
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Case Study:
Automating Common InfoSec Auditing
Tasks on a Windows 2000 Network

Clay Risenhoover
GSEC: GIAC Security Essentials Certification
Version 1.4b
Option 2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 2 -

Table of Contents

Abstract ...3

Part 1 (Before) – Good Policies. Bad Procedures.......................................3
 Policy One – Audit Failed Logons..4
 Policy Two – Audit Free Hard Disk Space...4
 Policy Three – Audit Server Patches..5

Part 2 (During) – Keep the Policies. Fix the Procedures.............................6
 Policy One – Audit Failed Logons..6
 Policy Two – Audit Free Hard Disk Space...8
 Policy Three – Audit Server Patches..9

Part 3 (After) – Good Procedures. Happier Days. 10
 Future Work... 11
 Conclusion... 11

List of References... 12

Appendix A – Source Code Listings... 13
 Listing 1 – evtLog.vbs .. 13
 Listing 2 – Sample Output from evtLog.vbs ... 15
 Listing 3 – event.pl .. 16
 Listing 4 – Sample of eventSummary.txt file .. 19
 Listing 5 – eventLog.bat ... 20
 Listing 6 – serverEvents.bat.. 20
 Listing 7 – freeSpace.vbs ... 20
 Listing 8 – totalSpace.vbs... 21
 Listing 9 – pctSpcae.vbs... 21
 Listing 10 – driveSpace.pl... 22
 Listing 11 – Sample of drives.txt file ... 23
 Listing 12 – mssecure.bat... 23
 Listing 13 – checkServer.pl... 23

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 3 -

Abstract
Policies are only as good as the procedures used to implement them. When the
procedures are too cumbersome or time-consuming, it is likely that policy
compliance will suffer. Unrealistic procedures can lead to “implemented policies”
that are weaker than the stated policies. Conversely, ensuring that procedures
are easy to implement has the effect of making full policy compliance more likely.

In this case study, we will examine how automating information security audit
procedures at a university had the effect of increasing security through increased
policy compliance. We will discuss three stated policies, their associated
procedures, and how poorly designed procedures led to weak “implemented
policies.” We will then discuss how the procedures were automated, and, finally,
discuss the effects of the automation on the university’s overall security stance.

Part 1 –Good Policies. Bad Procedures.
I am the director of the network operations department at a small state university.
My department consists of a network administrator, a PC technician that we
share with the help desk, and one or two part-time student employees. We
manage 11 Windows 2000 servers, logon accounts for 500 faculty and staff and
about 4,000 students. Like most IT professionals, we stay very busy, and have
very little time to devote to “routine” matters, like audit policy compliance.

There are three particular daily audit policies that are very important to me, but
that we did a pretty miserable job of complying with. These policies are listed
below. The procedures associated with the policies were just too involved and
time-consuming for us to get around to doing them every day. We had a stated
policy that these audits would be conducted daily, but we ended up with an
implemented policy that we would just do them whenever we could. This had the
obvious effect of weakening our security stance significantly. In a university,
where the network is necessarily pretty open (the default rule on our firewall is
allow-all, and we turn off just the things that scare us), regular auditing is critical
to overall network security.

The three policies and their associated procedures are:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 4 -

Policy Number One

Stated Policy:
The network administrator will perform a daily audit of failed logon attempts on
each Windows 2000 domain controller and the campus web server.

Procedures:
The network administrator will:

1. Use event viewer to connect to the Security event log on each domain
controller (we have four domain controllers on two domains) and the
campus web server.

2. Filter the events on each server to show events with Event ID of 529,
described by Microsoft as “Logon Failure.” (Microsoft 299475, 2002)

3. For each server, make note of multiple failed logon attempts using the
same username, or occurring from the same workstation, as these are
potential signs of an attempt to brute-force a username and password.

4. Where there are a number of failed logon events in succession, research
to see if these events were followed by a successful logon. This could
indicate that a password was successfully guessed.

5. Compare the results from all servers and make notes of any trends.
6. Report any suspicious activity to the Director of Network Operations.

Implemented Policy:
Due to the amount of time consumed in performing these tasks, the implemented
policy was that the network administrator would conduct this audit about once a
month, obviously well below the required once per day.

Policy Number Two

Stated Policy:
The network administrator will perform a daily check of the amount of free space
on each hard disk drive on each server. (The policy includes a list of eleven
servers which must be monitored.)

Procedures:
The network administrator will:

1. Use Windows Explorer to connect to a special empty share set up on each
disk drive for the purpose of checking available space.

2. Make note of the free space on the drive.
3. If the drive is below 15% free space, delete temporary files, clear or

archive log files as possible to increase free space.
4. If the drive is below 10% free, report it to the Director of Network

Operations for further analysis and consideration of a hardware upgrade.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 5 -

Implemented Policy:
It was fairly simple to check the space on each drive, but there were at least 22
disk drives that must be checked on any given day – each of our servers had at
least a boot disk and a data disk, some have more than that. The implemented
policy was to “not worry about” checking the drives until we had some spare time,
or until a server began to show signs of poor performance.

Policy Number Three

Stated Policy:
The network administrator will perform a daily check of each Windows 2000
server to determine whether new patches are available for the operating system
or installed software packages. (The policy lists the eleven servers to be
checked.)

Procedures:
The network administrator will:

1. Use HFNETCHK.EXE against each Windows 2000 server, using the
command line “hfnetchk.exe –h serverName”

2. Make note of any patch whose status is listed as “Note” or “Patch not
Found”

3. Research missing patches to see if they need to be applied.
4. Apply patches as needed.

Implemented Policy:
Because of the importance of server patches, especially in such an open
computing environment, we did a much better job of complying with this one. We
subscribed to email alerts from Microsoft that announced new patches and
applied them as we could. We ran HFNETCHK at least once per week against
every server, but this is still well short of the stated policy of running it against
each server every day.

Observations/Conclusions
The stated policies were useful, and would provide a good foundation to our
security efforts, but the implemented policies all left something to be desired. It
was obvious that we needed to change our procedures in such a way that we
would increase our ability to implement them.

I chose to use a combination of batch files, command-line utilities, and custom
scripts written in PERL and VBSCRIPT to automate the procedures wherever
possible. The scripts would be written to send daily email reports summarizing
any important findings. We would then use the emails to determine when further
research or action was warranted. The next section of the paper describes the
scripts and programs used to accomplish the automation. An appendix is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 6 -

provided containing source code of each of the batch files and scripts used.
Where third-party tools were used, the URLs of the associated web sites are
given.

Part 2 –Keep the Policies. Fix the Procedures

The solution I chose to bridge the gap between our stated and implemented
policies was to automate as many of the procedures as possible. In this section,
we will explore the custom scripts and third-party programs that I used to
accomplish the automation for each of the three policies discussed above.
Filenames and program names are listed in this font.

The newly automated procedures for each of the three policies have a number of
features in common:

• Each of these processes is run on a single Windows 2000 server, whose
sole purpose is support and monitoring of the university network.

• BLAT, discussed under Policy Number One, is used any time an email is
to be sent using an automated process.

• Scheduling of all tasks is accomplished using the Windows Task
Scheduler utility.

• Each of the processes is run early in the morning, when network load is
light. This also allows emailed reports to be waiting when the network
administrator and I arrive at the school each morning.

Policy Number One – Audit Failed Logon Attempts

Remember that the first policy we discussed required the network administrator
to audit failed logon events on various servers. The procedures called for this to
be done manually, using the Microsoft Event Viewer software. I wrote two scripts
and a batch file to automate the process and send the results to the network
administrator and me via email. Sample output from each script is given in the
Appendix, following the source code of the script.

The first component was a custom VBSCRIPT program called evtLog.vbs
(Listing 1 in Appendix A), which would connect to each server whose name was
given on the command line, extract the security events with event code 529, and
write the “time written” and “message” fields from each of those events to the
console. Because the script is run daily, it is configured to output only events that
are less than 24 hours old. The VBSCRIPT programs required code to convert a
local time to the time format used by the Windows Management Instrumentation
(WMI) interface. I used functions written by Jeffery Hicks and published on
CramSession.com to accomplish this conversion. (Hicks, 2002) The output of this

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 7 -

program is captured to a file, called event.txt (Listing 2 in Appendix A), which
was then processed by a custom PERL script that generated the final report text.

The PERL script, named event.pl (Listing 3 in Appendix A), reads
event.txt and processes each entry to determine the username and the
source workstation and domain name for each failed logon event. If the event is
the first one seen for a particular workstation/username or domain/username
pair, the date and time are also noted. Having a time stamp on the events aids
the network administrator in conducting further research as it is needed. After
reading every entry, the script generates a report detailing failed logons grouped
by workstation/username pair, domain/username pair, and then giving counts for
failed logons by source domain, source workstation, and by username. The
output of this script is captured in a file called eventSummary.txt. (Listing 4 in
Appendix A)

The contents of eventSummary.txt are sent via email to the network administrator
and me using a third party utility called blat.exe. According to its author:

Blat is a Public Domain Windows 95/NT console utility that sends the
contents of a file in an e-mail message using the SMTP protocol. Blat is
useful for creating scripts where mail has to be sent automatically (CGI,
backups, etc.), or just as a quick way to send a file or message quickly
from the command line. It will store relevant configuration details in the
registry for ease of use. Optionally, blat can also attach multiple binary
files to your message. (Charron, 2002)

The automation was completed by using a batch file called eventLog.bat
(Listing 5 in Appendix A), containing the necessary commands to process the
failed logons for one or more (up to nine) servers. For example, to check the
events on two servers and generate a single report (useful for checking both
domain controllers in a domain at once), the command line would be
eventLog.bat server1 server2. Finally, a batch file called
ServerEvents.bat (Listing 6 in Appendix A) was written to perform this
process for the web server, both domain controllers in the student domain, and
both domain controllers in the faculty/staff domain.

The batch file is run every day and the network administrator is now required to
read the email report and research any trends of failed logons that seem unusual
or disturbing.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 8 -

Policy Number Two – Audit Free Space on Hard Disk Drives

The second policy required the network administrator to check the free space on
each of the disk drives on various Windows 2000 servers. The process was
simple, but there were a large number of drives to be checked. Automation for
this task was accomplished using three VBSCRIPT programs, a PERL script with
its associated configuration file, and a batch file that calls the PERL script, pipes
its output into a text file and emails the file using BLAT.

The three VBSCRIPT programs, named freeSpace.vbs, totalSpace.vbs
and pctSpace.vbs (listings 7-9 in Appendix A) are used to calculate the free
space, total storage space, and percentage of space which is free on a disk
drive, respectively. The drive to be checked is given on the command line as a
physical path (e.g. C:) or a UNC path (e.g. \\servername\sharename).

The PERL script, named driveSpace.pl (Listing 10 in Appendix A), reads the
description and path of each disk to be checked from a configuration file called
driveSpecs.txt. It prints a short header, including the date run to the console.
Then, for each drive, it calls the three VBSCRIPT programs to determine free
space and overall size of the drive, and writes a one-line report to the console.
The output of this script is captured in a file named drives.txt (Listing 11 in
Appendix A), which is then sent out using BLAT.

The resulting email is reviewed daily, and drives are cleaned off or upgraded as
needed. We were so happy with the results of the daily emails that I ported the
VBSCRIPT code to an Active Server Page (asp) program that updates every five
minutes. We now use this page as part of the “heads up display” in our office to
keep constant tabs on the state of our drives.

I later modified the driveSpace.pl file to append to a comma-separated value
(CSV) file, named space.csv, every time it is run. The CSV file contains the
total and free space for each drive checked, and allows us to develop trend data
on hard drive usage on each server.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 9 -

Policy Number Three – Audit Server Patch Levels

The third policy we discussed required that the network administrator run
HFNETCHK to check the patch level of each server. Researching HFNETCHK
prior to automating the task revealed that HFNETCHK was deprecated, and its
functionality was now exposed by the Microsoft Baseline Security Analyzer.
According to Microsoft:

The Hfnetchk tool is a command-line tool that administrators can use to
centrally assess a computer or group of computers for the absence of
security patches. As of the V1.1 release of the Microsoft Baseline Security
Analyzer (MBSA), Hfnetchk is now exposed through the MBSA command
line interface, mbsacli.exe /hf. (Microsoft 303215, 2003)

Consequently, I made the decision to replace HFNETCHK with the MBSA as I
developed the automated procedures.

The MBSA uses an XML file named mssecure.xml downloaded from
Microsoft’s web site (Microsoft 305835, 2002), which contains information on
current patches available for each of the supported products. By default, the file
is downloaded automatically each time the program is run, but this behavior can
be overridden at the command line using the “-x” flag (e.g. mbsacli /hf –x
mssecure.xml) to force it to use a local XML file.

To save bandwidth, I use the command line utility WGET.exe (Syring, 2002) to
download and save the XML file once, just prior to running the checks.
WGET.exe is a port of a popular GNU utility to the Windows platform. It can be
used to download web pages or files from a URL passed to it on the command
line. I run the WGET command within a batch file named mssecure.bat
(Listing 12 in Appendix A), which downloads a CAB file containing the XML file,
and then extracts the XML from the CAB file.

After downloading the XML file containing current patch information, a PERL
script named checkserver.pl (Listing 13 in Appendix A) is run, which for each
server, runs the MBSA hot fix option, saves the results to a file, and sends the
results to the network administrator and me in an email. Because the output for
each server can be a bit long, the results for each server are sent in a separate
message.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 10 -

Part 3 – Good Procedures. Happier Days

Automating the bulk of the work required to implement these three policies has
had a number of beneficial results:

• Our policy compliance is remarkably better than before the automation.
• Our security stance is greatly improved.
• Morale is better.
• We’ve added audit policies that we would never have considered before.

In this section, we will discuss each of these benefits, followed by a few final
thoughts.

Better Policy Compliance
The advent of automated procedures has enabled us to comply more fully with
our audit policies. Our implemented policies finally match up well with our stated
policies.

Every morning when the network administrator comes to work, the hard part of
each audit is already done for him, and a report is waiting in his inbox. There are
still manual tasks to do related to the audit (for instance, if he sees 15 straight
failed logon attempts for an account, and then the attempts just stop, he must
research successful logons to see if the failures stopped because the subject
successfully logged on, or because they gave up and went away), but they are
much easier to do, given good information.

Improved Security Stance
The security of the university network has been improved in a number of ways.
Servers are more available because they always have sufficient disk space to
operate. Our logon accounts are more secure because logon failures are audited
much more frequently than before. Our servers stay patched because we know
within a day when new patches are released.

Improved Morale
While morale may not seem like an immediate security concern, it very well can
be. A happy network administrator, one who is under less stress than ever
before, is more likely to notice problems with his network. As a case in point,
since I implemented the automated audits on our network, the network
administrator now spends more time watching our Internet bandwidth and
monitoring the intrusion detection logs. He has time to run the occasional packet
analysis and has discovered new traffic that we should filter at our firewall.

Morale of our users is improved, as well. Server availability is much better than it
was before. Our customer service is improved. The network administrator
sometimes notices when a user is having logon problems, and is able to contact
the user before they have to call the help desk.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 11 -

Added Audit Policies/Future Work
The fact that we can easily audit our servers using scripts and batch files has led
us to do even more auditing. For example, we are now working on procedures to
report on usage on our Microsoft Exchange Server. By tracking successful and
failed delivery and the quantity of messages handled, we will have a better view
of how our network works on a “normal” day. Knowing what’s normal just might
help us out when things become suddenly abnormal.

Other ongoing projects include:

• An ASP page that allows us to track in near-real-time the number of email
viruses stopped at our mail server each day. The script reads from the
history database saved by Norton Anti Virus for Microsoft Exchange and
give a total for the day, week and month.

• Scripts to provide a monthly report of what email viruses were found, in
what quantity, at the mail server. My current prototype even builds a nifty
graph, and outputs the report as an HTML document that we can post on
our departmental website.

• An automated file system integrity checker that connects to each server
and checks the MD5 hashes of important files against a database.

• A script to audit new account creation on each domain. This will let us
view enrollment trends by watching as new student users are added, and
provides accountability for the technicians who create user accounts.

Conclusion
Knowing your network and its operations in detail is one of the most important
aspects of network security. Getting a “feel” for what is normal and what’s not
could easily mean the difference between detecting a subtle attack and not.
Working through the process of automating some basic auditing tasks on my
network has given me new insight into what really happens on that network on a
daily basis. That just might be the most important improvement of all.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 12 -

List of References

Microsoft Corp. “Windows 2000 Security Event Descriptions (Part 1 of 2).”
Microsoft Knowledge Base Article #299475. October 11, 2002.
URL:http://support.microsoft.com/default.aspx?scid=kb;EN-US;299475
(Feb 26, 2003)

Charron, T. “BLAT for Windows. Easily mail any file from the command line.”
BLAT for Windows. December 12, 2002.
URL: http://www.interlog.com/~tcharron/blat.html (Feb 26, 2003)

Hicks, Jeffery “Event Tracker.” CramSession.com. July, 2002.
URL: http://infocenter.cramsession.com/TechLibrary/GetHtml.asp?ID=1696
(Feb 26, 2003)

Microsoft Corp. “Microsoft Network Security Hotfix Checker (Hfnetchk.exe) Tool
Is Available.” Microsoft Knowledge Base Article # 303215. February 18, 2003.
URL: http://support.microsoft.com/default.aspx?scid=kb;EN-US;303215
(Feb 26, 2003)

Microsoft Corp. “Frequently Asked Questions about the Microsoft Network
Security Hotfix Checker (Hfnetchk.exe) Tool.”
Microsoft Knowledge Base Article #305385. October 11, 2002.
URL: http://support.microsoft.com/default.aspx?scid=kb;EN-US;305385”
(Feb 26, 2003)

Syring, Karl M. “Native Win32 Ports of Some GNU Utilities.” GNU Utilities for
Win32. August 11, 2002. URL: http://unxutils.sourceforge.net/ (Feb 27, 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 13 -

Appendix A – Source Code Listings

This appendix contains source code listings for each of the custom programs and scripts
mentioned in the paper, in the order in which they are mentioned.

Listing 1 – evtLog.vbs

'The names of the servers to be checked are given as command-line arguments. Make sure
'at least one was given.

If WScript.Arguments.Count = 0 Then
 WScript.Echo "Usage: EvtLog.vbs server1 [server2] [server3] ..."
 WScript.Quit
End If

'Define the cutoff time for the script (how far back are we looking?). We run this
'script once a day, so we look at only the last 24 hours. The -360 parameter at the
'end indicates that we are in the central timezone. It's the offset from GMT (in minutes)
'for the local timezone.

cutoffTime = Convert2WMITime(DateAdd("h",-24,NOW),-360)

'Iterate thru each server given on the cmd line
For Each strComputer In WScript.Arguments

 'Connect to the server and grab all the Security event log entries with code 529
 Set objWMIService = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate,(Security)}!\\" & strComputer & "\root\cimv2")
 Set colLoggedEvents = objWMIService.ExecQuery _
 ("Select * from Win32_NTLogEvent where LogFile='Security' and EventCode='529'") _

 'The entries are returned in descending chronological order (latest event first),
 'so we can just go through them until we hit the cutoff time, and then quit...
 'We only care about the "Time Written" and "Message" fields for our purposes.

 For Each objEvent in colLoggedEvents
 if objEvent.TimeWritten < cutoffTime then exit for
 wscript.stdout.write "Time Written: " & objEvent.TimeWritten & vbcrlf
 wscript.stdout.write "Message: " & objEvent.Message
 intCounter = intCounter + 1
 Next
Next

'**
'These functions are taken from the script EventTracker.wsf
'v1.0 July 2002
'Jeffery Hicks
'jhicks@quilogy.com http://www.quilogy.com
'They were downloaded from
'http://infocenter.cramsession.com/TechLibrary/GetHtml.asp?ID=1696
'
'They are used to convert time to and from the format used by the Windows Management
'Interface(WMI) calls in VBScript.
'**

Function ConvWMITime(wmiTime)
 On Error Resume Next

 yr = left(wmiTime,4)
 mo = mid(wmiTime,5,2)
 dy = mid(wmiTime,7,2)
 tm = mid(wmiTime,9,6)

 ConvWMITime = mo & "/" & dy & "/" & yr & " " & FormatDateTime(left(tm,2) & _
 ":" & Mid(tm,3,2) & ":" & Right(tm,2),3)
End Function

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 14 -

Function Convert2WMITime(dDate,nTimeZone)
 Convert2WMITime=Year(dDate) & Pad(Month(dDate),2,"0") & Pad(Day(dDate),2,"0") & _
 Pad(Hour(dDate),2,"0") & Pad(Minute(dDate),2,"0") & "00.000000" & nTimeZone
End function

Function Pad(sPadding,nWidth,sChar)
 if Len(sPadding)<nWidth then
 Pad=String(nWidth-Len(sPadding),sChar) & sPadding
 else
 Pad=sPadding
 end if
End function

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 15 -

Listing 2 – Sample Output from evtLog.vbs

Time Written: 20030226094432.000000-360
Message: Logon Failure:

 Reason: Unknown user name or bad password

 User Name: admin

 Domain: netoplaptop

 Logon Type: 3

 Logon Process: NtLmSsp

 Authentication Package: MICROSOFT_AUTHENTICATION_PACKAGE_V1_0

 Workstation Name: NETOPLAPTOP
Time Written: 20030226094430.000000-360
Message: Logon Failure:

 Reason: Unknown user name or bad password

 User Name: admin

 Domain: SOSU

 Logon Type: 3

 Logon Process: NtLmSsp

 Authentication Package: MICROSOFT_AUTHENTICATION_PACKAGE_V1_0

 Workstation Name: NETOPLAPTOP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 16 -

Listing 3 – Event.pl

#!/usr/bin/perl

This script reads a text file containing the output of the evtLog.vbs script,
which connects to the Security event log on a Windows server and dumps all the
'logon failure' (event code 529) events for a specified period. The file should
be in the current directory and named 'event.txt'

The script processes the file, line by line, looking for the 'User Name' 'Domain'
and 'Workstation Name' fields from each event log entry. It builds associative arrays
that include Domain:UserName pairs and Workstation:UserName pairs. It reports counts for
each of these pairs, and then summaries for the number of failed logon attempts by
domain, workstation name, and user name.

#get today's date
($sec,$min,$hour,$mday,$mon,$year,$wday,$ydat,$isdst) = localtime(time());

$year+=1900; # Y2K all over again...
$mon+=1; # Month seems to count starting with zero...

$mon = sprintf("%02d", $mon);
$mday = sprintf("%02d", $mday);
$hour = sprintf("%02d", $hour);
$min = sprintf("%02d", $min);
$sec = sprintf("%02d", $sec);

print "Failed Logon Report\nRun $mon\/$mday\/$year $hour\:$min\:$sec\n";

open(INFILE, "event.txt") || die "Can't open event.txt.\n";
while(<INFILE>)
{
 s/\x0D//gi;

 if(/Time/) # get the time for our nifty output format
 {
 /Time Written\: (\d\d\d\d)(\d\d)(\d\d)(\d\d)(\d\d)(\d\d)/; #yyyymmddhhmmss
 $year = $1;
 $month = $2;
 $day = $3;
 $hour = $4;
 $minute = $5;
 $second = $6;
 }
 if(/User/) # get the user name used in this attempt
 {
 s/\t//gi; # get rid of tab characters
 split/\:/; # tokenize the line using ':' as the delimiter
 $user = @_[1]; # grab the user name
 chop($user); # get rid of the newline character at the end
 # put in some spaces for alignment and readability
 $user = sprintf("%-16s", $user);
 ++$userCount{$user}; # increment the failed logon count for this user
 }

 if(/Domain/) # get the domain name for this attempt
 {
 s/\t//gi; #process it like above...
 split/\:/;
 $domain = @_[1];
 chop($domain);
 $domain = sprintf("%-16s", $domain);
 ++$domainCount{$domain};

 # handle the array to count Domain:UserName pairs
 $DOMUN = $workStation . "\:" . $user;

make note of time of the first attempt for this pair
if($DOMUNCount{$DOMUN} == 0)
 {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 17 -

 $DOMUNtime{$DOMUN} = $month . "/" . $day . "/" . $year . " " . $hour .":" . $minute . ":" .
$second;
 }
 ++$DOMUNCount{$DOMUN};
 }

 if(/Workstation/) # same as above, but this time it's Workstation:UserName pairs
 {
 s/\t//gi;
 split/\:/;
 $workStation = @_[1];
 chop($workStation);
 $workStation = sprintf("%-16s", $workStation);
 ++$workStationCount{$workStation};

 $WSUN = $workStation . "\:" . $user;
 if($WSUNCount{$WSUN} == 0)
 {
 $WSUNtime{$WSUN} = $month . "/" . $day . "/" . $year . " " . $hour .":" . $minute . ":" .
$second;
 }
 ++$WSUNCount{$WSUN};
 }
}
close INFILE;

Print the report. The output of this program is intended to be captured to a file and
then sent as an email to concerned parties. This is where all of those associative
arrays created above get used.

print "\n\n---\n";
print "Failed logon attempts by Workstation:Username pair:\n";
print "---\n";
foreach $key (sort(keys(%WSUNCount)))
{

 print "$WSUNtime{$key}\t$key\t$WSUNCount{$key}\n";
}

print "\n\n--\n";
print "Failed logon attempts by Domain:Username pair:\n";
print "--\n";
foreach $key (sort(keys(%DOMUNCount)))
{

 print "$DOMUNtime{$key}\t$key\t$DOMUNCount{$key}\n";
}

print "\n\n---------------------------------------\n";
print "Failed logon attempts by client domain:\n";
print "---------------------------------------\n";
foreach $key (sort(keys(%domainCount)))
{

 print "$key\t$domainCount{$key}\n";
}

print "\n\n--\n";
print "Failed logon attempts by client workstation:\n";
print "--\n";
foreach $key (sort(keys(%workStationCount)))
{

 print "$key\t$workStationCount{$key}\n";
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 18 -

print "\n\n-----------------------------------\n";
print "Failed logon attempts by user name:\n";
print "-----------------------------------\n";
foreach $key (sort(keys(%userCount)))
{

 print "$key\t$userCount{$key}\n";
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 19 -

Listing 4 – Sample of eventSummary.txt file

Failed Logon Report
Run 02/26/2003 10:03:49

Failed logon attempts by Workstation:Username pair:

02/26/2003 09:44:32 NETOPLAPTOP :admin 2

--
Failed logon attempts by Domain:Username pair:
--
02/26/2003 09:44:32 :admin 1
02/26/2003 09:44:30 NETOPLAPTOP :admin 1

Failed logon attempts by client domain:

DOMAIN1 1
netoplaptop 1

--
Failed logon attempts by client workstation:
--
NETOPLAPTOP 2

Failed logon attempts by user name:

admin 2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 20 -

Listing 5 – eventLog.bat

cscript evtLog.vbs %1 %2 %3 %4 %5 %6 %7 %8 %9> event.txt
event.pl > eventSummary.txt
blat eventSummary.txt –t me@here.com -s "Failed Logon Events for %1 _
%2 %3 %4 %5 %6 %7 %8 %9"

Listing 6 – serverEvents.bat

call eventlog.bat webserver
call eventlog.bat domCtrl1 domCtrl2
call eventlog.bat domCtrl3 domCtrl3

Listing 7 – freeSpace.vbs

'freespace.vbs - a script to calculate free space on a drive
'Accepts the drive specifier as a command-line argument
'The drive name may be a local path (c:, d:, etc) or a UNC path
'(\\server\share). Results are printed in MB
dim fileSys, drive
dim objArgs,driveName
dim space, strSpace

set objArgs = wscript.Arguments 'get the command line args
Set fileSys = CreateObject("Scripting.FileSystemObject")

driveName = objArgs(0)

Set drive = fileSys.GetDrive(driveName) 'connect to the file system
space = int((drive.FreeSpace/1024)/1024) 'Get space in MB
strSpace=""
if space > 1000 then
 strSpace = int (space / 1000)
 strSpace = strSpace & ","
 space = space - (int(space/1000)*1000)
 if space < 100 then strSpace = strSpace & "0"
 if space < 10 then strSpace = strSpace & "0"
 strSpace=strSpace & space
else
 strSpace = space
end if

Wscript.echo strSpace

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 21 -

Listing 8 – totalSpace.vbs

'totalSpace.vbs - a script to report total space on a drive
'Accepts the drive specifier as a command-line argument
'The drive name may be a local path (c:, d:, etc) or a UNC path
'(\\server\share). Results are printed in MB
dim fileSys, drive
dim objArgs,driveName
dim space, strSpace

set objArgs = wscript.Arguments
Set fileSys = CreateObject("Scripting.FileSystemObject")

driveName = objArgs(0)

Set drive = fileSys.GetDrive(driveName)
space = int((drive.TotalSize/1024)/1024) 'Get space in MB
strSpace=""
if space > 1000 then
 strSpace = int (space / 1000)
 strSpace = strSpace & ","
 space = space - (int(space/1000)*1000)
 if space < 100 then strSpace = strSpace & "0"
 if space < 10 then strSpace = strSpace & "0"
 strSpace=strSpace & space
else
 strSpace = space
end if

Wscript.echo strSpace

Listing 9 – pctSpace.vbs

'pctSpace.vbs - a script to calculate free space on a drive as a percentage
'Accepts the drive specifier as a command-line argument
'The drive name may be a local path (c:, d:, etc) or a UNC path
'(\\server\share). Results are printed as percentages to one decimal place
dim fileSys, drive
dim objArgs,driveName
dim space, strSpace

set objArgs = wscript.Arguments
Set fileSys = CreateObject("Scripting.FileSystemObject")

driveName = objArgs(0)

Set drive = fileSys.GetDrive(driveName)
space = round(1000 * drive.FreeSpace/drive.TotalSize) 'calc percentage
space = space / 10 ' get to one significant decimal place
strSpace=""

strSpace = space & "%"
Wscript.echo strSpace

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 22 -

Listing 10 – driveSpace.pl

drivespace.pl - a program to report free drive space on the
drives specified in "DriveSpecs.txt"
This program reads the description and location of the drives
to check from its config file, checks each one using three VBSCRIPTs
and writes two output files. drives.txt contains a report to be emailed
to the system administrator, and space.csv contains a history of free
space available on each drive, suitable for analysis in a spreadsheet.

#open the input file
open (INFILE, "DriveSpecs.txt") || die "Can't open input file!!!";
$count=0;

#get the date
($sec,$min,$hour,$mday,$mon,$year,$wday,$ydat,$isdst) = localtime();
$year+=1900; # fix the date
$mon+=1;

#open the two output files
open (DRIVEFILE, ">drives.txt") || die "Can't open drives.txt!!\n\n";
print DRIVEFILE "Disk Usage Report for $mon-$mday-$year\n";
print DRIVEFILE "All results are in MB.\n\n\n";

open (OUTFILE, ">>space.csv") || die "Can't open output file.\n\n";
print OUTFILE "$mon-$mday-$year\,";

while(<INFILE>) #this is mostly a collection of system calls that builds the output files.
{
 chomp;
 split /\t/;
 $drive=@_[0];
 $desc = sprintf("%-20s", @_[1]);
 print DRIVEFILE "$desc\t\t";

 $temp = qx/cscript \/\/nologo c:\\drivespace\\pctspace.vbs $drive/;
 chop($temp);
 print DRIVEFILE "$temp free\t\t";

 $temp = qx/cscript \/\/nologo c:\\drivespace\\freespace.vbs $drive/;
 chop($temp);
 print DRIVEFILE $temp;

 $temp =~ s/\,//g;
 print OUTFILE "$temp\,";

 print DRIVEFILE " of ";
 $temp = qx/cscript \/\/nologo c:\\drivespace\\totalspace.vbs $drive/;
 chop($temp);
 print DRIVEFILE $temp;

 $temp =~ s/\,//g;
 print OUTFILE "$temp\,";

 print DRIVEFILE " available.";

 print DRIVEFILE "\n";

 if($count % 2)
 {
 print DRIVEFILE"\n";
 }
 $count++;

}
print OUTFILE "\n"; #close the files and go away...
close OUTFILE;
close INFILE;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
- 23 -

Listing 11 – Sample of drives.txt file

Disk Usage Report for 2-18-2003
All results are in MB.

Server1 C Drive 49.8% free 8,609 of 17,280 available.
Server1 E Drive 71.9% free 37,430 of 52,061 available.

SERVER2 C Drive 30.3% free 2,424 of 7,993 available.
SERVER2 D Drive 29.9% free 62,589 of 209,628 available.

SERVER3 C Drive 7.9% free 638 of 8,118 available.
SERVER3 D Drive 47.6% free 29,108 of 61,160 available.

Listing 12 – mssecure.bat

c:
cd \
cd netcheck
wget http://download.microsoft.com/download/xml/security/1.0/NT5/EN-US/mssecure.cab -O mssecure.cab
expand -r mssecure.cab -F:*.xml .

Listing 13 – checkServer.pl

@servers = ("Server1", "Server2", "Server3", "Server4");
foreach $server(@servers)
{
 print "Checking server: $server\n\n\n";
 system("mbsacli /hf -x mssecure.xml -h $server > $server.txt");
 print qx/blat $server\.txt -t me\@here.edu -s "NetCheck $server Report"/;
}

