we tried to mimic the existing behavior of tripwire from the
administrator's perspective. This meant continuing to use a standard command-
line interface. The changes to the automated job were effectively transparent to
the administrators; changes detected by the automated job were emailed to the
administrators, as they were with the old system. For the manual administrator
interface, administrators were accustomed to running tripwire locally on each
machine by changing to the tripwire directory and then typing './bin/tripwire',
'./bin/tripwire -update ...', or './bin/tripwire -init' to perform the various functions of
running, updating, and initializing tripwire, respectively.

With the new system, administrators could still run tripwire from the local hosts,
albeit in a slightly different manner. Scripts were created which allowed the
administrators to run tripwire, and to update and initialize the tripwire database
from the local machine. These scripts lived in the ./bin directory of the tripwire
user's home directory. These scripts initiated a connection to the tripwire
console, which in turn then initiated the appropriate connections back to the
machine. In addition to performing the "standard" tripwire functions, the update
script incorporated parsing code developed earlier, so that an administrator could
specify an "update file" containing all of the entries to be updated in the
database.

In addition to having the capability of running tripwire from the local machine,
administrators had the option of logging onto the tripwire console and performing
all functions from there. This provided significant benefits when updating multiple
machines. In lieu of logging into each machine individually and getting a root
ticket on each machine, the administrator could log into the tripwire console, get
a single root ticket, and update all of the machines from there.

Phase II Design Changes

In any project, there are lessons learned after the initial implementation. This
project was no exception. Some of the key problems/learnings were:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 5 -

 The administrators were able to run tripwire either from the local machines
or from the tripwire console, which caused confusion.

 The ability to run tripwire from either the local machine or the tripwire
console added unnecessary overhead and complexity to the system.

 Our part-time employees were unable to update tripwire for their own
changes. This is because they use sudo to get superuser privileges and
do not have a root kerberos instance.

 The system required four connections between the tripwire console and
the remote machine each time tripwire was run.

 Many of the scripts contained duplicate code and functionality. When a
change needed to be made, the same change had to be made across the
run, update, and init scripts.

To address the major issues, we decided to move towards a pure "console-
based" approach. As part of this transition, we also redesigned the system to
minimize the number of connections needed each time tripwire was run. At a
later date, much of the code base was consolidated to eliminate duplication and
ease maintenance.

After snapshot

Summary

The improvements we have made to our host-based intrusion detection system
are summarized below.

Host-based IDS improvements - summary

 Infrastructure developed around Tripwire ASR.
 Tripwire for ~70 hosts is run from a central console.
 Tripwire files/database no longer live on local machines.
 Single configuration file is used for all hosts; @@ifhost statements used to

define files to watch on a per-machine basis.
 Databases live in a secure location on the tripwire console.
 Increased functionality with easy, familiar interface.
 Ability to parse "update files".
 Ability to easily update multiple hosts at the same time.
 Ability to easily determine which hosts have been updated.
 Duplicate copies of all databases are archived to separate secure host.
 Reports from the automated run are archived on the tripwire console.
 There is no sign of tripwire on any client machine (remote host).
 Operates with two distinct connections to each client.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 6 -

Throughout the design of this system, we paid particular attention to security
issues. Below is the summary of the security precautions taken in the design of
the new system.

Security precautions

 The stashed keytab is only on the tripwire console machine, and is only
readable by the tripwire user.

 The tripwire user has no special privileges.
 The tripwire user uses sudo to actually run tripwire on each host; this is

the only command this user can run via sudo.
 The tripwire binary has been renamed to something innocuous so that

"tripwire" never shows up in a process list.
 All tripwire files and directories are owned by and only readable by the

tripwire user. The tripwire user uses sudo to run the tripwire binary with
the necessary privileges.

 The tripwire user has a non-breakable password on each machine (*NP*
in /etc/shadow).

 All communication between the tripwire console and the remote machines
is encrypted, via kerberos 'rcp -x' and 'rsh -x'.

 The tripwire console is a highly secure machine, with minimal ports open,
and accounts only for the administrators.

 The administrators can log into the tripwire console only from their desktop
machines; this is accomplished by wrapping (via tcp wrappers) the login
service.

Operational details

The system operates via a number of perl and shell scripts that work together, in
conjunction with an overlying kerberos and sudo infrastructure.

Automated tripwire check
The automated check is run out of the crontab for the tripwire user. The cron job
uses a shell script which does the following:

 Gets a kerberos ticket for the tripwire user via the stashed credentials.
 Runs sequentially through a list of hosts to run the tripwire check. This list

is obtained in real-time by parsing the databases that are stored on the
tripwire console. This eliminates the need to maintain a separate list of
hosts. Renaming a database to ".DISABLED_database" disables the
tripwire check for that host.

 For each host, the tripwire database is archived to another secure host.
 For each host, three files are copied over to the remote machine via a

kerberos rcp connection. These are a tar file containing the tripwire
directory structure, binary, and configuration file; the database for that
host; and a "run script". An kerberos rsh session then executes the run
script, which does several things:

o Expands the tarfile.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 7 -

o Moves the database into the correct place in the directory structure.
o Initiates the tripwire binary in "integrity check" mode.
o The output from the tripwire run is passed back to the initiating

script on the tripwire console via the rsh session; if changes are
reported, these changes are emailed to the administrators. The
script also archives the report for each host, whether changes are
reported or not.

o After the tripwire run is completed, the script on the remote host
deletes all files and directories that were put in place.

 The kerberos ticket is destroyed after tripwire has been run on all hosts.

Administrator interface
Administrators log into the tripwire console via as the tripwire user via encrypted
kerberos rlogin. When they first log in, they are presented with the output from
the "today" script, which tells which hosts have been updated that day, and which
hosts reported changes during the last automated check but have yet to be
updated. An example of the output from the today script can be seen in
Appendix A. Aliases are provided for the run, update, and initialize functions of
tripwire, and administrators run tripwire using the following syntax:

 run -h <host>
 init -h <host>
 update -h <host> <entries to update>

 -or-
 update -h <host> -f <updatefile>

An update file can be generated in one of several ways. It can be an email
message from the automated run that is saved in a location that the tripwire
console has access to (e.g. an nfs filesystem mounted on both machines), or
copied over via kerberos rcp; or it can be the redirected output from a tripwire
run, e.g. "run -h host1 > host1.twout". The scripts are designed to ignore any
non-relevant lines such as email headers, etc. in the update file.

As presented above, there are three ways in which the administrators can use
tripwire - run (integrity check), update, and initialize. In reality, each of the three
commands is an alias to the same script. For instance, run is an alias to
'tripwire.pl -h'. How each of these functions is detailed below.

The "run" function works very similarly to the automated check. The script does
the following:

 Gets a kerberos ticket for the tripwire user via the stashed credentials.
 Copies three files over to the remote host specified. These are a tar file

containing the tripwire directory structure, binary, and configuration file;
the database for the remote host; and a "run script".

 Executes the run script on the remote host via an encrypted kerberos rsh
session then; the run script does several things:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 8 -

o Expands the tarfile
o Moves the database into the correct place in the directory structure.
o Initiates the tripwire binary in "integrity check" mode.
o The output from the tripwire run is passed back to standard output

on the tripwire console via the rsh session. If the administrator
desires, he can redirect the output to a file which can then be used
to update tripwire.

o After the tripwire run is completed, the script on the remote host
deletes all files and directories that were put in place.

 After the run is complete, the kerberos ticket is destroyed.

The update and initialize functions work similarly to the run function, with two
notable differences.

 For the update function, the script on the tripwire console must be able to
pass along the arguments for the entries to be updated or pass along an
update file, and the script running on the remote machine must be able to
properly parse the arguments or update file.

 For both the update and initialize functions, the updated database must be
copied back to the tripwire console. This is accomplished by using
forwardable kerberos tickets, which give the script running on the remote
host the ability to copy the database back using kerberos rcp.

Examples of output from the run, update, and initialize functions can be seen in
Appendix A.

Other features of the system
There are also a number of other features of the system, some of which are
"behind the scenes". These include the following.

Error checking: The scripts have error checking to check for the conditions listed
below. If the command syntax is incorrect, an error message is given along with
a usage statement. If the command syntax is correct, but another error is
present, the usage statement is generally not given. These checks are
completed before the script gets a kerberos ticket or starts copying any files to
the host. Some of the conditions checked are:

 Make sure a host is specified.
 Make sure a database exists for the specified host.
 Make sure there are no arguments specified for running or init'ing.
 If an update file is specified, do several sanity checks, including: Does the

file exist?, Is it readable? Is it of the correct type?
 Make sure that either an update file is specified, or arguments on the

command -line, but not both.
Examples of error statements can be seen in Appendix A.

Lockfiles: Whenever tripwire is initiated in any mode, a "lockfile" is touched
which corresponds to the host being run. The tripwire script looks for the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 9 -

existence of this lockfile prior to initiating a run. If the script sees a lockfile for the
host specified, the administrator is informed that someone else is already running
tripwire for this host. The script removes the lockfile once the run is completed.

Kerberos tickets: The kerberos ticket obtained when the administrators run
tripwire from the tripwire console is tied to the process id. This allows multiple
administrators to run tripwire from the tripwire console without interfering with
each other.

Archiving: The database for each remote host is stored on the tripwire console,
and is also archived from the central console to another secure host. This
archive occurs at the beginning of the automated tripwire run. Thirty days worth
of databases are kept for all hosts in this archive. The reports from the
automated run for each host are archived on the tripwire console; thirty days
worth of reports are kept for each host.

Modifying the configuration file: The administrator can modify the configuration
file through any text editor. Once it has been modified, the administrator runs an
"update_tarfile" script to put the new configuration file in place in the tarfile that
gets copied to the hosts.

Specifying who reports are sent to: There's a section in the code which runs the
automated tripwire check where an administrator can easily change who the
report is emailed to. This was set up so that reports for desktop machines only
go to the owner of the desktop. This is also useful when building new machines
that are not in production yet. The reports for production machines are emailed
to all administrators.

Future improvements
There are several areas that can still be improved; these include:

 The today script doesn't tell what specific items were updated; a database
may be updated for a change that is different from or only a part of the
changes reported by the automated run, but it still shows the db as
updated. This can cause confusion with someone thinking that certain
entries had been updated when they have not been.

 The today script does not tell who updated a database. This could be
useful to know to answer questions about what was updated. Keeping an
easily accessible log file for each machine telling what was updated and
when could also address the problem discussed above.

 Although it is possible to specify who a report for a specific host is sent to,
most administrators will not do this because it is inside a script that they
are not familiar with. Breaking this functionality out into an easily
understandable configuration file would make this easier to do.

 The scripts do not always handle mid-run aborts well, and may leave
tripwire files on the remote host.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 10 -

Summary

The enhancements we have made to our host-based IDS have provided a
number of benefits. We have enhanced the functionality while at the same time
improving the user interface and easing maintenance requirements. We have
improved security of the system, giving us increased confidence in its ability to
alert us to machine compromises or problems. And we have done all of this
without losing our previous learning investment with Tripwire ASR, with no capital
expense, and relatively minimal development effort.

References

Kochan, Stephen & Patrick Wood, UNIX Shell Programming. Hayden Books,
copyright 1990, ISBN 0-672-48448-X.

Christiansen, Tom & Nathan Torkington, Perl Cookbook. O'Reilly & Associates,
Inc., copyright 1998, ISBN 1-56592-243-3.

Wall, Larry et. al., Programming Perl. O'Reilly & Associates, Inc., copyright 1996,
ISBN 1-56592-149-6.

"Tripwire for Servers, Assures the Integrity of Your Data", Can be found at
http://www.tripwire.com/files/literature/product_info/Tripwire_for_Servers.pdf.

"Tripwire Open Source, Linux Edition FAQ", Tripwire Open Source project, can
be found at http://www.tripwire.org/qanda/faq.php

"Installing, configuring, and using Tripwire® to verify the integrity of directories
and files on systems running Solaris 2.x", Carnegie Mellon Software Engineering
Institute, can be found at
http://www.cert.org/securityimprovement/implementations/i002.02.html.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 11 -

Appendix A
Examples of output

Output from 'today' script:

twuser@twcon $ today

The following databases have been updated today:

 size update time database
 ------- ------------ ------------------------------
 1326797 Dec 26 09:33 tw.db_host1.********.edu
 1165804 Dec 26 09:33 tw.db_host2.********.edu
 1005175 Dec 26 09:34 tw.db_host3
 1100837 Dec 26 09:34 tw.db_host4.********.edu

The following hosts reported changes during the last automated
tripwire check and still need to have their databases updated:

 host5
 host6
 host7
 host8

Tripwire run:

twuser@twcon $ run -h host1

getting ticket for twuser@********.EDU

copying files to host host1

initiating run script on host1
This rsh session is using DES encryption for all data transmissions.
Phase 1: Reading configuration file
Phase 2: Generating file list
Phase 3: Creating file information database
Phase 4: Searching for inconsistencies

Total files scanned: 10884
Files added: 0
Files deleted: 0
Files changed: 10863

After applying rules:
Changes discarded: 10861
Changes remaining: 2

changed: drwxr-xr-x root 512 Dec 23 22:01:39 2002 /etc/cluster
changed: drwxrwxrwt root 1987 Dec 26 15:40:12 2002 /tmp
Phase 5: Generating observed/expected pairs for changed files

Attr Observed (what it is) Expected (what it should be)
=========== ============================= =============================
/etc/cluster
 st_mtime: Mon Dec 23 22:01:39 2002 Tue Nov 26 17:34:12 2002
 st_ctime: Mon Dec 23 22:01:39 2002 Tue Nov 26 17:34:12 2002

/tmp
 st_ino: 9188213 9800994

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 12 -

destroying ticket for twuser@********.EDU

Tripwire update with entries specified on command line:

twuser@twcon $ update -h host2 /etc/inetd.conf /usr/bin/ps

getting ticket for twuser@********.EDU

copying files to host host2

initiating update script on host2
This rsh session is using DES encryption for all data transmissions.
Phase 1: Reading configuration file
Phase 2: Generating file list
Updating: update file: /etc/inetd.conf
Updating: update file: /usr/bin/ps
Phase 3: Updating file information database

Old database file will be moved to `tw.db_host2.********.edu.old'
in ./databases.

Updated database will be stored in './databases/tw.db_host2.********.edu'
(Tripwire expects it to be moved to '/home/twuser/integrity/databases'.)

destroying ticket for twuser@********.EDU

Tripwire update with update file specified:

twuser@twcon $ update -h host3 -f host3.twout

getting ticket for twuser@********.EDU

copying files to host host3

initiating update script on host3
This rsh session is using DES encryption for all data transmissions.
Phase 1: Reading configuration file
Phase 2: Generating file list
Updating: delete file: /etc/rem_name_to_major
Updating: update file: /etc/path_to_inst
Updating: update file: /etc/path_to_inst.old
Phase 3: Updating file information database

Old database file will be moved to `tw.db_host3.********.edu.old'
in ./databases.

Updated database will be stored in './databases/tw.db_host3.********.edu'
(Tripwire expects it to be moved to '/home/twuser/integrity/databases'.)

please manually delete updatefile /tmp/twuser/host3.twout

destroying ticket for twuser@********.EDU

Tripwire database initialization:

twuser@twcon $ init -h host4

getting ticket for twuser@********.EDU

copying files to host host4

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 13 -

initiating init script on host4
This rsh session is using DES encryption for all data transmissions.
Phase 1: Reading configuration file
Phase 2: Generating file list
Phase 3: Creating file information database

Warning: Database file placed in ./databases/tw.db_host4.********.edu.

Make sure to move this file file and the
configuration
to secure media!

(Tripwire expects to find it in '/home/twuser/integrity/databases'.)

destroying ticket for twuser@********.EDU

Email from automated tripwire run:

From: T-Integrity <twuser@twcon.********.edu>
To: sys-admins@********.edu
Subject: Tripwire -- host9.********.edu

Warning! Tripwire output has changed on host9.********.edu!
Current tripwire output follows:

changed: -rw------- root 7617 Dec 30 16:37:26 2002 /etc/dfs/dfstab
changed: -rw------- root 4159 Dec 31 10:10:52 2002 /etc/dfs/sharetab
changed: -r--r--r-- root 4897 Dec 30 16:25:42 2002 /etc/inet/hosts
Attr Observed (what it is) Expected (what it should be)
=========== ============================= =============================
/etc/dfs/dfstab
 st_size: 7617 12831
 st_mtime: Mon Dec 30 16:37:26 2002 Wed Dec 4 09:50:37 2002
 st_ctime: Mon Dec 30 16:37:26 2002 Wed Dec 4 09:50:37 2002
 md5 (sig1): 1v.VPTpNiCHluraIfePI3I 0soicFAIwk7uM5MNvw33B9
 snefru (sig2): 3TSghYNd3U3UTSN11fuZyT 1riUoxKuQBYkuGHpQnfazQ

/etc/dfs/sharetab
 st_mode: 100600 100644
 st_ino: 64964 64791
 st_gid: 1 0

/etc/inet/hosts
 st_size: 4897 643
 st_mtime: Mon Dec 30 16:25:42 2002 Tue Jul 16 07:21:10 2002
 st_ctime: Mon Dec 30 16:25:42 2002 Tue Jul 16 07:21:10 2002
 md5 (sig1): 0Y:Y43bpSo6zLy2VfwVf:W 0TGLsFhz5qYfH6CuoFibzu
 snefru (sig2): 0bYdDEQlh:8SrGCQI5RPbP 2k8exEg1IqdMuCcpC9tEDR

Examples of error checking in script:

twuser@twcon $ run

ERROR - no host specified to update!

usage: /home/twuser/bin/tripwire.pl -r|-u|-i -h host [-f updatefile]-or-[file(s) to
update]
 -r run tripwire for specified host
 -u update tripwire for specified host
 -i initialize tripwire for specified host
 -f updatefile: parse updatefile (saved tw output)

NOTE: run is an alias for /home/twuser/bin/tripwire.pl -r
 update is an alias for /home/twuser/bin/tripwire.pl -u
 init is an alias for /home/twuser/bin/tripwire.pl -i

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 - 14 -

twuser@twcon $ update -h host2 -f tmp/host2.twout

ERROR - please specify absolute path to updatefile

twuser@twcon $ update -h host4 -f /tmp/host4.twout

ERROR - updatefile specified does not exist

twuser@twcon $ update -h host5 -f /tmp/aaa

ERROR - /tmp/aaa does not appear to be an update file that is
 parseable
