
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Iptables, Linux and You!
GSEC Practical Assignment v.1.4b (Option 1)

Woody Hughes
March 3, 2003

1. Summary
This document is intended to provide an analysis of iptables, the popular Open
Source firewall, and I will attempt to discuss its developmental roots, namely
Open Source, its internal workings within the kernel level, and the netfilter
architecture. Network Address Translation (NAT), and connection tracking within
netfilter will be discussed as well. Furthermore, it’s backend requirements in a
small office / home office setting will be touched upon briefly.

At the conclusion of this paper, the reader will have a concrete understanding of
iptables, how it’s theoretically implemented in a SOHO environment, and be
armed with a basic understanding of why our “networked society” needs secure
perimeter solutions to the entrance of their business.

2. An Introduction to Open Source Solutions
The whole “Linux” debate is rather interesting. And that’s not because it’s the big
buzzword these days, but because of the way a person often responds when
another person begins to defend its particular roots. It’s not uncommon for one to
witness rolling eyes, raised eyebrows, and a reluctance to pursue anything
remotely related to Open Source.

Matter of fact, it’s almost evil. So evil in fact, that The Register, a popular online
news site, quoted Steve Ballmer, the CEO of Microsoft, as saying that, "Linux is a
cancer that attaches itself in an intellectual property sense to everything it
touches.”1

But Open Source hasn’t had a chance to really prove itself. Maybe it’s the
reluctance by large enterprises that has spurred this “evil” commentary. Or
maybe it’s simply the reluctance of individuals to learn new solutions, rather than
relying on canned commercial alternatives.

Regardless, for the home user, expensive commercial options in the security
industry need not apply. Most security professionals employing home-based
solutions will look into various Open Source firewall solutions that will offer what I
believe are four key features:

• Connection tracking.

1 Greene, Thomas. “Ballmer: Linux is a cancer.” The Register. 6 February 2001. URL:
http://www.theregister.co.uk/content/4/19396.html (20 Feb. 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• Packet filtering.
• Special protocols such as FTP and various gaming protocols.
• Network Address Translation.

In my opinion, these are the four main areas that are the most important for a
home user and their perimeter security.

3. Why Iptables?
Iptables is currently one of many firewall solutions that successfully applies these
four key areas. There are more alternatives in the Open Source arena than
simply iptables and each product has its own advantage and disadvantage.
However, defining each advantage and disadvantage of every particular firewall
solution is beyond the scope of this paper.

The decision to choose iptables is a no-brainer at best. The Linux 2.4 kernel
employs the netfilter architecture, a packet filtering architecture, described later in
this paper, that iptables influences. It packages with every Linux distribution that
supports the 2.4 kernel, and its functionality is already compiled into most stock
kernels these days anyway. All it takes is an additional selection of features that
need to be enabled in the kernel, and you’re ready to roll.

Furthermore, most people who have used its predecessor, ipchains, will have no
trouble getting used to its slight change in syntax and its new features. For this
reason, most security professionals will move to iptables and leave the older
ipchains behind.

4. The Typical SOHO Environment
Like its predecessor’s, ipchains and ipfwadm, running a Linux firewall doesn’t
require much of an overhead in system resources because of the strong reliance
on kernel hooks. For this reason, and since the Linux kernel is efficient, most
home users can get by with using a very low-end machine for their packet
filtering needs.

As an example, I’ve worked with clients in small business situations
implementing iptables on a Pentium platform. As a matter of fact, it was a
Pentium 120! The client in question was on a shoestring budget, and happened
to have an old system lying around. I quickly scooped the machine up, installed
Red Hat Linux 7.3 on it, and configured iptables appropriately.

The following is a picture of what the typical SOHO setup and it’s corresponding
network segments represent:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

As you can see, a typical small office setup would consist of a router, a firewall, a
switch, and finally, the related networked hardware attached to the switch.

Often, I find that clients on a real shoestring budget may actually combine the
Linux server into a router/firewall combo. The router portion of the server, in my
opinion, doesn’t act as a true router, but its functionality is satisfactory for a small
office.

5. Server Security and Background Processes
One of the most important decisions that a person will make when building a
custom Linux firewall server is what they explicitly enable and disable. From a
strict security perspective, it’s imperative that the individual involved in securing
the server do so with a “whatever isn’t needed, is explicitly denied” approach.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

As Michael Warfield wrote2, “You must strike the right balance in terms of who is
allowed to do what, and when.”

Mr. Warfield goes on to say that securing a Linux box should be based on a
couple principles, with one being the principle of minimum access, or, "That
which is not explicitly permitted is denied." Furthermore he states, “This is one of
the basic mantras of firewall design. It applies equally well to security in general.”

I couldn’t agree more.

5.1. Essential Services
When it comes to the actual services that run on our server, the question that
most people will ask is, “Which ones must be activated?” You might think that
some services must be enabled for the machine to run, and you’d be absolutely
correct. The machine must operate and without certain services running, the
server will effectively become worthless.

But securing a Linux server that’s acting as a firewall isn’t much different from
writing the actual rules for the firewall. I think diligence comes into play here—
essentially making sure that the correct services are allowed to operate, as this
server will act as the front man to the entire environment. The server that the
firewall resides upon must be locked down to the fullest extent.

The following services should be the only services running on a Red Hat Linux
7.3 server that’s acting as a firewall:

init
keventd
ksoftirqd_CPU0
kswapd
bdflush
kupdated
/sbin/pump -i eth0
syslogd -m 0
klogd -2
xinetd -stayalive -reuse -pidfile /var/run/xinetd.pid
crond
/sbin/mingetty tty2
/sbin/mingetty tty1
/usr/sbin/sshd

The first question that comes to mind after reading this list is why do I have the
sshd service running? The reason is simple—to allow the security or systems
administrator to log in securely via an encrypted tunnel using Secure Shell.

2 Warfield, Michael. Securing Linux, Part 1. 28 May 1999. URL:
http://www.linuxworld.com/linuxworld/lw-1999-05/lw-05-ramparts.html (23 Feb. 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

However, I can take a step forward with all of this and ask myself if I really want
to allow an avenue of compromise. Recently, SSH has come under scrutiny
within the security industry because of vulnerabilities that have surfaced,
primarily in the SSH version 1 protocol. It’s also well known that ettercap, a
popular sniffing utility can actually sniff version 1 traffic3.

In the end, I'd want to remove SSH from the list of “essential services”. To me,
SSH is a “convenience” service and should probably be removed.

So, going forward, this leaves the system with the only service that is absolutely
necessary for it to operate efficiently and with full system logging and cron job
capabilities.

In this example, I’ve also allowed xinetd to run, so I must peruse the
/etc/xinetd.d directory and make sure that each and every file contained in that
directory has the ‘disable=yes’ line present. This will effectively disable the
corresponding service at startup.

Another important consideration when securing a Linux firewall is redundant
logging. Firewall logs do indeed get large and a redundant logging server should
have plenty of space with custom log rotation mechanisms in place. If redundant
logging is important to you and you want to add that additional security, then you
can enable it via the /etc/syslog.conf file.

For example, the line:

* @longfish

allows us to log everything to our remote logging server, longfish. Our logging
server, longfish, would have to have the syslog daemon running with the –r
option to accept external connections to the syslog daemon.

5.2. Kernel Options
Since the firewall machine is now secured, I must make sure that the latest
kernel is downloaded and the correct options are enabled within the kernel so
that I have every possible scenario covered from an iptables point of view. In
effect, I want to be able to tailor the kernel to my needs since I’m customizing
and tweaking the firewall server to begin with.

With this mindset in place, it comes as no surprise that I’d want to compile
everything related to netfilter in the kernel. “Network Packet Filtering” must be
enabled within the kernel, and subsequently, I must select the “Netfilter
Configuration” option to drill down to our available kernel options.

3 URL: http://ettercap.sourceforge.net (28 Feb. 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

I’ve always recommended to my associates that they configure everything into
the kernel. If you notice, I said “into the kernel”. I’m not much of a module person.
I never have been. And I figure that if I’m going to build a secure firewall then I
should also make sure it’s completely stable. My past experiences with modules
being properly loaded all the time in Linux leaves something to be desired. In my
opinion, compiling module support is really just an efficiency issue when it comes
to Linux anyway—and since I’m building a pure firewall that’s hooked directly into
the kernel, then enabling netfilter options as a module within the kernel isn’t a
concern.

With that said, the following options should be selected within the “Netfilter
Configuration” section of the kernel menu:

Connection tracking (required for masq/NAT)
FTP protocol support
IRC protocol support
IP tables support (required for filtering/masq/NAT)
limit match support
MAC address match support
Packet type match support
netfilter MARK match support
Multiple port match support
TOS match support
ECN match support
DSCP match support
AH/ESP match support
LENGTH match support
TTL match support
tcpmss match support
Helper match support
Connection state match support
Connection tracking match support
Packet filtering
Full NAT
Packet mangling
LOG target support
ULOG target support
TCPMSS target support
ARP tables support

The reasoning behind compiling all of these options into the kernel is simple—I
want to make sure that whatever I want to do with this firewall is available to me
at a moment’s notice. It’s not so much an issue about modules and efficiency,
rather than “availability”.

Consider a situation where there’s something seriously wrong with a web server
in an office. A Systems Admin working in an office can’t figure out the problem
and money is being lost by the minute. However, a backup web server is located
on another machine on the network. There is another problem, however. The
“Full NAT” option isn't enabled in the kernel on the firewall, essentially nullifying
any chance of quickly modifying packet headers and their respective destination

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

addresses using Destination NAT'ing. At this point, someone must log in via the
console on the firewall server, select “Full NAT” from the list of Netfilter options,
and spend the next thirty minutes recompiling the kernel. And remember, this just
happens to be a Pentium 120! Guess how long the compile is going to take? Of
course, the Systems Admin wouldn’t do that—he’d simply change the IP address
on the backup web server to reflect the existing web server’s IP. But that’s not
the point. That means that he’d have to bring the existing web server’s
networking interface down, essentially dissolving any hopes of his consultant
logging in remotely to fix whatever problem caused the whole mess to begin with
in the first place! As far as he knows, his Apache process is down.

What’s my point? If everyone gets into the mindset of enabling everything that
they need to in the kernel, then they’ll be ready from a security standpoint. And in
that example, if Mr. Systems Admin at Large had everything enabled, he
would’ve been able to mangle his incoming packets using NAT and redirect them
to a different machine on a different port. Basically, the change could’ve been
made in seconds—not minutes.

In the end, being ready for anything is one of the responsibilities of a firewall
administrator—even if it’s not security-related and merely providing additional
business flexibility.

6. Inside Iptables

6.1. Iptables vs. ipchains
Before I touch on the differences between iptables and ipchains, I must point out
what they both have in common—the Linux kernel. The kernel essentially
examines the packet header and at that point, relies on other mechanisms within
it to decide what exactly to do with that packet. This is called packet filtering and
this entire mechanism, other than the actual userspace application itself, is built
into the kernel.4

The major difference between ipchains (kernel 2.2) and iptables (kernel 2.4) is
when the 2.2 kernel processes packets, the packets themselves cross all three
filter chains, that is, the INPUT, FORWARD, and OUTPUT chains. This is
inefficient. With the 2.4 kernel, packets don’t cross all three chains. So if a rule is
destined for the local machine, then I can filter out the INPUT chain. If the packet
is entering eth0 and it’s destined for my LAN through eth1, then I write a rule for
the FORWARD chain. Finally, if I want to match packets based on their
destination from my machine, then I can filter out the OUTPUT chain. According

4 Russell, Rusty. “So What’s A Packet Filter?” Linux iptables HOWTO. v .0.0.2. 29 September
1999. URL: http://www.linuxguruz.org/iptables/howto/iptables-HOWTO-3.html#ss3.2 (21 Feb.
2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

to Rusty Russell, the creator of the netfilter architecture5, “This means that for
any given packet, there is one (and only one) possible place to filter it. This
makes things much simpler for users than ipchains was.”

There are some minor differences, but those are related to syntax issues such as
the MASQ syntax, meaning “to masquerade”. With iptables, it’s now replaced
with the full word—MASQUERADE. The built-in chains, that I discussed earlier,
are now upper case. If you remember correctly, in ipchains, you could essentially
use any case when referring to INPUT and OUTPUT. This was because packets
traversed both chains (or actually ALL chains) regardless of their destination.
However, since packets now only traverse those chains whenever they are
delivered locally, or are originating locally, they must be capitalized6.

6.2. Packet Traversal
So I know what’s going on with the built-in chains in the kernel. But what exactly
is going on when it comes to packets traversing through those chains?

According to the netfilter hacking HOWTO7, one of the key designs of the netfilter
architecture is tables. These tables are the ‘filter’, ‘nat’, and ‘mangle’ tables. The
beauty of this setup is that if I need to filter a packet, it stays on the filter table. If I
receive a packet on port 80, and I want it to go to port 1300, then I use iptables to
change the packet through Network Address Translation. This is done on the
‘nat’ table. If I need to mangle a packet, the actual work will take place on the
‘mangle’ table. So unlike ipchains, I have one place to do my work on the packet.
In other words, whatever gets filtered on the ‘filter’ table, or NAT’ed on the ‘nat’
table, stays on that respective table.

Essentially, a packet will enter through the device layer, then it’ll enter the kernel
via the correct device driver for the NIC and finally, it either stops locally, on the
machine itself—destined for whatever application is going to use it, or it gets
forwarded to another host.

6.2.1. The Mangle Table
From here I can decide what I want to do with this packet. Most “mangle”
operations involve changing the Type of Service (TOS), modifying TTLs and
finally, MARK’ing a packet. This occurs within the PREROUTING portion of the
netfilter architecture.

5 Russell, Rusty. “Packet Selection: IP Tables.” Linux netfilter Hacking HOWTO. v.1.14. 2 July
2002. URL: http://www.netfilter.org/documentation/HOWTO//netfilter-hacking-HOWTO-
3.html#ss3.2 (21 Feb. 2003).
6 Russell, Rusty. “Differences Between iptables and ipchains.” Linux 2.4 Packet Filtering
HOWTO. v.1.26. 24 January 2002. URL: http://www.netfilter.org/documentation/HOWTO//packet-
filtering-HOWTO-10.html (20 Feb. 2003).
7 Russell, Rusty. “Packet Selection: IP Tables.” Linux netfilter Hacking HOWTO. v.1.14. 2 July
2002. URL: http://www.netfilter.org/documentation/HOWTO//netfilter-hacking-HOWTO-
3.html#ss3.2 (22 Feb. 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A perfect example of where a home office user might use iptables to change TTL
data is when their Internet Service Provider has a problem with its users running
multiple computers off of a single shared IP. SOHOs generally have multiple
computers behind a common gateway. Often, most office managers want all of
their machines to access the Internet via a single gateway IP. Oskar Andreasson
explains8 a “workaround” quite well. Since each machine would send back
packets with different TTL stamps, you could theoretically change the TTL of
everything coming into your gateway to a single TTL value, and it would seem as
though only one machine was using that IP. I don’t necessarily condone this,
especially if it violates your ISP’s policies, but this is merely an excellent technical
example of using iptables to mangle TTL data.

In the end, however, it’s up to you to consult your ISP regarding their official
policy on the IP addresses that they issue. It's my experience that the majority of
ISPs don't have a problem with this—but some ISPs are indeed a little nosy in
trying to find out whether or not you have multiple computers in a home network.
They do this so that they can offer "additional packages" or additional static IPs
to compliment your needs.

6.2.2. The NAT Table
The NAT table is where all network address translation takes place. It takes
place only in the PREROUTING and POSTROUTING phases. In order to
understand this basic concept, you have to understand the three basic types of
NAT—Source NAT (SNAT), Destination NAT (DNAT), and MASQUERADE and
how they apply to the PREROUTING and POSTROUTING sections. It’s easy to
get confused with Source NAT’ing and Masquerading. In Oskar Andreasson’s
iptables tutorial9, he discusses the MASQUERADE target as a way to do Source
NAT’ing for those IPs that are dynamic. Essentially, every time the target
matches a packet, it will check the IP address. This is different from the SNAT
target, because SNAT doesn’t check the IP at all. So if I have a nice home office
setup, and I own a static IP, then I should use the SNAT target. If I have a
dynamic address, that is, my address always changes, then the MASQUERADE
target is what I’d want to use.

As an example, I have a client whose home office is run off of a cable modem.
So in his rules, he would add the following lines:

We alter our header packets in order to masquerade private routable
addresses.

8 Andreasson, Oskar. “Mangle table.” Iptables Tutorial 1.1.11. v.1.1.9. 21 March 2002. URL:
http://www.netfilter.org/documentation/tutorials/blueflux/iptables-tutorial.html#AEN565 (25 Feb.
2003).
9 Andreasson, Oskar. “Nat table.” Iptables Tutorial 1.1.11. v.1.1.9. 21 March 2002. URL:
http://www.netfilter.org/documentation/tutorials/blueflux/iptables-tutorial.html#AEN595 (25 Feb.
2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

$IPT -t nat -A POSTROUTING -s 192.168.1.0/24 -o eth0 -j SNAT --to
1.2.3.4

In the preceding example, I'm taking any packets that are destined for the eth0
interface and changing their source IPs in the packet header to reflect the IP
address of 1.2.3.4 of the rule. The -t switch is used to specify which table that I
want to use for this rule. The -A switch defines which chain, and of course the -s
switch is my source IP or network address and -o represents which interface my
packets are traversing. Finally the -j switch means to “jump to” the target, SNAT,
and finally, SNAT must have a --to switch followed by an IP, which in this case is
my client’s ISP assigned IP address.

To show an example of a DNAT rule, my client also has a few services running in
his home office that he’d like to allow the outside world to access. He has a web
server, and a mail server. The following rules are an example of changing the
destination headers of the packets themselves so that they are “redirected” to
wherever he wants them to go.

We alter destination packets as they hit our interfaces so we can
transmit them to specific points along our network.

$IPT -t nat -A PREROUTING -p tcp -i eth0 -d 1.2.3.4 --dport 80 -j DNAT
--to 192.168.20.20:80
$IPT -t nat -A PREROUTING -p tcp -i eth0 -d 1.2.3.4 --dport 25 -j DNAT
--to 192.168.20.20:25
$IPT -t nat -A PREROUTING -p tcp -i eth0 -d 1.2.3.4 --dport 110 -j DNAT
--to 192.168.20.20:110

The same definitions apply for our switches as in the previous SNAT examples.
The difference here is that I know that my packets are transmitting into my
primary interface, eth0. So I add the -i switch since it refers to the “incoming”
interface. Also, I’ve added a --dport switch here for a reason. I’m most likely only
going to be using the DNAT rule when I want to redirect traffic from one host to
another. However, I have to use the --dport switch because I don’t want to send
ALL of my traffic that’s heading to my 1.2.3.4 address to my 192.168.1.20
address. I only want to send data destined for specific ports. So in this case, all
packets whose destination IPs reflects 1.2.3.4 port 80 will be NAT’ed to reflect a
new destination IP of 192.168.1.20 port 80. This occurs for the other two rules as
well, except that the ports are different.

So taking one step forward, my client simply registers his domain name for his
website, sets his DNS server to assign his domain an address of 1.2.3.4, and his
DNAT rule will take care of altering the destination IPs for him. Obviously, he
must do this since the outside world can’t see his internal address. And that’s
one reason why DNAT is so useful.

6.2.3. The Filter Table

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Finally, the filter table is the table that’s used when I want to match a packet after
it’s already been affected either by a mangling operation, or other actions that
have been done in the PREROUTING and/or POSTROUTING phases.

Essentially, I can match a target based on whether I want to ACCEPT it or DROP
it, and there's also a number of other filtering options that I can pursue, however,
the two I just mentioned are probably the ones that are most used for a small
office / home office.

However, I’d like to touch on a few other important targets during the filter phase
that can be applied to packets.

First, I’ve already explained about ACCEPTing or DROPing a packet based on a
specific condition, however, what if I want to REJECT it? And how is that
different from DROPing it?

If I REJECT a packet, I actually end up sending a ‘port-unreachable’ response
back to the originator of the packet. Otherwise, if I use the DROP target, I simply
drop the packet. According to Oskar Andreasson10, the default response from a
REJECT is indeed the ‘port-unreachable’ message. However, I can elect to also
send icmp-net-unreachable, icmp-host-unreachable, icmp-port-unreachable,
icmp-proto-unreachable, icmp-net-prohibited and icmp-host-prohibited as well,
which provides me with some interesting options depending on what I want to tell
the host who sent the packet.

As an example of ACCEPT and DROP targets, here’s a few rules for my client’s
POP3 service:

$IPT -A FORWARD -p tcp --dport 110 -j DROP
$IPT -A FORWARD -p tcp -s 2.3.4.22 --dport 110 -j ACCEPT

The beauty of iptables is that it’s relatively easy to understand in terms of rules.
In this example, I’m referencing my FORWARD chain because my packets are
being forwarded through my firewall. They’re not destined for the local machine,
because I’ve already demonstrated that I’m DNAT’ing all port 110 traffic to my
192.168.1.20 machine. Remember, DNAT’ing operations take place either in
PREROUTING or lastly at the POSTROUTING chain.

Looking at this example, I’m dropping all destination traffic that happens to be
traversing my FORWARD chain with headers matching port 110. I’ve “explicitly
denied” them. However, in the next line, I only allow traffic to port 110 if and only
if it’s source IP in the header matches IP address 2.3.4.22. As evident, this is
“allowed” to do so via the target, ACCEPT.

10 Andreasson, Oskar. “REJECT taget.” Iptables Tutorial 1.1.11. v.1.1.9. 21 March 2002. URL:
http://www.netfilter.org/documentation/tutorials/blueflux/iptables-tutorial.html#AEN2442 (26 Feb.
2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

6.3. Exploring Connection Tracking11
There are, of course, more ways of working with packets within the netfi lter
architecture than simply doing standard filtering. A more, complex form of filtering
can be achieved by filtering those packets that have a certain state.

Stateful firewalls, like iptables, are actually doing nothing more than establishing
some form of connection tracking. In the end, that’s what “being stateful” is all
about—tracking a connection and verifying what kind of state it’s in—whether it
be ESTABLISHED, NEW, RELATED, or INVALID. These are the states that
iptables recognizes.

An ESTABLISHED state is a state that’s associated with a connection. A NEW
state is a packet that has started a new connection, and has nothing to do with
any other connection. An INVALID state would represent a packet that isn’t
associated with any other connection period, and finally, a RELATED state would
be a packet that’s related to the connection of another packet. For example, this
could be FTP data traffic or traffic associated with an ICMP error.

A fine example of stateful filtering would be filtering for active FTP.

In this example12, James Stephens describes active FTP best:

The ftp client sends a port number over the ftp channel via a PORT
command to the ftp server. The ftp server then connects from port 20 to
this port to send data, such as a fi le, or the output from an ls command.
The ftp-data connection is in the opposite sense from the original ftp
connection.

To allow active ftp without knowing the port number that has been passed
we need a general rule which allows connections from port 20 on remote
ftp servers to high ports (port numbers > 1023) on ftp clients. This is
simply too general to ever be secure.

Enter the ip_conntrack_ftp module. This module is able to recognize the
PORT command and pick-out the port number. As such, the ftp-data
connection can be classified as RELATED to the original outgoing
connection to port 21 so we don't need NEW as a state match for the
connection in the INPUT chain.

With that said, I would use the following rules in my firewall script to allow active
FTP:

11 Stephens, James. IPtables: Connection tracking. 2 October 2002. URL:
http://www.sns.ias.edu/~jns/security/iptables/iptables_conntrack.html (26 Feb. 2003).
12 Stephens, James. IPtables: Connection tracking. 2 October 2002. URL:
http://www.sns.ias.edu/~jns/security/iptables/iptables_conntrack.html (26 Feb. 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

$IPT -A INPUT -p tcp --sport 20 -m state --state ESTABLISHED,RELATED -j
ACCEPT
$IPT -A OUTPUT -p tcp --dport 20 -m state --state ESTABLISHED -j ACCEPT

7. Applying Basic Rules To A SOHO Firewall
A basic set of rules for a small office need not be a complex lesson in firewall
design. I think that iptables’ syntax is relatively easy to understand, especially if
you compare it to other, older alternatives like IPF.

Here’s some rules that I’ve developed for a new client and his home office with
their corresponding definitions and a small justification for their use:

$IPT -F
$IPT -t nat -P POSTROUTING DROP

We alter our header packets in order to hide private routable
addresses.

$IPT -t nat -A POSTROUTING -s 192.168.20.0/24 -o eth0 -j SNAT --to
1.2.3.4

We alter destination packets as they hit our interfaces so we can
send them to specific points along our network.

$IPT -t nat -A PREROUTING -p tcp -i eth0 -d 1.2.3.4 --dport 80 -j DNAT
--to 192.168.20.22:80
$IPT -t nat -A PREROUTING -p tcp -i eth0 -d 1.2.3.4 --dport 25 -j DNAT
--to 192.168.20.22:25
$IPT -t nat -A PREROUTING -p tcp -i eth0 -d 1.2.3.4 --dport 110 -j DNAT
--to 192.168.20.22:110
$IPT -t nat -A PREROUTING -p tcp -i eth0 -d 1.2.3.4 --dport 21 -j DNAT
--to 192.168.20.22:21

If any NetBIOS packets do not come from the local network, then we
drop them.

$IPT -A INPUT -p tcp -s ! 192.168.20.0/24 --dport 137:139 -j DROP
$IPT -A INPUT -p udp -s ! 192.168.20.0/24 --dport 137:139 -j DROP

We set up logging against all packets using –ULOG that pass through
eth0 and are destined for port 21 and who are NOT originating from
the local LAN—that is, 192.168.20.0. The “!” directive means to match
anything that’s the opposite of. The –ULOG directive allows us to
dump logging to a userspace application. One such app is ulogd. It
can be found at
http://gnumonks.org/gnumonks/projects/project_details?p_id=1.

$IPT -A INPUT -i eth0 -p tcp -s ! 192.168.20.0/24 --dport 21 –j ULOG --
ulog-prefix "FTP connection attempt from: "

Local Net
$IPT -I FORWARD -p tcp -s 192.168.20.0/24 --dport 21 -j ACCEPT

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Allow Joe User to have special access to FTP from his static IP
$IPT -I FORWARD -p tcp -s 1.1.1.1 --dport 21 -j ACCEPT

EOF

8. Conclusion
In conclusion, security without a doubt should be of utmost concern to every
person, organization, and entity. It comes as no surprise that more than 40% of
DDoS attacks that CERT reported from 1989 to 1995 were in the category of
"Process Degradation"13—something that a firewall, over the long haul, can't
necessarily provide adequate protection against. And this is an important point—
you must use the correct tools for the job. And while iptables as a firewall, will
provide adequate protection for most home offices, its efficiency at the enterprise
level has yet to be defined, and it's recommended that a commercial alternative
be addressed for those companies that need more robust solutions to deal with
the growing threat of security-related incidents. Furthermore, firewalls, such as
iptables, are just the tip of the iceberg when defining what a proper security
architecture should be, whether it's for a home office, or large multi-million dollar
enterprise.

However, iptables is both versatile, and efficient for home use. Its efficiency
comes directly from the netfilter architecture within the Linux kernel. As I've
demonstrated in this paper, once iptables' syntax and its various options are
learned, it's relatively easier to understand compared to its counterpart, IPF, or
the older, ipfwadm. In the end, iptables on Linux is an excellent solution for home
offices and small businesses.

13 Howard, John. "Chapter 11 Denial-of-Service Incidents." An Analysis Of Security Threats On
The Internet 1989 –1995. 7 April 1997. URL:
http://www.cert.org/research/JHThesis/Chapter11.html (28 Feb. 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

9. References
Greene, Thomas. “Ballmer: Linux is a cancer.” The Register. 6 February 2001.
URL: http://www.theregister.co.uk/content/4/19396.html (20 Feb. 2003).

Warfield, Michael. Securing Linux, Part 1. 28 May 1999. URL:
http://www.linuxworld.com/linuxworld/lw-1999-05/lw-05-ramparts.html (23 Feb.
2003).

URL: http://ettercap.sourceforge.net (28 Feb. 2003).

Russell, Rusty. “So What’s A Packet Filter?” Linux iptables HOWTO. v.0.0.2. 29
September 1999. URL: http://www.linuxguruz.org/iptables/howto/iptables-
HOWTO-3.html#ss3.2 (21 Feb. 2003).

Russell, Rusty. “Packet Selection: IP Tables.” Linux netfilter Hacking HOWTO.
v.1.14. 2 July 2002. URL:
http://www.netfilter.org/documentation/HOWTO//netfilter-hacking-HOWTO-
3.html#ss3.2 (21 Feb. 2003).

Russell, Rusty. “Differences Between iptables and ipchains.” Linux 2.4 Packet
Filtering HOWTO. v.1.26. 24 January 2002. URL:
http://www.netfilter.org/documentation/HOWTO//packet-filtering-HOWTO-10.html
(20 Feb. 2003).

Russell, Rusty. “Packet Selection: IP Tables.” Linux netfilter Hacking HOWTO.
v.1.14. 2 July 2002. URL:
http://www.netfilter.org/documentation/HOWTO//netfilter-hacking-HOWTO-
3.html#ss3.2 (22 Feb. 2003).

Andreasson, Oskar. “Mangle table.” Iptables Tutorial 1.1.11. v.1.1.9. 21 March
2002. URL: http://www.netfilter.org/documentation/tutorials/blueflux/iptables-
tutorial.html#AEN565 (25 Feb. 2003).

Andreasson, Oskar. “Nat table.” Iptables Tutorial 1.1.11. v.1.1.9. 21 March 2002.
URL: http://www.netfilter.org/documentation/tutorials/blueflux/iptables-
tutorial.html#AEN595 (25 Feb. 2003).

Andreasson, Oskar. “REJECT taget.” Iptables Tutorial 1.1.11. v.1.1.9. 21 March
2002. URL: http://www.netfilter.org/documentation/tutorials/blueflux/iptables-
tutorial.html#AEN2442 (26 Feb. 2003).

Stephens, James. IPtables: Connection tracking. 2 October 2002. URL:
http://www.sns.ias.edu/~jns/security/iptables/iptables_conntrack.html (26 Feb.
2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Howard, John. "Chapter 11 Denial-of-Service Incidents." An Analysis Of Security
Threats On The Internet 1989 –1995. 7 April 1997. URL:
http://www.cert.org/research/JHThesis/Chapter11.html (28 Feb. 2003).

