
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Margaret Reedy
Security Essentials, Version 1.4b

ORACLE’S VIRTUAL PRIVATE DATABASE

ABSTRACT

Databases are often well behind the organization’s security perimeter, and while flaws
in the database software provide avenues of attack to outsiders, the more likely source
of threats against the confidentiality and integrity of data stored in the database are from
insiders. Some can be unintentional, as when end-users access the database using
software that the application developers did not anticipate and account for. This is the
‘application security problem’. If weaknesses exist, there is always the possibility that
knowledgeable users will exploit them for malicious purposes. Furthermore, recent
incidents like the Breeders’ Cup scandal illustrate that not all super users are
trustworthy.

Oracle‘s fine-grain access features help protect data from accidental or intentional
misuse by legitimate users inside the security perimeter. This paper takes a look at the
components that make up Oracle’s ‘Virtual Private Database’ and how they give
developers and database administrators tools to protect the data that is often of crucial
importance to the organization. Finally, it looks at some of the new features available in
Oracle 9i and as additional cost options.

THE “APPLICATION SECURITY PROBLEM”

“When access control is embedded in an application (instead of being enforced directly
on the data), users who have access to ad-hoc query or reporting tools can bypass the
security mechanisms.”1

Why would access control be embedded in an application? In Oracle, privileges are
granted at the table level. Someone who has the ‘update’ privilege against a given table
can update any or all rows in that table. In practice, most applications need to put
further restrictions on the update privilege. For example, in a Human Resources
application, it might be desirable for an employee to be able change his / her home
address, but we probably would not want one employee to be able to change another’s
home address, unless that employee worked in Human Resources. Many applications
build these business rules into the user-interface programs.

“Oracle 9i builds upon over two decades of development and deployment “.2 When
Oracle’s relational database was introduced, the paradigm was to separate data from
business logic on the assumption that data structures were less likely to change than
the more volatile business rules that governed operations on that data. The client-
server model pushed business logic to the client to reduce network traffic and improve
response time by doing data validation locally. The application server model took this a
step further by having users connect to the application rather than the database, and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

having the application connect to the database as a single user with all necessary
privileges.

The application security problem occurs when a user accesses the database with
software other than the application’s user-interface programs. This might be an ad-hoc
reporting tool or a software package with ODBC or ADO connection to the database.
Because the privileges are granted within the database, the user who connects to the
database with software other than the application interface bypasses the restrictions
built into the application interface. In the above example, the user would have sufficient
privileges to update all home addresses, not just his / her own address.

When business rules are not enforced, the integrity and confidentiality of the database
is threatened. A user who knows enough to be dangerous might offload an entire table
through an ODBC connection, modify a few records, and then replace the entire table,
overlaying changes made in the interim by other users. Older applications may use
code built into the interface to perform more complicated validations, along with
restricting access. For example, the business rule may require that a unit supervisor
enter both the closing date and reason to close a matter. Via a third party connection,
any person with update privilege could enter the closing date for any matter in the table,
thereby introducing a data anomaly (a closed matter without a reason) while
circumventing the organization’s division of responsibil ities (supervisors may only close
matters assigned to their own units). While database triggers can help address the
validation issue by moving the validation from the application to the database level,
database triggers don’t check if the user is a supervisor in the unit the matter belongs
to.

The ‘select’ privilege does not carry the same possibility of damaging data, but
confidentiality is at risk. Business rules might dictate that a person should only be able
to see the accounts assigned to him / her, but a reporting tool won’t be aware of that.

In these circumstances, even well-intentioned users can violate confidentiality and
cause inaccurate data to be committed to the database. Motive may help in identifying
sources of possible attacks, but lack of motive doesn’t guarantee security.

Before Oracle introduced the concept of Virtual Private Database, developers came up
with several ways (mostly relying on security through obscurity) to protect against the
application security problem. “Hack Proofing Oracle” 3 describes these methods and
explains why each falls short.

THE VIRTUAL PRIVATE DATABASE

At first glance, the terms ‘row level security’, ‘fine grain access control’ and ‘virtual
private database’ seem to be interchangeable.

Row level security is the goal of limiting access to the individual rows in a table to
appropriate users. Fine grain access control is a method of achieving row level

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

security. Oracle’s Virtual Private Database is a feature that combines fine grained
access control with secure application context to provide a row level security that
presents to each database user only the data that the user should see, based on known
characteristics of the user.

Davison describes the Virtual Private Database as “users - from different companies,
divisions, or groups, and with different roles and a variety of access privileges - have
secure access to their own slice of data, as if it were physically partitioned”.4

 In a nutshell, the VPD is a combination of packages that work together to modify the
‘where’ clause of an SQL statement as it is executed based on characteristics of the
user executing the statement. The modified ‘where’ clause usually returns fewer rows
of the table than the original ‘where’ clause would. In other words, the FGAC packages
append conditions to the ‘where’ clause to limit the rows returned.

The main components of the VPD are the application context and the security policy.
Before delving into details, we’ll review some terms and sketch how these components
work with each other and other Oracle features to control access to tables.
The VPD is used in conjunction with roles, which are groupings of privileges. Roles are
still necessary, because they grant the user privileges to the tables that are named in
the ‘from’ clause of the SQL statement. The role determines which tables the user has
access to. The security policy determines which rows within a table the user has
access to.

Both the application context and the security policy are associated with PL/SQL
packages. Packages are collections of procedures and / or functions. Functions are
executable statements which accept input parameters, process them and return values
to the procedure which called the function. Packages are stored in the database. So,
packages are collections of executable code stored in the database.

The application context captures pertinent characteristics of the user. The security
policy contains instructions for writing ‘where’ clauses for specific tables. The security
policy refers to the application context to build the ‘where’ clauses based on the
characteristics of the user.

APPLICATION CONTEXT

The application context is the component that specifies the characteristics of the user
that are used in determining what rows the user should be allowed to access. There
are two database object types involved: the ‘context’ and a ‘package’ which implements
the context. Let’s deconstruct some more formal definitions.

“Application contexts are secure namespaces that identify the current values for the
application-specific attributes you designate.”5

“A namespace is an area in which no two objects can have the same name.”6

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

What this means is that “context names are unique across an entire database, to
ensure that contexts can’t be duplicated or spoofed by individual users, either
inadvertently or maliciously”.7 Database object names, such as table names, are
usually qualified by the name of the user that creates the object, called the ‘owner’ or
‘schema’. When a user tries to reference an object name that is not qualified with an
owner name, Oracle assumes that the user owns the object. If contexts followed this
convention, a user with the ‘create any context’ system privilege would be able to
substitute a private context to elevate his / her privileges.

Instead, all application contexts are owned by the user ‘SYS’, regardless of which user
executes the ‘create any context’ statement.

The ‘create any context’ statement simply associates the context name with a package.
It is the package that specifies the which attributes will be used to determine whether
the user should have access to a given row, and populates the variables for the user’s
session.

The package is a PL/SQL program which defines and initializes variables which
describe the user. For the earlier example of the business rule stating that the a unit
supervisor may close matters for his / her own unit, the variables needed would include
the user’s job title and unit. This information would be selected from the application’s
tables. The package would include a ‘dbms_session.set_context’ statement that
essentially commits the variable values to memory.

Information could also be selected from the data that the system collects about the user
session, including the name of the user logged in and the IP address. USERENV is “a
special context namespace, the user environment, which is automatically created by
Oracle”8. (Just to confuse matters, USERENV is also a function.) When USERENV is
used as a context namespace, the function SYS_CONTEXT is used to retrieve
information from it.

“An application context functions as a cache for repeatedly used application-oriented
information.” 9 That is, once the context is initialized for the user session, the variables
describing the user remain in memory for reference by the security policy throughout the
session, or until the context is explicitly refreshed.

Recapping, the package which implements the application context gathers information
about the user from either application tables or from the system’s session data and
holds that information in memory.

Most articles on this topic recommend that the application context be set when the user
connects to the database by means of a database trigger. If the context is set after
connection by the application code, it may be possible to bypass the security policy
restrictions, depending on how the policy is written.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SECURITY POLICY

The security policy is the component that builds the dynamic ‘where’ clauses when a
SQL or PL/SQL statement is executed against a table. There are two parts involved:
the ‘policy’ and a ‘package’ which implements the policy. The security policy package
refers to the application context when building the ‘where’ clauses. Again, Let’s start
with some more formal definitions.

The policy is a named association between a schema and object and the function that
builds the ‘where’ clause for that object. The policy also specifies which types of
statement (SELECT, INSERT, UPDATE and DELETE) are governed by the policy.10 If
a policy exists for a given table, the database knows that it has to use the function to
modify the ‘where’ clause of any statement executed against the table. The policy is
technically not a database object, but policies are tracked in the DBA_POLICIES table
in the data dictionary.

The security policy package is a PL/SQL program that contains the procedures and
functions that build the modified ‘where’ clauses. This is called “dynamic query
modification”.11 “... (A) user directly or indirectly accessing a table ... with an associated
security policy causes the server to dynamically modify the statement based on a
“WHERE” condition (known as a predicate) returned by a function which implements the
security policy”.12

The security policy package often begins with a procedure that initializes variables used
in determining what the user should have access to. This procedure may use the
‘SYS_CONTEXT’ function to obtain values from the user’s application context.

But the heart of the security policy package are the functions that build the predicate.
Suppose we want to restrict employees to viewing their own personal data for
verification purposes, but need to allow employees in Human Resources to view all
personal data. The generic SQL statement would read:

select home_address
from emp_personal_data_table
where [predicate }

For most employees, the predicate might read ‘emp_userid = userid’. This would allow
an employee to view his / her own home address.

For an employee working in the Human Resources bureau, the predicate might read ‘1
= 1'. This would allow the HR employee to see all addresses because the condition is
always true.

Obviously, real world functions would contain much more complex ‘if’ statements,
depending on the complexity of the business rules. Good programming practices
dictate that the function should in some way account for users who do not meet any of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the conditions in the ‘if’ statement. Assumptions have always been dangerous in
computer code, and the security policies are no exception. The more explicit the
conditions in the policy, the more legible and robust the policy will be.

STEP-BY-STEP ARTICLES

The following articles provide step-by-step guides along with sample code to illustrate
the process of setting up a VPD. All are helpful.

• “Virtual Private Databases (VPD)”13 provides a very simple, succinct illustration of

how the various pieces work together, including steps for testing the policy. This
article recommends granting the execute privilege on the security package to
PUBLIC.

This may conflict with the advice from “Hack Proofing Oracle” : “Revoke as many
packages from PUBLIC as possible. Revoke as many privileges and roles from
PUBLIC as possible. Ensure end users cannot execute packages that might
compromise underlying system security”.14 An alternative is to grant the
privilege to execute the security policy package to one of the application’s roles,
rather than to PUBLIC. The users who are given access to the application’s
tables and views are also given permission to execute the security policy
package; others are not.

• Mary Ann Davison’s “Creating Virtual Private Databases with Oracle 8i”15

describes a four-step process, using an order entry system as the example.
This article includes background on why you would want to use VPD and
suggestions for enhancing security, and its blend of introductory theory and
practical example is an excellent starting point.

• Roby Sherman’ “Internet Security With Oracle Row-Level Security”16 walks

through a manager / employee example in four steps with lots of explanatory
notes in the code samples.

• Michael R. Ault’s “Managing Row Level Security in Oracle 8i”17 describes a five-

step process for a graphics application. The example itself is not as intuitive as
others, but the article includes a summary of usage guidelines and an
explanation of the syntax of the DBMS_RLS package that is used to create and
maintain policies.

 •Steven Feuerstein in Guide to Oracle8i Features18 includes a chapter called

“Deploying Fine Grained Access Control”. The example, a health care system
used by doctors, patients and regulators, follows a explanation of the statements,
procedures, functions and packages used to build the security policy. This is
more detailed than the articles mentioned above, and includes debugging tips.

• Douglas Scherer et al in Oracle8i Tips & Techniques19 also devote a chapter

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

called “Security” to describing the virtual private database features. The example
is a human resources application. This also contains lots of detail and
suggestions for ease of management.

TIPS, TRICKS, CONSIDERATIONS AND CAVEATS

The step-by-step articles all try to demonstrate the process in simple terms. Most allude
to possible complications in the world beyond the textbook examples. The following is a
compilation of suggestions, some explicit and some suggested between the lines.

• “...the ability to create a security context is a separate system privilege; only

suitably-privileged users are able to create a context.”20 As always, good
security practice requires that some thought be given to which groups of users
(developers, DBAs, schema owners) should be given the privileges needed to
create a security policy.

• “...it's a good idea to have the policy function owned by a system security officer,

to prevent a developer or user from inadvertently or maliciously dropping a policy
from a table.”21 That is, the security policy should be created by a schema / user
other than the schema which owns the tables and views protected by the policy.
There should be restricted access.

• Security policies need to take into account parent-child relationships between

tables. Applications may force users to retrieve information from the parent or
master table first before selecting from the child or detail tables.22 Again, the
policy needs to be written on the assumption that the user is bypassing the
restrictions built into the application.

• “If the function returns a zero length predicate, then it is interpreted as no

restriction being applied to the current user for the policy.”23 The principle of
least privilege would suggest that security functions should be written to provide
explicit access to users meeting certain conditions, and to provide no access to
the users who fail to meet any of those conditions. Accordingly, a ‘none of the
above' option should build a predicate that will deliberately fail to retrieve any
rows from the table. The code examples in the step-by-step articles show
several ways of accomplishing this.

• “SYS user is not restricted by any security policy.”24 The implication here is that

other users, including SYSTEM, are. This may affect exports performed by
SYSTEM. The schema which owns the tables and views may also be restricted
by the security policy. This may require some adjustment in the assumptions
made by developers who are used to the schema owner automatically having full
rights to every row of every table. There is an EXEMPT ACCESS POLICY
system privilege, but as with any system privilege, it should be used judiciously.

• Security policies need to account for super users’ activities. Many applications

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

require batch processing. Some user, frequently the application owner, must be
authorized by the security policy to perform the necessary updates on all rows of
the table.

• It is possible to construct a security policy function that causes an infinite loop.25

Suppose information from the employee table is used in determining which rows
the user can access, and that the security policy function which protects the
employee table needs to query the employee table to find that information. The
suggested remedy is grant access to the table only to the security manager user
which creates the policy, and to have all other users access a view of the table.
The security policy functions for the view would select the attributes which
determine access from the original table.

• Errors in the application context invoked by a database trigger on logon could

prevent all users from connecting to the database.26 As security policies do not
apply to the user SYS, SYS is able to come to the rescue.

• It is possible to create a context using a schema and package that does not

exist.27 This can cause confusion and name conflicts, particularly in the
development environment, unless there is a periodic procedure to find and
remove the contexts that refer to phantom schemas and packages.

ORACLE 9I ENHANCEMENTS

The basic VPD available in Oracle 8i applies a policy for a given user, regardless of
which application the user is using to access the database. Oracle9i offers some
enhancements, particularly for the n-tier application model.

Partitioned FGAC allows for different policies to be applied to the same tables and
views for the same user, depending on which application the user is using. This allows
applications to use 3rd party software tools, such as reporting tools. It simplifies
development because the developers of different applications using the same data don’t
have to coordinate their efforts to define a single policy that addresses all possibilities.
The server detects which software is accessing the data during a given session, and
activates the appropriate policy. Better yet, when in doubt, the server concatenates all
policies so that when no specific policy is in force, all policies are in force.28

The global application context allows an application server program to identify an
end-user who is connecting to the application as if that end-user were connecting
directly to the database. This is especially good for auditing activity at the database
level. Otherwise, the application has to duplicate functionality that is available in the
database, which increases cost of development and maintenance.29

Oracle9i Label Security is an additional cost option that is useful when the
characteristics of the data to be protected are not sufficient to describe the data’s
sensitivity. “Oracle Label Security uses the application context functionality of the VPD

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

product”30 , but where FGAC uses a dynamic predicate, OLS uses labels applied to both
the data and to the users to control access.31

“Oracle Label Security is based on data element labeling concepts used by government
and defense organizations to protect sensitive information and provide data
separation.”32 One of the elements of the label is the sensitivity of the data. The other
elements of the labeling scheme are ‘compartment’ and ‘group’. These are likely to be
the attributes similar to ones a FGAC security policy would use. When individual rows
in a given compartment and group have different sensitivity levels, these compartment
and group characteristics are not enough to identify which users should have access to
the rows.

Spy movies have made us all familiar with ratings like ‘classified’ and ‘top secret’, and
we are also comfortable with the idea that a person with ‘top secret’ clearance would be
able to access information at all sensitivity ratings up to and including ‘top secret’. The
sensitivity hierarchy, in combination with policies defined by the application context,
provides an extra layer of protection.

OLS includes an EXEMPT ACCESS POLICY system privilege, which provides a way to
exclude a user from the security restrictions.33

Oracle-Base provides a simple step by step guide to setting up an Oracle Label Security
policy.34

FINE GRAIN AUDITING

One of the insider problems mentioned at the start of this paper was the super user who
uses his / her privileges inappropriately. The principle of least privilege and separation
of duties help prevent problems in this area, but there also needs to be a way to detect
whether there have been violations of policy. Auditing is a tool that can help, but it often
generates so much data that it is more useful for proving a suspected problem than
flagging one for investigation. Loney recommends “enabling auditing for certain key
events, reporting on those events frequently, and truncating the SYS.AUD$ table
regularly” as one of his six tips for protecting an Oracle database.35

Fine grained auditing is a tool that can help identify key events, particularly when there
are concerns about the privacy of the data. “Oracle FGA provides facility to identify
abuse of legitimate user privileges and possible intruders while reducing the volume of
unnecessarily audit data that would normally be generated by turning on full -blown
auditing.” 36

The concept is similar to fine grain access control. The fine grain auditing policy defines
the schema and object to be protected, a condition that will trigger an audit entry, and
the information to be captured for the audit entry. FGA identifies conditions that would
classify the row as sensitive, and then reports specific actions against the sensitive
rows. For example, a law enforcement agency might want to be alerted whenever

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

someone attempts to look up the license plate of one of its undercover vehicles.

SUMMARY

“The compromise between enabling appropriate database access and maintaining tight
security against unauthorized access is the enduring dilemma of the database
administrator”. 37

Oracle’s Virtual Private Database features and related products give developers and
database administrators powerful tools to protect the confidentiality and integrity of the
organization’s most valuable data.

REFERENCES

Ault, Michael R., TUSC. “Managing Row Level Security in Oracle 8i”. June 2001.
URL: http://www.quest-pipelines.com/newsletter-v2/rls.htm

Browder, Kristy and Mary Ann Davison. “The Virtual Private Database in Oracle9i R2 -
Understanding Oracle 9i Security for Service Providers - An Oracle White Paper”.
January 2002.
URL: http://otn.oracle.com/deploy/security/oracle9iR2/pdf/VPD9ir2twp.pdf

Davison, Mary Ann. “Creating Virtual Private Databases with Oracle8i”. Oracle
Magazine. July 1999
URL: http://www.oracle.com/oramag/oracle/99-Jul/49sec.html

Davison, Mary Ann. “The Need for Granular Access Control”. Secure Business
Quarterly. Volume Two, Issue Two, Second Quarter 2002.
URL: http://www.sbq.com/sbq/app_security/sbq_app_granular_access.pdf

Feuerstein, Steven. Guide to Oracle8i Features. O’Reilly & Associates, Inc, 1999.
p.153-170

Loney, Kevin. “Protecting Your Database”, Oracle Magazine, May 2000.
http://www.oracle.com/oramag/oracle/00-May/index.html?o30sec.html

Oracle-Base, “Oracle Label Security (OLS)”,
URL: http://www.oracle-base.com/Articles/9i/OracleLabelSecurity9i.asp

Oracle-Base, “Virtual Private Databases (VPD)”, URL: http://www.oracle-
base.com/Articles/8i/VirtualPrivateDatabases(VPD).asp#SecurityPolic
ies

Scherer, Douglas, William Gaynor, Jr., Arlene Valentinsen, Xerxes Cursetjee. Oracle8i
Tips & Techniques. Osborne / McGraw-Hill, 2000. p.193-217

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Sherman, Roby “Internet Security With Oracle Row-Level Security”
URL: http://www.interealm.com/roby/technotes/8i-rls.html

Sherman, Roby “Implementing Data-Level Monitoring With Oracle Fine-Grained
Auditing” .
URL: http://www.interealm.com/technotes/roby/fga.html

Smith, Howard. “Hack Proofing Oracle”.
URL: http://otn.oracle.com/deploy/security/pdf/oow00/orahack.pdf
(Note: Oracle Technology Network (otn) requires a user account and password)

Ziola, Brad. “Label Based Access Control vs. Fine-Grained Access Control for
Implementing a Virtual Private Database”. March 2002.
URL: http://www.managedventures.com/images/OLSFGAC.pdf

ENDNOTES

1. Davison, “The Need for Granular Access Control”, p. 2

2. Browder, p. 1

3. Smith, p. 6-7

4. Davison, “Creating Virtual Private Databases with Oracle8i”, p. 2

5. Davison, “Creating Virtual Private Databases with Oracle 8i” , p. 2

6. Scherer, p. 197

7. Browder, p. 6

8. Scherer, p. 197

9. Scherer, p. 210

10. Davison, “Creating Virtual Private Databases with Oracle 8i” (Part 2)

11. Browder, p. 5

12. Browder, p. 5

13. Oracle-Base, “Virtual Private Databases (VPD)”

14. Smith, p. 5

15. Davison, Mary Ann “Creating Virtual Private Databases with Oracle 8i”

16. Sherman, Roby “Internet Security With Oracle Row-Level Security”

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

17. Ault

18. Feuerstein, p. 153-170

19. Scherer, p. 193-211

20. Browder, p. 7

21. Davison, “Creating Virtual Private Databases with Oracle 8i”

22. Davison, “Creating Virtual Private Databases with Oracle 8i”

23. Ault, p. 6

24. Ault, p. 6

25. Scherer, p. 203

26. Feuerstein, p. 169

27. Scherer, p. 212

28. Browder, p. 8

29. Browder, p. 9

30. Ziola, p. 1

31. Ziola, p. 3

32. Ziola, p. 1

33. Ziola, p. 2

34. Oracle-Base, “Oracle Label Security (OLS)”

35. Loney

36. Sherman, “Implementing Data-Level Monitoring With Oracle Fine-Grained
Auditing”

37. Ziola, p. 1

