GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

Solaris RBAC Revisited

Erk Van Nooten
GSEC Practical Assignm ent \ersion 1.4b
February12, 2003

Ab stract

Role Based Access Control (RBAC) is based on two important security
principles: ‘separation of duties’ and ‘least privilege’ and has the potental to
reduce the complexity of security administration. With RBAC, securty is
managed at a level that is close to the organization’s structure. Traditonal
security management has required the mapping of an organization's structure
to a relatively low evel set of access controls, typically Access Control Lists
(ACL). Although the acceptance has been slow, RBAC is attracting increasing
atention. Various vendors are currently offering RBAC solutions in their
products. Sun offers an RBAC facility since Solaris ver sion 8. Athough the
aailability of this facility helps in implementing Solars RBAC, it is paossible to
use the Solaris ACL mechanism to accompish a similar goal. A the same
time, this fact is one of the major drawbacks of the Solaris implementation.
The interaction of both m echanisms can make the understanding of the whde
system more difficult.

Solaris RBAC does not directly support important RBAC principles such as
‘role hierarchies’ and ‘role constraints’. It even allows implementing a non -
RBAC cam pliant setup using RBAC features. This can increase the burden of
security management by one order of magnitude higher. The objective of this
document is to discuss these various Solaris RBAC scenarios and how they
com py with the proposed NIST * RBAC standard.

Access Control Models

Various security models exist that address different aspects of security in
operating systems. For example, the Bell -LaPadula m odel defines security in
terms of mandatory access control and addresses confidentiality only, while
the Biba model addresses integrity. These models are implementation -
independent and provide a powerful insight into the properties of secure
systems, lead to design policies and principles, and same form the basis for
security evaluation criteria.
The access control model defines how users access resources (“how subects
access objects”). There are three main types access control models in use
today:.
Discretionary Access Control (DAC)
The most common way of managng user access towards resources
is to assign the proper pemissions to the user. Most current
operating systems use an Access Control List (ACL) to accomplish
this goal. ACL’s are stored directly with the resources they protect.
Under certain conditions, the user has the authority (=discretion) to
specify whatresources are accessible.

! Nationd Institute of Standards and Te chnology

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Mandatory Access Control (MAC)
This type of access control is based on attaching security labels to
resources. These labels indicate a securnty classificaton (for
exam ple, top secret, secret, confidential and public). U sers are given
a specific security dearance (for example top secret, secret,
confidential and public). By com paring a user security clearance (say
secref) against a security label (say secret), the operating system
can grant or deny access to the resource . The operating system will
also check if a user with a ‘secret’ clearance has a need -to-know t
access adocumentthat has a ‘confidential’ security label. Even if the
user has the appropriate clearance, the operating system can deny
access to the document based on the need -to-know rules. This
access control model is stricter than the others and therefore used in
environments where security is of the up most importance, such as
military or certain govemmentorganizations.

Non-discretionary Access Control
This type of access control uses a central authority to determine
which users hawe access to what resources. Access control can be
based on the role a person has within the organization (role -based)
or the responsibilities and duties a person are expected to perform
(task-based). It has the interesting property that the role or
resporsibility does not have to change when a person assumes a
new role. The person is simply assigned to his new role. Al
pemissions are assigned to the role or responsibility and not to the
individual.

Solaris RBAC is an example of non -discretionary role -based access control
model. RBAC itself can be found in a variety of commercial and non -
commercial systems such as applicatiors servers, web serners, database
management systems andmanym ore.

What exactlyis a Role Based Access Control system?
As indicated in the name, an RBAC system uses the non -discretionary access

control model and is based on role assignment and privileges or permissions
associated with a particular role. Th e creation of roles reflects the structure of
the organi zation.

The following principles are key concepts in the support of the Solaris RBAC

system and will be used in the subsequent discussion of RBAC reference
models.

Separation of Duties principle

This principle requires that two or more persons must be responsible for the
com pletion of atask or a set of tasks. Atypical example is the set “Purchasing

Manager-Accounts Payable Manager”. If one and the same person woud
carry out these roles, he would be tempted to create a fake order and approwe
that order. So the main purpose of ‘separation of duties’ is to avoid fraud,

misuse and errors.

Although the principle is straight forward, the mplementation is not. There are

two main variations to the im plemen tation:

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Static Separation of Duties

With static Separation of Dutes, two roles are strongly excluded. This means
that in our example the two roles would newer been assigned o the same
person. It implies that this check is done during the administrative p hase.
Whenever a person is assigned to a new role, the system needs to verify if
the new role and the already assigned roles are not mutually exclusive.
Although it is the sim plest variation of the two, it has the disadvantage that it
does notalways refle ct the functioning of the organization.

Dynamic Separation of Duties

Exclusion is enforced at the session level. In its simplest form, our two roles

can be assigned to the same user. The user cannot assume both roles within

his set of sessions. The RBAC sy stem must enforce that the user is logged
out from the *Purchasing Manager” role when he wants o assume the
“Accounts Payable Manager” role. In comparison with the previous \ariation,

‘dynamic separation ofduties’ gives m ore fiexibility to organizatons.

Variations on this theme hawe been defined by the use of object, operational,

history, order -dependent and order -independent based constraints. [1]

Least Privilege principle

The principle of “Least Privilege” implies that a user s given no more
privileges than is strictly necessary to perform his task. There is again a
dimension within this principle as it is possible to statically or dynamically
assign privileges. Corstraints can be placed on privileges so they do not exist
longer than is required to per form a task. This is sometimes referred o as the
“Tim ely Revocation of Trust”.

RB AC Reference Models

Since it has been proven difficult to capture RBAC in one reference model,
different types of RBAC reference models hawe been defined [2] These
models have changed over time and are currently been defined in a proposed
NIST RBAC standard [3]. In a tme span of 10 years, there has been
significant advancem ent in these models. Someone who wants to study these
models can became confused by the different defin itions that were
fashionable at a spedcific point in ime. This is reflected in the way RBAC
features in the reference models hawe been re -ordered overtime.

The definitions from the NIST RBAC standard wil be used in the remainder of
the document. A summary of the differences made to the older RBAC
reference models can be found inthe next section.

The general RBAC model has not changed for a long time and has the
following form:

Priviliged

Rdes Opeations

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The basic concept is that users are assigned to roles and that roles are
associated with privileged operations. This allows users to carry out tasks with

aminmum setof privileges.

Core RBAC

A set of four reference models has been defined. The Core RBAC reference
model, named here RBAC? is defined as follows:

1. In the model, we define ‘users, ‘roles’, ‘privileged operations’ (also
dubbed ‘commands’) and ‘sessions’.

2. Users and roles have an n -to-m relationship (n and m 3 1). One user
can have different roles; one role can be assigned to different users.

3. Roles and operations have also an n -to-m relatonship. One role can
include different privileged operations; one operation can be assigned
to different roles. Operations are being controlled by permissions.

4. Users and sessions haw a 1-toin relationship. A user can have
multiple sessions going on, but a session is only assigned to one user.

These four requirements allov most group -based access control systems to
com pywith the NIST RBAC standard.

Thereis a fith requirement included below.

5. Sessions have a one -to-one relationship with a ‘Role Set Association’.
A ‘Role Set Association’ is a subset of the roles authorized for that
user.

The active Role Set Association at a particular time in asession is referred o
as the ‘Active Role Set’ (ARS). This ‘Active Role Set ' may change during the
lifetime of the session and can be used to enforce ‘separation of duties’.

Example: Consider a real world example where a pdice officer is also playing

basketball in his spare time. He norm ally carries his gun while on duty as a
police officer. Carrying his gun while playing basketball will probably not be

seen as very ethical. The fact that he stores his gun somewhere safe whie

being on duty is considered a normal procedure. There is a dear distinction

between his ‘Active Role’ as a police officer and his ‘Active Role’ as a
basketball player. He does not autom atically hawe the privileges that go with

one role, while heis using a different role. Enforcing only one of both roles to

be active in an ‘Active Role Set’ is the first s tep towards implementing the
‘separation of duties’ principle.

This requirement has been relaxed as the NIST RBAC standard now explicitly
states, “Core RBAC requires that users are able to simultaneously e xercise
pemissions of mutiple roles”. There was a lot of debate on the differences
between a role and a group in the RBAC community. [4] A user in arole was
only expected to execute the privileges attached to this role. Auser in a group

has always the pemmission to execute privleges obtained from dif ferent

2 This bold fontty pewill beused when a RBA Creference node is meant. Regul ar capita | eters will
beusedto tdk ébout RBAC ingeneral.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

groups. With this change in the requirement, groups can now be used as
roles. Our police officer can cary his gun while playing basketball. The fifth
requirement could be interpreted as a constraint to enforce ‘separation of
duties’. In the NIST RB AC standard, this constraint was considered as being
owerly stiict and has been mowved to the ‘Separation of Duty Relations’
reference model.

Hierarchical RBAC

Hierarchical RBAC, abbreviated to RBAcC,, introduces the concept of role
hierarchies . In general, hierarchies are used by organizations © deal with
authorityand responsibility.
Hierarchies can be used to inherit pemrmissions fran a previous role. However,
there is a difference between role pemissions inheritance and pemissions of
two roles active atthe same timein the same session. In the first case, a new
role is created and inherits the privileges of the firstrole. In the second case,
an ‘Active Role Set' cannot be enforced. The latter case boils down to the
discussion on the ‘Active Role Set and the fact that users are allowed to
exercise their pemissions simultaneously as discussed in the previous
section.
The NIST RBAC standard recognizes two types of role hierarchies:
General Hierarchical RBAC
In this case, a role can inherit pemissions f rom multiple different
roles.
Limited Hierarchical RBAC
In this case, a role can inherit permissions from only one imm ediate
descendant.

Static Separation of Duty Relations (SSD)

The next two RBAC reference models introduce the concept of constraints.
Typically, conflict of interests is avoided whenroles are mutually excluded.

Example: The following are tyical cases of such roles: “System
Administrator-User Security Management” and “Purchasing Manager -
Accounts Payable Manager”. A ‘mutually exclusive’ co nstraint will enforce
‘separation of duties’.

Constraints can also play a role in the way RBAC , behawes. Inheritance of
privileged operations can be blocked by a constraint, for exam ple.

This is the reason whytwo types have been defined:

Static Separation of Duty
This is the classic case where a user may be prohibited to be
assigned to a role because of the character of already assigned
roles. This propertyis enforced in an adminstrative way.

Static Separation of Dutyin the Presence of a Hierarchy
This type of relation works in the same way, except that it applies to
inherited roles as well as directly assigned roles.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Dynamic Separation of Duty Relations (DS D)

As can be deducted from the name, constaints are being enforced in a

dynamic matter. Acons traint can be placed on auser session and as a result,

a user can only use one single session. A constraint could enforce all open
sessions to switch to the active role (* role enforcement’) at the moment the
user assumes his role. DD extends the support for the least privilege
principle in the sense that each user needs different permission levels at

different times. DSD makes sure that permissions do not persist beyond the

time that they are required. “Timely Revocation of Trust” is the attained goal

for DSD.

NIST RBAC standard and prior Reference RBAC models

Since some RBAC papers reference earier RBAC reference models, it is

useful to point out the differences of these models with the proposed NIST

RBAC standard.

Core RBAC is equvalent to what was cal led “Minimal RBAC”. [4] “Minimal
RBAC” was a relaxaton of rRBAC,, which included the fifth requirement as
discussed in the Core RBAC section abow. Core RBAC is sametmes

referred to as ‘flat RBAC'.

In RBAC ,, @ user could not exercise all his assigned role pemissions at all
times. The enforcement of an ‘Active Role Set’ was part of the default

requirements.

RBAC, is equivalent with hierarchical RBAC, although there was no difference

between ‘general’ or ‘lmited’ hierarchical RBAC.

Both the SSD and DSD mod els were combined in one model, named RBAC,.
This model addressed all constraints.

RBAC, was the highest foom of RBAC and was the consolidation of RBAC,,
RBAC, and RBAC,.

The relation between these Role Based Access Control Reference Models is
as follows:

RBAC,

SN

RBAC, RBAC,

X

RBAC,

RBAC, has some issues with multiple inheritances supported in the model. The
split of role hierarchies and constraints can lead to inconsistencies. Suppose
two roles are defined as being 'mutually exclusive'. Anew role can be defined
via role hierarchies, which inherits these two ‘mutually e xclusive’ roles.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

RBAC _(Coreor Flat RBAC) RBAC, | RBAC_, | RBAC,,

Minima RBAC @) - - -

RBAC, Om nus execution of all rol e - - -
permissons

RBAC, -) - -

RBAC, - - [} O

RBAC, - Digributed overthe dfferent modds

The objective of the NIST RBAC standard was to include all group -based
access control mechanisms, which were excluded in the earlier RBAC
defintions. Aformal functional specification can be found in appendix 1 of the
NISTRBAC standard. [3]

RBAC within Solaris

Solaris leaves the administrator the choice to im plement RBAC using Access
Control Lists (ACL) or the Solaris RBAC fadcility.

When ACL'’s are used, groups are configured as roles. Auseris amember of
a group and therefore also member of a role. This means that a user will
always be able to exercise all his privileges all the time as is allowed within
Core RBAC.

In most operating systems ®, pemmissions can be set at the user or the group
level. In order to hawe an ACL system function as a RBAC system, only
groups must be used as entries in the ACL. Most systems, induding Solaris,
have no option to enforce this.

Classical Unix

The dassical Unix pemission system is Imited in is functionality. There are
only three groups on which one can place pemissions: the user, the group to
which the file belongs and everyone else (other). An exam ple is shown below:

$ touchfoo
$ls -l foo
-rw-r--r-- 1Erik sysadmin 0 Dec 29 09.06foo

Let's setup a simple role mo del by introducing Mctor and Elizabeth. Victor is
a security operator and Elizabeth works as security officer. Victor and
Elizabeth belong to different groups: Mctor is member of the ‘secops’ group
and Elizabeth is member of the ‘secoffs’ group. Both are members of the
general ‘staff group. The ‘secops’ group has different pemmissions than the
‘secoffs’ group. The ‘secops’ group could be authorized to add, m odify and
delete users, while the ‘secoffs’ group can change passwords *.

Itis possible to enforce ‘separation of duties’ by creating the proper scripts or
programmes. In this example, the security officers will use the script fool,
while the security operators will use foo2 as shown below:

3 Sun Sl aris, MSWindows NT, MSWindows 2000...
* Thisisjust an exanpl eto show how di fferent rolescanb e creatal. Itis not meanttosevea afull -
feaured seaurity role modd .

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

$ls -l

total 6

---s—-X--- 1root secoffs 115Dec 29 09:29fool
---s--X--- lroot secops 150 Dec29 09:34 foo2

As can be seen from the above output, the ‘setuid’ bit has been set on the
files (s’ in fourth position of the pemissions’ set). The ‘setuid’ bit allows the
script to run with an effective userid of 0. So Mctor would not be able to
execute the security officers’ scripts, while Elizabeth will not be abe to
execute security operators’ scripts.

$u Victor

Password:

$ /fool

keh: /Po1l: cannot execute

$ /foo2

Thisisfoo2 -> afil etha is comnonto security opeators!

uid Vidor(103) euid:root(0) gi d(s):staff(10) secstaff(501) sem ps(B03) egid staff(10)
$u Elizabeh

Password:

$ /fool

Thisisfool ->afil ethatis mnon to security officers!

uid Elizabeth(104) euid:root (0) gid(s):staff(10) secgaff(501) secoffs(502) egid:st aff(10)
$ /foo2

keh: /02: cannot execute

The script above is executed with an effective uid O (‘euid:root(0))). Some
commands require that the real uid must be root as well °. There is a
difference between the Bourne shell (/usr/bin/sh) and the Korn shell
(/lusr/binksh) on setting the ud. The Bourne shell will always make the uid the
same as the euid unless the * -p ‘ option is specified. The Korn shell has the * -
p’ option specified as default and wil | use the /etc/suid_profile when the
effective uidis not the same as the real uid.

The implementation of such a model has limited flexibility and som e serious
drawbacks:

1.

If there is a need to have common scripts that need to be executed by

both groups, all users of both groups will have to be members of a third
group (‘secstaff inthe exam ple below).

An administrator has to set -up and maintains various scripts (foo, fool
en foo2), which includes the various commands that should run with

effectiveuid o f 0.

An *Active Role Set’ cannot be enforced. Both Victor and Elizabeth will

always have the permission o execute their scripts.

Permissions are stored with the resource as is the case by setting the

execute pemission. The ‘setuid’ bit can be placed on any file in the
system, although they are generally grouped at one location. This

means that a system administrator has to query the entire system to

have a view on who has what privilege.

® The/usr/bin/passwd is such a command.

© SANS Institute 2003,

As part of GIAC practical repository. Author retains full rights.

$id -a

uid=103(Victor) gid=10(g aff) groups=10(gaff),501(secsaf f),503(secops)

$ls -l foo

---S—-X--- 1lroot secstaff 133Dec29 09:25 foo

$ /foo

Thisisfoo ->afilethat is common to both security operators and officers!

uid Vidor(103) euidroot(0) g d(s):staff(10) secstaff(501) semps(®03) egidstaff(1 0)
$ 2 Elizabeh

Password:

$id -a

uid=104(Elizabe h) gd=10(staff) groups=10(st aff) 50 1(secst aff) ,502 (secoffs)

$ /foo

Thisisfoo ->afilethat is common to both security operators and officers!

uid Elizabeth(104) eui d:root (0) gid(s):2 aff(10) secsta ff(501) secoffs(502) egid:staff(10)

File Access Control List

A new ACL mechanism, named File Access Control List (FACL), was
introduced from Solars 2.5 onwards. The implementation is POSIX 1003.6
compiant. Two operating system commands (“getfacl” and “se tfacl”) exend
the cdassical ACL system. [5] It allows more flexibility than the traditional
pemission bits on a file or directory.

The advantage of using the ‘facl” mechanism is that we can get rid of the
‘secstaff’ group in the previous section (first b ullet in the above-mentioned
drawback list). Permissions can be assigned per group.

© SANS Institute 2003,

$getfal foo*

#ile foo

owner: root
#group: other
user:: X

group:: ---
group:secoffs: --x
group:secops: --x
mask: --X

other: ---

#effective --
#effective --x

#effective —x

U assign pamissionto both
U grouwps

il e fool
#owner: root
#group: other
user:: --X

group:: ---
group:secoffs: --x
fool

mask:r-x

other: ---

#effective --

#effective: —x U onlysecdffs an execute

il e foo2
#owner: root
#group: other
user:: --X

group:: ---
group:secops: --X
foo2

mask:r-x

other: ---

#effective --

#effective: -x U only‘semps’ canexeate

As part of GIAC practical repository.

Author retains full rights.

$id -a

uid=103(Victor) gid=10(staff) groups=10(gaff),503(secops)

$ /foo

Thisisfoo ->afilethatis common to security operators and officers!
uid Vidor(103) evidroot(0) g d(s):staff(10) sem ps(G03) egid staff(10)
$ /fool

keh: /Po1l: cannot execute

$ /foo2

Thisisfoo2 ->afilethatis comnon to security opeators!

uid Vidor(103) evidroot(0) g d(s):staff(10) sem ps(®03) egid staff(10)

Some observations

The group owner of the file does not hawe to be related to the target

executable group.

The facl mask field holds the maximum value that can be achieved. In
the abowe files, the mask field equals ‘r -w’ and the group field equals
‘—X. This leads to an effectiwe field of * —X.

When a ‘fad’ pemission is being set, there will be a '+’ next to the

pemission bits.

$ls -l

total 6

---S------ + lroat caher 128 Dec 29 9:27 foo

---S------ + lroat caher 115 Dec 29 09:29 fool
---S------ + lroat caher 116 Dec 29 09:29 foo2

File Access Control Lists are setwith the following conmands:

#stfad -su:i--x0::--,g:secoffs: --x,g:secops: --x,m:--X,0.--- foo
#stfad -su::--x0::--,g:secoffs: --x,mr-x,0:--- fool
#etfad -su::--x,0::--,9:secops: --X,mr -x,0:--- foo2

RBAC using the Solaris RBAC model

The RBAC model on Solars is an implementatio n of the RBAC, reference
model. The main attributes of the Solaris RBAC model are:

1. Although it does support an ‘Active Role Set’, only one role can be
placed in the ‘Active Role Set. The set cannot be changed
dynamically.

2. Itdoes not supportrole hierarc hies (RBAC,,).

3. Itdoes not support RBAC_, Of RBAC,, . The security administrator m ust
make sure that two mutually exclusive roles are not assigned to the
same user.

The module responsible for this native support is named '‘pam_roles' and is
located in Musrlibsecurity$ISA directory. The module can be activated or
deactivated by configuring the appropriate entry in the /etc/pam.conf directory.
It is possible o replace ths module by a customized \ersion. A sampe
version is available from the Sunweb si te.[6]

During a normal installation, the modue is activated and the /etc/pam.conf
directory contains the following entries:

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

$ grep pam_roles /etc/pam.conf

login account requisite lusrflib/security /§ SA/pam_rdes.so.1
dtlogin account requisite Jusrlib/security /$ISA/ pam_rdes.so.1
other account requisite /usrflib/sec urity/#SA/ pam_roles.so.1
ppp account requisite {usrllib/ security /§ SAlpam_rdes.so. 1

A complete documentation on how to set -up the Solaris RBAC facilityi s found
in[7]. We will only discuss the main configuration files.

In order to manage a role, three commands are used: roleadd, roledel and
rolemod. These commands manipulate the following four system files:

1. /etc/user_attr associates roles and profiles to users
2. letc/securityauth_attr container for authori zations

3. letc/securityprof_attr container for right profiles

4. /etc/securityexec_attr container for execution profiles

Aparticularity of the Solaris RBAC facility is that a role s created as aregu lar
userid. Howevwer, it is not possible o login directly using this role -userid. The
su command has to be used o change to the role.

Solaris RBAC extends the permission model by introducing “right profiles”,
“‘commands and their security atiributes” and “ roles”. Al RBAC privileges can
be managed in a centalized way (last bullet in the above -mentioned
drawback list).

The different assignment possibilites of both the ACL and Solaris RBAC
facility are depicted in the diagram below. As can be seen, right p rofiles,
authorizations and commands can be assigned to roles or direcly to users.
ACL'’s can be assigned to users, groups and roles. The m ultitude of posside
assignment relations is the primary reason that an existing RBAC set -up can

be confusing attimes.
Right Pr dfiles
prof attr auth_attr
s

Fles
Directories

Pa missions
Stuid- bits
FACL

Attributes

Existing ACL system

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

In order to continue our example, the following right profiles °have been
created:

$gep SEC/etclsecurity/* attr*

/etc/seaurity/exec_attr: SECO FF:suser:cmd:::/ug/bi n/passwd:uid=0
/etc/security/exec_attr: SECO FF:suser:cmd:::/export/h o me/ Erik/giac/secoff/ foo: eui d=0
/etc/seaurity/exec_attr: SECO FF:suser:cmd:::/export/home/ Erik/giac/secoff/ fool:euid=0
/etc/seaurity/exec_attr: SECOP: suser: cmd:::/usr/shirn/useradd: euid=0
/etc/seaurity/exec_attr: SECO P:suser: cd:::/usr/sbinusermod euid=0
/etc/seaurity/exec_attr: SECOP:suser: cmd::/usr/sbin/usedd :euid=0
[etc/seaurity/exec_attr: SECOP:suser: cmd:::/export/home Erik/gi ac/semff/foo:aiid=0
[etc/seaurity/exec_attr: SECOP:suser: cmd::/export/homd Erik/gi ac/se coff/bo2:euid=0
/etc/seaurity/prof_attr: SECOP:::Security Operator::help=SecOp.htm
/etc/seaurity/prof_attr: SECOFF::: Security Officer::hel p=SecOff.ht ml

Assigning right profiles to users directly

This option is advised against in the Sun documentation ’: “Right profiles and
authorizations can also be assigned directly to users. This practice is
discouraged because it enables users to make mistakes through inadvertent
use of their privileges”. Although this is correct, this practice is allowed in the
RBAC, reference model.

Abigger problem is that this option effectively bypasses the creation of roles.
The role is associated with the group setting as is being described in the
RBAC. model. Pemissions are active at all times. So, it looks like we can
implement an effectie RBAC model by ‘augmenting’ the ACL system with
privileges assigned via right profiles or authorizations. This seems to create a
model that is com pliant with the RBAC _ reference model. By the way, this is a
case where the wo methods to implem ent RBAC on a Solaris system are
mixed. The ‘roles’ are in fact borrowed from the ACL -based group access
control, while the pemissions are added fran the Solaris RBAC facility by
assigning right privileges or authorizations.

However this set-up has a major limitaton. It violates one of the RBAC
principles since privileges are assigned directly to the users and not to the
roles (hence groups).

Example: Suppose we have 4 users to whom wewant to assign 1right profile
and 1 authorization. If we use a role to assign the pemissions, we have 6
relations: 4 users connected to one role, one role connected to 2 privileges.
For N users and M permissions, there is an N +M relation. In the event we
assign the permissiors directly to the users, we will have 8 relati ons. Each
user will have 2 privileges. So for N users and M pemissions, there is an
NxM relation. This is an order of magnitude higher (O(N ?) versus O(N)) than
the previous case. If there are a lot of users and pemissions, these relatiorns
can becom e quic kly unm anageable.

Atter assigning the privileges to our user, we can invoke the following session:

$au Victor

®Weonly assign“ commandswithsecurity attributes’ inthisexanple. Solaris has also the concept of
authorizations, which alows GUI appli cations to check ©r permissions in an equivdent mamer. A
standard setof authorizations (‘ solaris*’) isdeined within the Sd aris system.

" [6] Paye247

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Password:
$profiles -l

SEQOP:

/usr/bin/useradd euid=0
/usr/sbin/usermod euid=0
/usr/sbin/userddl euid=0

/export/home/ Erik/gi ac/secoff/foo euid=0
/export/home/ Erik/gi ac/secoff/foo2 euid=0
All:

*

The ‘profiles’ canmand shows security attributes that have been set for files
‘foo’ and ‘foo2’. The ‘euid=0" keyword is equivalent to setting the ‘setuid’ -bitin
the previous examples. Itis possible o use the 'uid=0' keyword in order
have a real uid of 0. Itis also possibe to specify different uid values.

We can assign specific commands that need root perm issions to a specific
profile (second bullet in our abowe -mentioned drawback list).

$roles
roles: Mictar : No roles

Since the profile has been assigned directly to the user, no roles are assigned
to the user. The user Mctor directly has the permission all the time.

$ls -l

total 6

) GRS lroot cher 128 Dec 29 9:28 foo
) GRS lroot cher 116 Dec 29 9:30 fool
) GRS lroot cher 116 Dec 29 9:30 foo2
$ pwd'/foo

Thisisfoo ->afilethatis common to security operatorsand officers!
uid Vidor(103) euid:root(0) g d(s):staff(10) sem ps(503) egid:staff(10)
$ pwd'/fool

pfksh: /export/home/Erik/gi ad'secoff/ fool: cannot execute

Note that the ‘pfksh’ is used. The 'profile Korn' shell s smilar to the Korn shell

with the additonal characteristic that it can understand the different
authorization requests needed to support the Solaris RBAC facility. Similar
shells exst for each of the traditional shells. The names of the Bourne and C
counterparts are ‘pfsh’ and ‘pfcsh’. All shells can execute the ‘pfexec’
command. This program takes arguments from the shdl and executes them
with spedified securityattributes obtained from the execution profile.

$ pwd'/foo2
Thisisfoo2 ->afilethatis omnontose curity opeators!
uid Vidor(103) euid:root(0) g d(s):staff(10) sem ps(503) egid:staff(10)

$id -a

uid=103(Victor) gid=10(g aff) groups=10 (gaff)

$useradd joe U adding user ‘joe’
$usernod s/ug/binkshjoe U change hisdéfault shdl

$gep joe/etc/passwd
joe x:105:1::/home/joe:/usr/bin/ksh

$ passwd joe U tryingto change passwor d
passwd (SY STEM): Permission denied

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

passwd (SY STEM): Can't changeloca passwd file
Pemisson denied

$a Elizabeh
Password:
$profiles -l

SEQOFF:
/wsr/bin/passwd uid=0 U passwd and in privileges
/export/home/ Erik/gi ac/secoff/foo euid=0
/export/home/ Erik/gi ac/secoff/fool euid=0

All:

*

$oles

roles: Hizabeth: Norol es

$ pwd'/foo

Thisisfoo ->afil ethat is common to security operators and officers!

uid Elizabeth(104) eui d:root (0) gid(s):g aff(10) secoffs(502) egid:staff(10)
$ pwd'/fool

Thisisfool ->afil ethatis mnonto security opeators!
uidElizabeth(104) eu d:root (0) gid(s):staff(10) secoffs(502) egid:st aff(10)
$ pwd'/foo2

pfksh: /export/home/Erik/gi ad'secoff/ foo2: cannot execute

$ passwd joe U changing Jo€s password
New password:

Re enter new password:

passwd (SY STEM): pasawvd successfully changed for joe

Although this set-up is frequently used as an RBAC example in literature

[8][9], it volates one of the RBAC principles due to the direct assignm ent of

user privileges. The management advantage of assigning pemissions to roles

is lost. The set-up is only viable if a small numnber of users woud receive a
small number of direct assigned privileges. This can be considered

acceptable for the assignment of system userid’s that are used in background

jobs, i.e. daemon userids that require certain privileges. However , if the
num ber of these userid's and/or privileges becomes large, the management

grows with an order of m agnitude com pared to the next set -up.

Assigning rolesto users

In order o assign roles to users and implement an effective rRBAC_ model, two
roles are being created: ‘mr_secop’ and ‘rr_secoff'.

$au Victor
Password:
$roles
Ir_secop
$profiles -l

All:
*

$urr_secop U needto changetorole
Password:
$profiles -l

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SECOP: U more privileges added
fusr/sb infuseradd euid=0
fusr/sdin/usermod euid=0
fusr/sbin/userddl euid=0
/export/home/Erik/gi adsecoff/foo euid=0
/export/home/Erik/gi ad'secoff/foo2 euid=0
All:

*
$ pwd'/foo
Thisisfoo ->afilethatis common to security operators and officers!
uidrr_secop(102) euid:root(0) gid(s):secops(503) egi d:ecops(503)
$ pwd'/fool
pfksh: /export/home/Erik/gi ad'secoff/ fool: cannot execute
$ pwd'/foo2
Thisisfoo2 ->afilethatis omnonto security opegators!
uidrr_secop(102) euid:root(0) gid(s):secops(503) egi d:ecops(503)

Using this model, we can define an rs Ac_ reference model and enforce an
Active Role Set (third bullet in the above -mentioned drawback list). One
important thing to note is that all permissions (ACL's) hawe to be set to the
role and that there is no inheritance of privileges. In the previous examples,
all pemmissions were active.

The Solaris RBAC facility is limited in regard to the NIST RBAC standard
RBAC, reference mod d as it only allons one role to be inthe ‘Active Role Set'.
Multiple roles per user can be activated, but they need to be separated in
different sessions.

Auditing
When auditing is active via the Basic Security Module (BSM) module, we can

track who exec uted the different commands as shown below. Changing roles
does notchange the 'audit id.

ps -edf |grep secop

root 1342 798 022:08:19pts/3 0:00 grepsecaop
rr_secop 1337 1335 0 2:07:47 pts/4 0:00 pfksh
#auditconfig -getpinfo 1337
auditid=Eik(100)
process presdedion mask = ex,|0(0x40001000,0x40001000)
termind id (maj,min host) = 0,0,sundance(172.31.201.7)
audit session id =313

Conclusion

Solaris makes it possible to build various RBAC implem entatons. Having a

Solaris RBAC facility on one hand and the possibility to implement a RBAC

system wsing Discrete Access Control Lists (DACL) on the other hand, can be

confusing in understanding what part of the ACL and/or RBAC facilityis being

used.

The choice of building an RBAC model u sing one of both modek is entirely
left open as an im plementation choice.

The assignment of RBAC right privileges directly to users is not considered as

being a good practice. It violates one of the RBAC principles that says that

pemissions should be as signed to roles or groups. The only reasonable use
for this set-up is the assignment of right privleges to daemon userid's
requiring certain privileges. Daemon userid’s nomally come in small sets.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Since the number of relations is in this case an order of magnitude higher,
security maybecome unmanageable for large sets ofuserid’s and privileges.
Solaris RBAC has some major limitations, as it does not include the possibility
to use role hierarchies and role constraints. RBAC reference models such as
‘General and Limited Hierarchical RBAC and ‘Static and Dynamic Separation
of Duty can only be supported by heavily extending the ‘pam_roles’ module in
the RBAC facility. Solaris RBAC only allows one role from the ‘Active Role
Set’ to be active in the same sessi on.

Conwergence is on the way between the various RBAC reference modds as
the National Institute of Standards and Technology (NIST) has proposed the
fist RBAC standard in 2001. Hopetfully, vendors will endorse the NIST RBAC
standard and release compliant products in the near future. This will limit the
actions that users of a computer system can perform and help security
administrators to have more comprehensive vew on the distribution of
privileges.

References
1.M.E Zurko & R. T. Smon. “Separationof Duty in Role-Based Environments’.
1997
U RL:http:/citeseer.nj.necconm/cache/papersics/22050/ hitp:zS2zSawww. memes
oft.comzSzadagez S sep -duty pdf/simon97separ &ion.pdf

2.Ravi S Sadhu & d. “Role Based A acess Contrd M odd”. October 26, 1995
U RL:http:/citeseer.nj.neccom/cache/papersics/872 http.zSzz Sawww list.gnu.e

duzSzjournalszSzcomputazSzps verzSzi94rbac pdf/sandhu96rolebased.pdf

3.Nationd Institute of Sandards and Technology (NIST). Proposed NIST RBAC
standad. A ugust 2001
URL:http:/csrc.nig.gov/rbackbacSTD -ACM pdf

4. Jom Bakley. " Compaing Smple Rd e Based Access Control M oddsand A acess
Contrd Lists”. August 11, 197
U RL:http:/citeseer.nj.neccom/cache/papersics/20857/ http:zSzzSawww.itl.nist.
woVvzSdiva7zS S affzSzbarkl eyz Siir f.pdf/barkl ey 97comparing.pdf

5. Sun Solaris8 Product D ocumentaion. * sstf ecl” manpages. July 23, 1998
U RL:http:/docs.sun.cam/db/doc/806 0624/G 9vek5ge=gefad& a=view

6. SolarisPAM documertation. “ Pluggebl eA uthertication M odules® .
U RL: http:/www s.sun.com/software/solaris/pamy/

7. Sun Solaris 9 Product D oaumentdion. “ System AdminidrationGuide — Security
Svies”. May 2002

PartN 0 806-4078-10 - Chaptes 18 19 ad 20

U RL:http:/docs.sun.cam/db/doc/816 -4883 g=secur ity +services

8. Sun Solve FA Q ID 3280. “ Example of Role Based Access Control (RBA Q)
URL: htp:/sunsolve.sun.convprivae -
cd fretrievepldoc=fags%2F32808 zone 32=RBA C January 03, 2001

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

9. Ocdhirpinit, Chrigine “RBAC intheReal World”. September 16, 2002
URL: htp:/rr.sansor g/casestudi e/ RBA C.php

10. M aurice J. Bach. “ The design of theU nix Operating System”. 1986
PrenticeHdl: ISBN 0-13-201757-1

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

