
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Solaris RBAC Revisited
Erik Van Nooten
GSEC Practical Assignm ent Version 1.4b
February 12, 2003

Abstract
Role Based Access Control (RBAC) is based on two im portant security
principles: ‘separation of duties’ and ‘least privilege’ and has the potential to
reduce the complexity of security adm inistration. With RBAC, security is
managed at a level that is close to the organization’s structure. Traditional
security management has required the mapping of an organization’s structure
to a relatively low -level set of access controls, typically Access Control Lists
(ACL). Although the acceptance has been slow, RBAC is attracting increasing
attention. Various vendors are currently offering RBAC solutions in their
products. Sun offers an RBAC facility since Solaris ver sion 8. Al though the
availability of this facility helps in implementing Solaris RBAC, it is possible to
use the Solaris ACL mechanism to accomplish a similar goal. At the same
time, this fact is one of the m ajor drawbacks of the Solaris implementation.
The interaction of both m echanisms can make the understanding of the whole
system more difficult.
Solaris RBAC does not directly support important RBAC principles such as
‘role hierarchies’ and ‘role constraints’. It even allows implementing a non -
RBAC com pl iant setup using RBAC features. This can increase the burden of
security management by one order of magnitude higher. The objective of this
document is to discuss these various Solaris RBAC scenarios and how they
com ply with the proposed NIST 1 RBAC standar d.

Access Control Models
Various security models exist that address different aspects of security in
operating systems. For example, the Bell -LaPadula m odel defines security in
terms of m andatory access control and addresses confidentiality only, while
the Biba model addresses integrity. These models are implementation -
independent and provide a powerful insight into the properties of secure
systems, lead to design policies and principles, and som e form the basis for
security evaluation cri teria.
The access control model defines how users access resources (“how subjects
access objects”). There are three main types access control m odels in use
today:

• Discretionary Access Control (DAC)
The most common way of m anaging user access towards resources
is to assign the proper perm issions to the user. Most current
operating systems use an Access Control List (ACL) to accomplish
this goal. ACL’s are stored directly with the resources they protect.
Under certain conditions, the user has the authority (=discretion) to
specify what resources are accessible.

1 Nation al Institute of Standards and Te chnology

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Mandatory Access Control (MAC)
This type of access control is based on attaching security labels to
resources. These labels indicate a security classification (for
exam ple, top secret, secret, confidential and public). U sers are given
a specific security clearance (for example top secret, secret,
confidential and public). By com paring a user security clearance (say
secret) against a security label (say secret), the operating system
can grant or deny access to the resource . The operating system will
also check if a user with a ‘secret’ clearance has a need -to-know to
access a document that has a ‘confidential’ security label. Even if the
user has the appropriate clearance, the operating system can deny
access to the documen t based on the need -to-know rules. This
access control model is stricter than the others and therefore used in
environments where security is of the up most importance, such as
military or certain government organizations.

• Non-discretionary Access Control
This type of access control uses a central authority to determ ine
which users have access to what resources. Access control can be
based on the role a person has within the organization (role -based)
or the responsibilities and duties a person are expected to perform
(task-based). It has the interesting property that the role or
responsibility does not have to change when a person assumes a
new role. The person is simply assigned to his new role. All
perm issions are assigned to the role or responsibility and not to the
individual.

Solaris RBAC is an example of non -discretionary role -based access control
model. RBAC itself can be found in a variety of comm ercial and non -
commercial systems such as applications servers, web servers, database
management systems and many m ore.

What exactly is a Role Based Access Control system?
As indicated in the name, an RBAC system uses the non -discretionary access
control model and is based on role assignment and privileges or permissions
associated with a particular role. Th e creation of roles reflects the structure of
the organization.

The following principles are key concepts in the support of the Solaris RBAC
system and will be used in the subsequent discussion of RBAC reference
models.

Separation of Duties principle
This principle requires that two or more persons must be responsible for the
com pletion of a task or a set of tasks. A typical example is the set “Purchasing
Manager-Accounts Payable Manager”. If one and the sam e person would
carry out these roles, he would be tempted to create a fake order and approve
that order. So the m ain purpose of ‘separation of duties’ is to avoid fraud,
misuse and errors.
Although the principle is straight forward, the implementation is not. There are
two main variations to the im plemen tation:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Static Separation of Duties
With static Separation of Duties, two roles are strongly excluded. This means
that in our exam ple the two roles would never been assigned to the same
person. It implies that this check is done during the administrative p hase.
Whenever a person is assigned to a new role, the system needs to verify if
the new role and the already assigned roles are not mutually exclusive.
Although it is the sim plest variation of the two, it has the disadvantage that it
does not always refle ct the functioning of the organization.

Dynamic Separation of Duties
Exclusion is enforced at the session level. In its simplest form, our two roles
can be assigned to the same user. The user cannot assume both roles within
his set of sessions. The RBAC sy stem must enforce that the user is logged
out from the “Purchasing Manager” role when he wants to assume the
“Accounts Payable Manager” role. In comparison with the previous variation,
‘dynam ic separation of duties’ gives m ore flexibility to organizations.
Variations on this theme have been defined by the use of object, operational,
history, order -dependent and order -independent based constraints. [1]

Least Privilege principle
The principle of “Least Privilege” implies that a user is given no more
privileges than is strictly necessary to perform his task. There is again a
dimension within this principle as it is possible to statically or dynamically
assign privileges. Constraints can be placed on privileges so they do not exist
longer than is required to per form a task. This is sometimes referred to as the
“Tim ely Revocation of Trust”.

RBAC Reference Models
Since it has been proven difficult to capture RBAC in one reference model,
different types of RBAC reference models have been defined [2]. These
models have changed over tim e and are currently been defined in a proposed
NIST RBAC standard [3]. In a tim e span of 10 years, there has been
significant advancem ent in these models. Someone who wants to study these
models can become confused by the different defin itions that were
fashionable at a specific point in tim e. This is reflected in the way RBAC
features in the reference models have been re -ordered over time.
The definitions from the NIST RBAC standard will be used in the remainder of
the docum ent. A summar y of the differences made to the older RBAC
reference models can be found in the next section.

The general RBAC model has not changed for a long time and has the
following form:

Users Roles
Priviliged

Opera tio ns

n m n m

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The basic concept is that users are assigned to roles and that roles are
associated with privileged operations. This allows users to carry out tasks with
a m inim um set of privileges.

Core RBAC
A set of four reference models has been defined. The Core RBAC reference
model, nam ed here RBAC C

2
, is defined as follows:

1. In the model, we define ‘users’, ‘roles’, ‘privileged operations’ (also

dubbed ‘commands’) and ‘sessions’.
2. Users and roles have an n -to-m relationship (n and m ≥ 1). One user

can have different roles; one role can be assigned to different users.
3. Roles and op erations have also an n -to-m relationship. One role can

include different privileged operations; one operation can be assigned
to different roles. Operations are being controlled by permissions.

4. Users and sessions have a 1 -to-m relationship. A user can hav e
multiple sessions going on, but a session is only assigned to one user.

These four requirements allow most group -based access control systems to
com ply with the NIST RBAC standard.
There is a fi fth requirement included below.

5. Sessions have a one -to-one relationship with a ‘Role Set Association’.
A ‘Role Set Association’ is a subset of the roles authorized for that
user.

The active Role Set Association at a particular time in a session is referred to
as the ‘Active Role Set’ (ARS). This ‘Active Role Set ’ may change during the
lifetime of the session and can be used to enforce ‘separation of duties’.

Example: Consider a real world example where a police officer is also playing
basketball in his spare time. He norm ally carries his gun while on duty as a
police officer. Carrying his gun while playing basketball will probably not be
seen as very ethical. The fact that he stores his gun somewhere safe while
being on duty is considered a normal procedure. There is a clear distinction
between his ‘Active Role’ as a police officer and his ‘Active Role’ as a
basketball player. He does not autom atically have the privileges that go with
one role, while he is using a different role. Enforcing only one of both roles to
be active in an ‘Active Role Set’ is the first s tep towards implementing the
‘separation of duties’ principle.

This requirement has been relaxed as the NIST RBAC standard now explicitly
states, “Core RBAC requires that users are able to simultaneously exercise
permissions of m ultiple roles”. There was a lot of debate on the differences
between a role and a group in the RBAC community. [4] A user in a role was
only expected to execute the privileges attached to this role. A user in a group
has always the permission to execute privileges obtained from dif ferent

2 This bold font ty pe will b e us ed when a RBAC reference mod el is meant. Regul ar capit al l etters will
be used to talk about RBAC in general.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

groups. With this change in the requirement, groups can now be used as
roles. Our police officer can carry his gun while playing basketball. The fifth
requirement could be interpreted as a constraint to enforce ‘separation of
duties’. In the NIST RB AC standard, this constraint was considered as being
overly strict and has been moved to the ‘Separation of Duty Relations’
reference model.

Hierarchical RBAC
Hierarchical RBAC, abbreviated to RBAC rh, introduces the concept of role
hierarchies . In general, hierarchies are used by organizations to deal with
authority and responsibility.
Hierarchies can be used to inherit permissions from a previous role. However,
there is a difference between role permissions inheritance and perm issions of
two roles active a t the same tim e in the sam e session. In the first case, a new
role is created and inherits the privileges of the first role. In the second case,
an ‘Active Role Set’ cannot be enforced. The latter case boils down to the
discussion on the ‘Active Role Set’ and the fact that users are allowed to
exercise their permissions simultaneously as discussed in the previous
section.
The NIST RBAC standard recognizes two types of role hierarchies:

• General Hierarchical RBAC
In this case, a role can inherit permissions f rom multiple different
roles.

• Lim ited Hierarchical RBAC
In this case, a role can inherit perm issions from only one immediate
descendant.

Static Separation of Duty Relations (SSD)
The next two RBAC reference models introduce the concept of constraints.
Typically, conflict of interests is avoided when roles are mutually excluded.

Example: The following are typical cases of such roles: “System
Adm inistrator -User Security Managem ent” and “Purchasing Manager -
Accounts Payable Manager”. A ‘mutually exclusive’ co nstraint will enforce
‘separation of duties’.

Constraints can also play a role in the way RBAC rh behaves. Inheritance of
privileged operations can be blocked by a constraint, for exam ple.

This is the reason why two types have been defined:

• Static Separat ion of Duty
This is the classic case where a user may be prohibited to be
assigned to a role because of the character of already assigned
roles. This property is enforced in an administrative way.

• Static Separation of Duty in the Presence of a Hierarchy
This type of relation works in the same way, except that i t applies to
inherited roles as well as directly assigned roles.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Dynamic Separation of Duty Relations (DSD)
As can be deducted from the name, constraints are being enforced in a
dynamic m atter. A cons traint can be placed on a user session and as a result,
a user can only use one single session . A constraint could enforce all open
sessions to switch to the active role (‘ role enforcement’) at the moment the
user assumes his role. DSD extends the support for the least privilege
principle in the sense that each user needs different perm ission levels at
different times. DSD makes sure that permissions do not persist beyond the
time that they are required. “Timely Revocation of Trust” is the attained goal
for DSD.

NIST RBAC standard and prior Reference RBAC models
Since som e RBAC papers reference earlier RBAC reference models, it is
useful to point out the differences of these models with the proposed NIST
RBAC standard.
Core RBAC is equivalent to what was cal led “Minimal RBAC”. [4] “Minimal
RBAC” was a relaxation of RBAC 0, which included the fifth requirement as
discussed in the Core RBAC section above. Core RBAC is sometim es
referred to as ‘flat RBAC’.
In RBAC 0, a user could not exercise all his assigned role perm issions at all
times. The enforcement of an ‘Active Role Set’ was part of the default
requirements.
RBAC1 is equivalent with hierarchical RBAC, although there was no difference
between ‘general’ or ‘limited’ hierarchical RBAC.
Both the SSD and DSD mod els were combined in one m odel, named RBAC2.
This model addressed all constraints.
RBAC3 was the highest form of RBAC and was the consolidation of RBAC0,
RBAC1 and RBAC2 .

The relation between these Role Based Access Control Reference Models is
as follows:

RBAC3 has some issues with multiple inheritances supported in the model. The
split of role hierarchies and constraints can lead to inconsistencies. Suppose
two roles are defined as being 'mutually exclusive'. A new role can be defined
via role hierarchies, which inherits these two ‘mutually exclusive’ roles.

RBAC 1 RBAC 2

RBAC0

RBAC 3

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 RBAC c (Core o r Flat RBAC) RBAC rh RBACssd RBACdsd
Mi nimal RBAC √ - - -
RBAC 0 √ mi nus execution of all rol e

permissio ns
- - -

RBAC 1 - √ - -
RBAC 2 - - √ √
RBAC 3 - Dist ributed o ver th e different mod els

The objective of the NIST RBAC standard was to include all group -based
access control mechanisms, which were excluded in the earlier RBAC
definitions. A form al functional specification can be found in appendix 1 of the
NIST RBAC standard. [3]

RBAC within Solaris
Solaris leaves the administrator the choice to im plement RBAC using Access
Control Lists (ACL) or the Solaris RBAC facility.
When ACL’s are used, groups are configured as roles. A user is a m ember of
a group and therefore also mem ber of a role. This means that a user will
always be able to exercise all his privileges all the time as is allowed within
Core RBAC.
In m ost operating systems 3, permissions can be set at the user or the group
level. In order to have an ACL system function as a RBAC system , only
groups must be used as entries in the ACL. Most s ystems, including Solaris,
have no option to enforce this.

Classical Unix
The classical Unix perm ission system is limited in its functionality. There are
only three groups on which one can place permissions: the user, the group to
which the file belongs and everyone else (other). An exam ple is shown below:

$ touch f oo
$ ls -l f oo
-rw-r-- r-- 1 Erik sysadmin 0 Dec 29 09: 06 f oo

Let’s set up a simple role mo del by introducing Victor and Elizabeth. Victor is
a security operator and Elizabeth works as security officer. Victor and
Elizabeth belong to different groups: Victor is mem ber of the ‘secops’ group
and Elizabeth is member of the ‘secoffs’ group. Both are members of the
general ‘staff’ group. The ‘secops’ group has different perm issions than the
‘secoffs’ group. The ‘secops’ group could be authorized to add, m odify and
delete users, while the ‘secoffs’ group can change passwords 4.
It is possible to enforc e ‘separation of duties’ by creating the proper scripts or
programmes. In this example, the security officers will use the script foo1,
while the security operators will use foo2 as shown below:

3 Sun Sol aris , MS Wind ows NT, MS Win dows 20 00…
4 This is just an exampl e to sho w how di fferent rol es can b e creat ed. It is not meant t o s erve as a full -
featured secu rity role model .

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

$ ls -l
total 6
---s-- x--- 1 root seco ffs 115 Dec 29 09: 29 foo1
---s-- x--- 1 root secops 150 D ec 29 09:34 foo2

As can be seen from the above output, the ‘setuid’ bit has been set on the
files (‘s’ in fourth position of the permissions’ set). The ‘setuid’ bit allows the
script to run with an effective userid of 0. So Victor would not be able to
execute the security officers’ scripts, while Elizabeth will not be able to
execute security operators’ scripts.

$ su Victor
Password:
$./ foo1
ksh: ./ foo 1: can not execute
$./ foo2
This is fo o2 -> a fil e that is commo n to s ecurity op erators !
uid: Victo r(103) euid:ro ot(0) gi d(s):staff(10) s ecst aff(5 01) s eco ps(50 3) egid:staff(10)
$ su Elizab eth
Password:
$./ foo1
This is fo o1 -> a fil e that is co mmo n to s ecurity o fficers!
uid:Elizabeth(104) eui d:root (0) gid (s):st aff(1 0) secstaff(501) secoffs(502) egid:st aff(10)
$./ foo2
ksh: ./ foo 2: can not execute

The script above is executed with an effective uid 0 (‘euid:root(0)’). Some
commands require that the real uid must be root as well 5. There is a
difference between the Bourne shell (/usr/bin/sh) and the Korn shell
(/usr/bin/ksh) on setting the uid. The Bourne shell will always make the uid the
sam e as the euid unless the ‘ -p ‘ option is specified. The Korn shell has the ‘ -
p’ option specified as default and wil l use the /etc/suid_profile when the
effective uid is not the same as the real uid.

The implementation of such a model has limited flexibility and som e serious
drawbacks:

1. If there is a need to have common scripts that need to be executed by
both groups, all users of both groups will have to be members of a third
group (‘secstaff’ in the exam ple below).

2. An adm inistrator has to set -up and m aintains various scripts (foo, foo1
en foo2), which includes the various commands that should run with
effective uid o f 0.

3. An ‘Active Role Set’ cannot be enforced. Both Victor and Elizabeth will
always have the permission to execute their scripts.

4. Permissions are stored with the resource as is the case by setting the
execute perm ission. The ‘setuid’ bit can be placed on any file in the
system , although they are generally grouped at one location. This
means that a system administrator has to query the entire system to
have a view on who has what privilege.

5 Th e /usr/bin/p ass wd is su ch a command.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

$ id -a
uid=1 03(Victo r) gid =1 0(st aff) groups =10 (staff),5 01(s ecstaf f),5 03(s ecops)
$ ls -l foo
---s-- x--- 1 root secstaff 1 33 Dec 29 09:25 foo
$./foo
This is fo o -> a fil e th at is common to both s ecurity op erators and o fficers !
uid: Victo r(103) euid:ro ot(0) gi d(s):staff(10) s ecst aff(5 01) s eco ps(50 3) egid:staff(1 0)
$ su Elizab eth
Password:
$ id -a
uid=1 04(Elizabet h) gid =10 (staff) groups=10(st aff) ,50 1(secst aff) ,502 (seco ffs)
$./foo
This is fo o -> a fil e th at is common to both s ecurity op erators and o fficers !
uid:Elizabeth(104) eui d:root (0) gid(s):st aff(1 0) secsta ff(501) secoffs(502) egid:st aff(10)

File Access Control List
A new ACL mechanism, named File Access Control List (FACL), was
introduced from Solaris 2.5 onwards. The implementation is POSIX 1003.6
com pliant. Two operating system comm ands (“getfacl” and “se tfacl”) extend
the classical ACL system. [5] It allows more flexibility than the traditional
permission bits on a file or directory.
The advantage of using the ‘facl’ mechanism is that we can get rid of the
‘secstaff’ group in the previous section (first b ullet in the above-mentioned
drawback list). Permissions can be assigned per group.

$ get facl foo*

fil e: foo
owner: root
group: other
user:: --x
group:: --- # effectiv e: ---
group:seco ffs: --x # effective: --x ⇐ assign p ermiss i on to bot h
group:secops: -- x #effective: -- x ⇐ gro ups
mask: --x
other: ---

fil e: foo1
owner: root
group: other
user:: --x
group:: --- # effectiv e: ---
group:seco ffs: --x # effective: --x ⇐ onl y s ecoffs can execute
foo1
mask:r -x
other: ---

fil e: foo2
owner: root
group: other
user:: --x
group:: --- # effectiv e: ---
group:secops: -- x #effective: -- x ⇐ onl y ‘s eco ps’ can execut e
foo2
mask:r -x
other: ---

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

$ id -a
uid=1 03(Victo r) gid=1 0(st aff) groups =10 (staff),5 03(s ecops)
$./ foo
This is fo o -> a fil e th at is common to s ecurity operators and o fficers !
uid: Victo r(103) euid:ro ot(0) gi d(s):staff(10) s eco ps(5 03) egid:staff(10)
$./ foo1
ksh: ./ foo 1: can not execute
$./ foo2
This is fo o2 -> a fil e th at is commo n to s ecurity op erators !
uid: Victo r(103) euid:ro ot(0) gi d(s):staff(10) s eco ps(5 03) egid:staff(10)

Some observations
• The group owner of the file does not have to be related to the target

executable group.
• The ‘facl’ mask field holds the maximum value that can be achieved. In

the above files, the mask field equals ‘r -w’ and the group field equals
‘—x’. This leads to an effective field of ‘ —x’.

• When a ‘facl’ permission is being set, there will be a ‘+’ next to the
permission bits.

$ ls -l
total 6
---s------ + 1 root oth er 1 28 Dec 29 09:27 foo
---s------ + 1 root oth er 1 15 Dec 29 09:29 foo1
---s------ + 1 root oth er 1 16 Dec 29 09:29 foo2

• File Access Control Lists are set with the following commands:

set facl -s u:: --x,g:: ---,g:secoffs: -- x,g:secops: --x,m: -- x,o: --- foo
set facl -s u:: --x,g:: ---,g:secoffs: -- x,m:r -x,o: --- foo1
set facl -s u:: --x,g:: ---,g:secops: --x,m:r -x,o: --- foo2

RBAC using the Solaris RBAC model
The RBAC m odel on Solaris is an implem entatio n of the RBACc reference
model. The main attributes of the Solaris RBAC model are:

1. Although it does support an ‘Active Role Set’, only one role can be
placed in the ‘Active Role Set’. The set cannot be changed
dynamically.

2. It does not support role hierarc hies (RBAC rh).
3. It does not support RBAC ssd or RBACdsd . The security administrator m ust

make sure that two mutually exclusive roles are not assigned to the
sam e user.

The module responsible for this native support is named 'pam_roles' and is
located in /u sr/lib/security/$ISA directory. The module can be activated or
deactivated by configuring the appropriate entry in the /etc/pam.conf directory.
It is possible to replace this module by a customized version. A sam ple
version is available from the Sun web si te. [6]
During a normal installation, the module is activated and the /etc/pam.conf
directory contains the following entries:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

$ grep pam_roles / etc/pam.conf
login account requis ite /usr/lib/security /$I SA/pam_roles.so. 1
dtlogin account requis ite /us r/lib/security /$ISA/ pam_roles.so.1
other account requisit e /us r/lib/security /$ISA/ pam_roles.so.1
ppp account requisit e /usr/l ib/ security /$I SA/pam_roles.so. 1

A complete documentation on how to set -up the Solaris RBAC facility i s found
in [7]. We will only discuss the main configuration files.

In order to manage a role, three commands are used: roleadd , roledel and
rolemod . These commands manipulate the following four system files:

1. /etc/user_attr associates roles and profiles to users
2. /etc/security/auth_attr container for authorizations
3. /etc/security/prof_attr container for right profiles
4. /etc/security/exec_attr container for execution profiles

A particularity of the Solaris RBAC facility is that a role is created as a regu lar
userid. However, it is not possible to login directly using this role -userid. The
su command has to be used to change to the role.
Solaris RBAC extends the permission model by introducing “right profiles”,
“commands and their security attributes” and “ roles”. All RBAC privileges can
be managed in a centralized way (last bullet in the above -mentioned
drawback list).

The different assignment possibilities of both the ACL and Solaris RBAC
facility are depicted in the diagram below. As can be seen, right p rofiles,
authorizations and commands can be assigned to roles or directly to users.
ACL’s can be assigned to users, groups and roles. The m ultitude of possible
assignment relations is the primary reason that an existing RBAC set -up can
be confusing at time s.

Users Right Profiles

Gro ups Roles

Fil es
Di recto ries

Existing ACL s ystem Sola ris R BAC fa cility

Authoriza tions

Commands
user_att r

prof_a ttr

exec_attr

auth_at tr

Per missions
Setuid-bits

FA CL
Security

Attributes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

In order to continue our example, the following right profiles 6 have been
created:

$ grep SE C /et c/security/*attr*
/etc/s ecu rity/exec_ attr: SECOFF:sus er:cmd:::/usr/bi n/pass wd:uid =0
/etc/s ecu rity/exec_ attr: SECOFF:sus er:cmd:::/export/h o me/ Erik/giac/s eco ff/ foo:euid=0
/etc/s ecu rity/exec_ attr: SECOFF:sus er:cmd:::/export/h o me/ Erik/giac/s eco ff/ foo1:euid =0
/etc/s ecu rity/exec_ attr: SECOP:suser: cmd:::/us r/sbin/us eradd:euid=0
/etc/s ecu rity/exec_ attr: SECO P:suser: cmd:::/us r/sbin/us ermo d:euid=0
/etc/s ecu rity/exec_ attr: SECOP:suser: cmd:::/us r/sbin/us erd el:euid=0
/etc/s ecu rity/exec_ attr: SECOP:suser: cmd:::/expo rt/ho me/ Erik/gi ac/seco ff/fo o:euid =0
/etc/s ecu rity/exec_ attr: SECOP:suser: cmd:::/expo rt/ho me/ Erik/gi ac/se co ff/ fo o2:euid=0
/etc/s ecu rity/prof_ attr: SECOP:::Secu rity Op erator::help =SecOp.ht ml
/etc/s ecu rity/prof_ attr: SECOFF::: Security Officer::help =SecOff.ht ml

Assigning right profiles to users directly
This option is advised against in the Sun documentation 7: “R ight profiles and
authorizations can also be assigned directly to users. This practice is
discouraged because it enables users to make mistakes through inadvertent
use of their privileges”. Although this is correct, this practice is allowed in the
RBACc reference model.
A bigger problem is that this option effectively bypasses the creation of roles.
The role is associated with the group setting as is being described in the
RBACC model. Permissions are active at all times. So, it looks like we can
implement an effective RBAC model by ‘augm enting’ the ACL system with
privileges assigned via right profiles or authorizations. This seems to create a
model that is com pliant with the RBAC c reference m odel. By the way, this is a
case where the two methods to implem ent RBAC on a Solaris system are
mixed. The ‘roles’ are in fact borrowed from the ACL -based group access
control, while the permissions are added from the Solaris RBAC facility by
assigning right privileges or authorizations.
However this set -up has a majo r limitation. It violates one of the RBAC
principles since privileges are assigned directly to the users and not to the
roles (hence groups).

Example: Suppose we have 4 users to whom we want to assign 1 right profile
and 1 authorization. If we use a role to assign the permissions, we have 6
relations: 4 users connected to one role, one role connected to 2 privileges.
For N users and M permissions, there is an N +M relation. In the event we
assign the permissions directly to the users, we will have 8 relati ons. Each
user will have 2 privileges. So for N users and M permissions, there is an
NxM relation. This is an order of magnitude higher (O(N 2) versus O(N)) than
the previous case. If there are a lot of users and permissions, these relations
can becom e quic kly unm anageable.

After assigning the privileges to our user, we can invoke the following session:

$ su Victor

6 We onl y assign “ command s with s ecurity att ributes” in t his example. Solaris has also the con cept o f
autho rizations , which allows GUI appli cations to check fo r permissions in an equiv alent mann er. A
stand ard s et o f authorizations (‘solaris .*’) is d efin ed within the Sol aris system.
7 [6] P ag e 247

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Password:
$ pro files -l

 SE COP:
 /us r/sbin/us eradd euid=0
 /us r/sbin/us ermo d euid =0
 /us r/sbin/us erdel euid=0
 /export/home/ Erik/gi ac/secoff/ foo euid =0
 /export/home/ Erik/gi ac/secoff/ foo2 euid=0
 All:
 *

The ‘profiles’ command shows security attributes that have been set for files
‘foo’ and ‘foo2’. The ‘euid=0’ keyword is equivalent to setting the ‘setuid’ -bit in
the previous examples. It is possible to use the 'uid=0' keyword in order to
have a real uid of 0. It is also possible to specify different uid values.
We can assign specific commands that need root perm issions to a specific
profile (second bullet in our above -mentioned drawback list).

$ rol es
roles: Vi ctor : No roles

Since the profile has been assigned directly to the user, no roles are assigned
to the user. The user Victor directly has the perm ission all the tim e.

$ ls -l
total 6
---x------ 1 root oth er 12 8 Dec 29 09:28 foo
---x------ 1 root oth er 11 6 Dec 29 09:30 foo1
---x------ 1 root oth er 11 6 Dec 29 09:30 foo2
$ p̀ wd`/ foo
This is fo o -> a fil e th at is common to s ecurity operators and o fficers !
uid: Victo r(103) euid:ro ot(0) gi d(s):staff(10) s eco ps(503) egid:staff(10)
$ p̀ wd`/ foo1
p fksh: /export/ho me/E rik/gi ac/s ecoff/ foo1: can not execute

Note that the ‘pfksh’ is used. The 'profile Korn' shell is similar to the Korn shell
with the additional characteristic that i t can understand the different
authorization requests needed to support the Solaris RBAC facility. Sim ilar
shells exist for each of the traditional shells. The names of the Bourne and C
counterparts are ‘ pfsh’ and ‘pfcsh’. All shells can execute the ‘pfexec’
command. This program takes arguments from the shell and executes them
with specified security attributes obtained from the execution profile.

$ p̀ wd`/ foo2
This is fo o2 -> a fil e that is co mmo n to s e curity op erators !
uid: Victo r(103) euid:ro ot(0) gi d(s):staff(10) s eco ps(503) egid:staff(10)

$ id -a
uid=1 03(Victo r) gid =1 0(st aff) groups =10 (staff)
$ us eradd joe ⇐ adding user ‘jo e’
$ us ermo d -s /u sr/bin/ks h jo e ⇐ chang e his d efault sh ell
$ grep jo e /etc/pass wd
joe: x:105:1::/h ome/joe:/usr/bin/ksh
$ passwd joe ⇐ tryi ng to chang e pass wor d
passw d (SYSTEM): Permission denied

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

passwd (SYSTEM): Can't change lo cal p asswd fil e

Permission d enied

$ su Elizab eth
Password:
$ pro files -l

 SE COFF:
 /us r/bin/p asswd uid =0 ⇐ passwd cmd in privileges
 /export/home/ Erik/gi ac/secoff/ foo euid =0
 /export/home/ Erik/gi ac/secoff/ foo1 euid=0
 All:
 *
$ rol es
roles: Elizabeth : No rol es
$ p̀ wd`/ foo
This i s fo o -> a fil e th at is common to s ecurity operators and o fficers !
uid:Elizabeth(104) eui d:root (0) gid(s):st aff(1 0) secoffs (502) egid:st aff(10)
$ p̀ wd`/ foo1
This is fo o1 -> a fil e that is co mmo n to s ecurity op erators !
uid:Elizabeth(104) eui d:root (0) gid(s):st aff(1 0) secoffs (502) egid:st aff(10)
$ p̀ wd`/ foo2
p fksh: /export/ho me/E rik/gi ac/s ecoff/ foo2: can not execute

$ passwd joe ⇐ changin g Jo e’s pass word
New p ass word:
Re-enter new pass word:
passwd (SYSTEM): p asswd su ccess fully changed for joe

Although this set-up is frequently used as an RBAC exam ple in literature
[8][9], it violates one of the RBAC principles due to the direct assignm ent of
user privileges. The management advantage of assigning permissions to roles
is lost. The set-up is only viabl e if a sm all num ber of users would receive a
small number of direct assigned privileges. This can be considered
acceptable for the assignment of system userid’s that are used in background
jobs, i.e. daemon userid’s that require certain privileges. However , if the
num ber of these userid’s and/or privileges becomes large, the management
grows with an order of m agnitude com pared to the next set -up.

Assigning roles to users
In order to assign roles to users and implement an effective RBAC c m odel, two
roles are being created: ‘rr_secop’ and ‘rr_secoff’.

$ su Victor
Password:
$ rol es
rr_s ecop
$ pro files -l

 All:
 *
$ su rr_secop ⇐ n eed to chan ge to rol e
Password:
$ pro files -l

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 SECOP: ⇐ mo re p rivileges added
 /us r/sb in/us eradd euid=0
 /us r/sbin/us ermo d euid =0
 /us r/sbin/us erdel euid=0
 /export/home/Erik/gi ac/secoff/ foo euid =0
 /export/home/Erik/gi ac/secoff/ foo2 euid=0
 All:
 *
$ p̀ wd`/ foo
This is fo o -> a fil e th at is common to s ecurity operators and o fficers !
uid:rr_secop(102) euid:root(0) gid(s):secops (503) egi d:secops (503)
$ p̀ wd`/ foo1
p fksh: /export/ho me/E rik/gi ac/s eco ff/ foo1: can not execute
$ p̀ wd`/ foo2
This is fo o2 -> a fil e that is co mmo n to s ecurity op erators !
uid:rr_secop(102) euid:root(0) gid(s):secops (503) egi d:secops (503)

Using this model, we can define an RB ACc reference model and enforce an
Active Role Set (third bullet in the above -mentioned drawback list). One
important thing to note is that all permissions (ACL’s) have to be set to the
role and that there is no inheritance of privileges. In the previous examples,
all perm issions were active.
The Solaris RBAC facility is limited in regard to the NIST RBAC standard
RBACc reference mod el as it only allows one role to be in the ‘Active Role Set’.
Multiple roles per user can be activated, but they need to be separated in
different sessions.

Auditing
When auditing is active via the Basic Security Module (BSM) module, we can
track who exec uted the different commands as shown below. Changing roles
does not change the 'audit id'.

ps -edf |g rep secop
 root 1342 798 0 22:08:1 9 pts/3 0:00 g rep s ecop
rr_s ecop 1337 13 35 0 22:0 7:47 pts/4 0:0 0 pfksh
auditco n fig -getpinfo 1337
audit i d = Eri k(10 0)
process preselection mask = ex,lo (0 x400010 00,0 x400 01000)
termin al id (maj,min,host) = 0,0 ,sun dan ce(172.31.201 .7)
audit s ession id = 3 13

Conclusion
Solaris makes it possible to build various RBAC implem entations. Having a
Solaris RBAC fac ility on one hand and the possibility to implement a RBAC
system using Discrete Access Control Lists (DACL) on the other hand, can be
confusing in understanding what part of the ACL and/or RBAC facility is being
used.
The choice of building an RBAC model u sing one of both m odels is entirely
left open as an im plementation choice.
The assignment of RBAC right privileges directly to users is not considered as
being a good practice. It violates one of the RBAC principles that says that
permissions should be as signed to roles or groups. The only reasonable use
for this set-up is the assignment of right privileges to daemon userid’s
requiring certain privileges. Daem on userid’s normally com e in small sets.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Since the num ber of relations is in this case an order of m agnitude higher,
security may become unmanageable for large sets of userid’s and privileges.
Solaris RBAC has some major limitations, as it does not include the possibility
to use role hierarchies and role constraints. RBAC reference models such as
‘General and Lim ited Hierarchical RBAC and ‘Static and Dynamic Separation
of Duty can only be supported by heavily extending the ‘pam_roles’ module in
the RBAC facility. Solaris RBAC only allows one role from the ‘Active Role
Set’ to be active in the same sessi on.
Convergence is on the way between the various RBAC reference models as
the National Institute of Standards and Technology (NIST) has proposed the
first RBAC standard in 2001. Hopefully, vendors will endorse the NIST RBAC
standard and release compliant products in the near future. This will limit the
actions that users of a computer system can perform and help security
adm inistrators to have more comprehensive view on the distribution of
privileges.

References
1. M . E. Zurko & R. T. Simon. “Separation of Duty in Role-Based Environments”.
1997

URL:http://citeseer.nj.nec.com/cache/papers/cs/22050/http:zSzzSzwww.memes
oft.comzSzadagezSzsep -duty.pdf/simon97separation.pdf

2. Ravi S. Sandhu et al. “Role Based Access Control Model”. October 26, 1995

URL:http://citeseer.nj.nec.com/cache/papers/cs/872/http:zSzzSzwww.list.gmu.e
duzSzjournalszSzcomputerzSzps_verzSzi94rbac.pdf/sandhu96rolebased.pdf

3. National Institute of Standards and Technology (NIST). Proposed NIST RBAC
standard. August 2001

URL:http://csrc.nist.gov/rbac/rbacSTD -ACM.pdf

4. John Barkley. “Comparing Simple Role Based Access Control Models and Access
Control Lists”. August 11, 1997

URL:http://citeseer.nj.nec.com/cache/papers/cs/20857/http:zSzzSzwww.itl.nist.
govzSzdiv897zSzstaffzSzbarkleyzSziirf.pdf/barkl ey97comparing.pdf

5. Sun Solaris 8 Product Documentation. “setfacl” man pages. July 23, 1998
URL:http://docs.sun.com/db/doc/806 -0624/6j9vek5ge?q=getfacl&a=view

6. Solaris PAM documentation. “Pluggable Authentication M odules“.

URL:http://wwws.sun.com/software/solaris/pam/

7. Sun Solaris 9 Product Documentation. “ System Administration Guide – Security
Services”. M ay 2002

PartNo 806-4078-10 - Chapters 18, 19 and 20
URL:http://docs.sun.com/db/doc/816 -4883?q=security+services

8. Sun Solve FAQ ID 3280. “Example of Role Based Access Control (RBAC)
URL: http://sunsolve.sun.com/private -
cgi/retrieve.pl?doc=faqs%2F3280&zone_32=RBAC January 03, 2001

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

9. Occhinpinit, Christine. “RBAC in the Real World”. September 16, 2002
URL: http://rr.sans.org/casestudies/RBAC.php

10. Maurice J. Bach. “The design of the Unix Operating System”. 1986
Prentice Hall: ISBN 0 -13-201757-1

