
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Jonathan Rose 
GIAC Security Essentials Certification Track 1  
Version 1.4b Practical option 1 
Local Mentor class in Fairfax Virginia with Millie Ives 
 
 
 
 
 

Turning the tables:  
Loadable Kernel Module Rootkits deployed in a honeypot 

environment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
Table of Contents 

 
Abstract.................................................................................................................3 
Honeypots and Honeynets Overview....................................................................3 

Production and Research Honeypots................................................................4 
Honeypot Risk and Interaction ..........................................................................4 

Back Officer Friendly – Low interaction Honeypots...............................................5 
Loadable Kernel Modules – High interaction Honeypots ......................................7 

Sebek ................................................................................................................8 
Sebek Requirments.........................................................................................10 
Running Sebek................................................................................................10 
Sebek Analysis................................................................................................11 
SCP file transfer recovery ...............................................................................13 
Sebek Disadvantages .....................................................................................13 

Conclusion ..........................................................................................................13 
References: ........................................................................................................14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
 
Abstract 
 
Honeypots are one of the latest technologies available to track and monitor 
hackers and Internet attackers.  They can be generally divided into two different 
areas, production and research honeypots.  Honeypots can also be classified by 
the amount of system interaction they provide to an attacker and therefore the 
risk that is involved.   First, a very simple, low interaction, low risk honeypot, Back 
Officer Friendly, is discussed and tested.  Next, a new generation of honeypot 
techniques are discussed, utilizing the advantages of loadable kernel modules for 
tracking hackers.  Finally, and overview of the sebek honeypot system will be 
discussed focusing on the functionality, advantages and disadvantages of such a 
system.  
 
Honeypots Overview 
 
Honeypots are a relatively new tool in the field of computer security.   A honeypot 
is a computer that is connected to the Internet in order to study various attacks 
that are directed towards it.  The goal of a honeypot is to monitor the activity and 
techniques of an attacker without their knowledge.  Honeypots were first 
designed to be bait for computer hackers, being easily attacked computers that 
intruders would focus on instead of attacking legitimate production servers, while 
alerting system administrators of the attack.  Newer generations of honeypots are 
designed to monitor and investigate the methods and tools that hackers use, 
while studying their motives and learning their techniques.  The challenge is to 
keep the hacker on the honeypot, allowing them to transfer tools and malicious 
code to the target machine, while limiting the hacker’s attacks on other computer 
systems.  If an intruder detects the honeypot, the project is compromised.  At this 
point, the attacker may simply not return, deliberately misguide the researchers, 
or destroy the whole system.  Honeynets are comprised of entire networks of 
honeypot machines, replicating an entire infrastructure of computers and network 
devices.  Honeynets are designed to entice an attacker with more than a simple 
honeypot, giving them more systems to target.  They can consist of any number 
of servers, or just a single host masquerading as multiple servers.  The Honeynet 
Project describes them as “a tool to learn- specifically, the tools, tactics, and 
motives of the blackhat community”.  
 
A honeypot system is designed with several important parts that function 
together to monitor the action and techniques of Internet attackers.  These parts 
consist of a network based intrusion detection system, host based intrusion 
detection systems, remote logging functionality, and keystroke logging.  Access 
control devices must be in place to l imit and manage the numbers of outbound 
connects made by the honeypot.  This will limit the damage an attacker can have 
on other system from the honeypot.  A system image should be created before 
the honeypot is connected to the Internet to build a baseline for comparison after 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

an intrusion.  Computer forensic tools should be ready to analyze the system for 
deleted files, logs, or any other malicious activity done by the attacker.    
 

Production and Research Honeypots 
 
There are two main types of honeypots, production and research.  Lance 
Spitzner, of the Honeynet project, differentiates between the two by stating, 
“Production honeypots protect an organization, while research honeypots are 
used to learn” (Spitzner 44).  A production honeypot is designed to replicate a 
system, such as mail or ftp, to discover weaknesses in these systems designs 
without actually compromising the real systems themselves.  In a production 
honeypot, the system administrator can watch which vulnerabilities a hacker 
exploits, allowing them to determine and fix weaknesses in their production 
systems.  Research honeypots are used as learning tools and do not necessarily 
mirror the production systems.  Research honeypots are used to gain information 
about the tools, methods, and weaknesses that attackers exploit.  Research 
honeypots are a valuable tool for identifying tools and techniques that are not 
publicly available.   

Honeypot Risk and Interaction 
 
The level of user interaction can be used to classify honeypots, which directly 
affects the degree of risk associated with the honeypot.  The higher the 
interaction of the honeypot, the greater the risk involved is.  Before deploying a 
honeypot, it is important to determine what the goals of the honeypot are and the 
level of interaction involved will meet these goals, while considering the 
acceptable amount of risk.   
 
Low risk, low interaction honeypots are easy to setup, yet they are only able to 
obtain a limited amount of information from the attacker.  These honeypots work 
well if you are attempting to gather limited information on types of attacks and 
scans on the honeypot, without giving the intruder a full system to interact with.  
These simple honeypots can emulate services and detect automated attacks and 
port scanning. The problem with this style of honeypot is that it will not allow the 
researcher to capture any additional data associated with the attack other than 
the initial probe.  While this may be sufficient for creating alerts and attack 
signatures, in depth analysis of the malicious code used in the attack would give 
the researcher a good deal more information on the internal workings of the 
attack. 
 
High interaction, high-risk honeypots are at the other end of the spectrum for 
honeypot design.  These generally give the attacker a complete system to 
interact with in an attempt to lure and monitor more sophisticated attackers.  By 
giving an attacker a full system to access, the damage they can do is far greater 
than a low interaction honeypot.  High interaction honeypots allow the researcher 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

to perform a much more detailed analysis of the attack, tools and methods used 
by the attacker.  Tools can often be recovered from a high interaction honeypot, 
some even as source code. The risks associated with a high interaction honeypot 
are far greater than a simple, low interaction honeypot, yet the reward is much 
greater.  
 
High interaction honeypots are much more difficult to install and configure, and 
much more challenging to maintain and monitor.  “High-interaction honeypots are 
the extreme of honeypot technologies” (Spitzner 81).  The difficulty is that if you 
are going to give an attacker full access to a system, an experienced hacker will 
be able to detect most honeypot monitoring mechanisms, or at least become 
suspicious of the system.  This can lead to the disclosure of the honeypot system 
that could end with catastrophic results to the research being conducted. 
 
Most high interaction honeypots are custom designed based on the goals of the 
research being done; i.e., what is to be captured.  Generally these are normal 
system installations with the addition of specific software to monitor the action of 
the intruder.  The software components on honeypots can be in the form of 
system patches, specialized applications or custom tools. 
 
Back Officer Friendly – Low interaction Honeypots 
 
An example of a low interaction honeypot is Network Flight Recorder’s Back 
Officer Friendly (BOF).  This is a tool that runs in the background on a computer 
and detects attempts to connect to various ports.  BOF can be downloaded for 
free from http://www.nfr.com/products/bof/.  BOF was installed and configured on 
a test machine to evaluate its effectiveness.   The tool is small, simple to install, 
and provides very limited functionality.  Currently it supports monitoring network 
ports for BackOrifice, FTP, TELNET, SMTP, HTTP, POP, and IMAP requests.  It 
has the option to fake replies to these services, but only in a very inadequate 
manner.   
 
A NMAP scan of a Windows 2000 Professional system running BOF displays the 
following output: 
 
[root@localhost root]# nmap -sT -O 192.168.1.5 
 
Starting nmap V. 3.00 ( www.insecure.org/nmap/ ) 
Interesting ports on  (192.168.1.5): 
(The 1591 ports scanned but not shown below are in state: closed) 
Port       State       Service 
21/tcp     open        ftp 
23/tcp     open        telnet 
25/tcp     open        smtp 
80/tcp     open        http 
110/tcp    open        pop-3 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

135/tcp    open        loc-srv 
139/tcp    open        netbios-ssn 
143/tcp    open        imap2 
445/tcp    open        microsoft-ds 
1025/tcp   open        NFS-or-IIS 
Remote operating system guess: Windows Millennium Edition (Me), Win 2000, or 
WinXP 
 
Nmap run completed -- 1 IP address (1 host up) scanned in 2 seconds. 
 
As you can see, because BOF is emulating certain services on this host, they 
appear to be open.  A NMAP UDP scan of the same hosts shows BackOrifice 
open on port 31337.         
 
BOF immediately causes a windows pop-up message to be displayed on the 
target machine to report the unauthorized scanning activity.   
 
Here is a telnet connection attempt made to the system running BOF.   
 
[root@localhost root]# telnet 192.168.1.5 23 
Trying 192.168.1.5... 
Connected to 192.168.1.5. 
Escape character is '^]'. 
 
login: root 
 
Password: backd00r 
 
Login incorrect 
 
The system fakes the telnet server to the client.  Although the option to “fake 
replies” was set BOF, only the telnet monitor has any level of interaction, which is 
simply a login and password prompt.  All other services display “Service 
Unavailable” when a connection to the port is initiated.   
 
BOF log displays the information of the NMAP scan, and the attempted telnet 
login, capturing the login name and password used.  BOF also captures another 
telnet login attempt, which used a long username and password, classifying it as 
a possible overflow attempt.  
 
Sat Feb 01 08:39:29    Telnet login attempted from 192.168.1.1: user: root, 
password: backd00r 
Sat Feb 01 08:39:29    possible overflow attempt via Telnet from 192.168.1.1 
(recvd 127 bytes at Login:) 
Sat Feb 01 08:39:29    possible overflow attempt via Telnet from 192.168.1.1 
(recvd 230 bytes at Password:) 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Sat Feb 01 08:40:42    SMTP connection from 192.168.1.1 
Sat Feb 01 08:42:07    HTTP empty request from 192.168.1.1 
Sat Feb 01 08:42:37    POP3 connection from 192.168.1.1 
Sat Feb 01 08:42:57    SMTP connection from 192.168.1.1 
Sat Feb 01 08:42:57    IMAP2 connection from 192.168.1.1 
Sat Feb 01 08:42:57    HTTP empty request from 192.168.1.1 
Sat Feb 01 08:42:57    POP3 connection from 192.168.1.1 
Sat Feb 01 08:42:57    FTP connection from 192.168.1.1 
Sat Feb 01 08:42:57    Telnet connection from 192.168.1.1 
Sat Feb 01 08:43:09    IMAP2 connection from 192.168.1 
Sat Feb 01 09:11:01    Back Orifice saw 0 bytes of garbage from 192.168.1.1 
 
BOF also captured some interesting HTTP attacks while connected to the 
Internet.  IP’s are changed to protect the guilty. 
 
Fri Jan 31 20:43:15    HTTP request from aa.bbb.ccc.ddd: GET 
/scripts/root.exe?/c+dir 
Fri Jan 31 20:43:19    HTTP request from aa.bbb.ccc.ddd: GET 
/MSADC/root.exe?/c+dir 
Fri Jan 31 20:43:23    HTTP request from aa.bbb.ccc.ddd: GET 
/c/winnt/system32/cmd.exe?/c+dir 
Fri Jan 31 20:43:27    HTTP request from aa.bbb.ccc.ddd: GET 
/d/winnt/system32/cmd.exe?/c+dir 
 
BOF is a very simple, easy to use tool, yet provides very little information about 
the attack itself.   
 
Loadable Kernel Modules – High interaction Honeypots 
 
One example of a high interaction honeypot is one that util izes a loadable kernel 
module to monitor and report activities on the server, while letting the attacker 
complete access to the system.  The concepts for loadable kernel modules in 
honeypot environments are based on loadable kernel modules rootkits that are 
currently used to hide activity on compromised systems.  
 
Many times when a hacker successfully breaks into a computer, they install a 
program or set of programs known as a rootkit.  These generally replace certain 
system applications to hide the presence of the intruder and al low for them to 
access the system in the future.  A major disadvantage for the attacker with the 
standard type of rootkit is that they are easily detected using tools like Tripwire or 
AIDE, which creates a database that is able to insure the integrity of files on a 
system.  Running Tripwire or AIDE on a compromised system will make it quickly 
apparent that a rootkit has been installed.   
 
An advanced rootkit now being used by attackers is the loadable kernel module 
(LKM) rootkit.  These rootkits take advantage of functionality in the linux kernel to 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

subvert the base operating system.  To better understand these rootkits, we must 
first take a look at what LKM’s are and how they function.   
 
The kernel is the core of the operating system for Unix systems.  The linux 
kernel, also Solaris and some BSD versions, allows for much of the kernel code 
to be compiled as modules rather than into the kernel itself.  By doing this, the 
size of the kernel base is smaller; the kernel loads faster and uses less memory.  
When a specific functionality is required that is not built into the kernel, the kernel 
loads the required kernel module.  These kernel modules become part of the 
operating system, registering their own system calls and functions.  When the 
functionality is no longer required, the kernel can unload these modules. 
 
When normal programs are run, they rely on system calls to the kernel to find the 
information they need.  System calls open and close files, display system 
information, read and write to the file system.  When a kernel rootkit is installed 
into the running kernel, it replaces certain system calls with its own system calls.  
With a malicious system call in place, the attacker has complete control over 
what the system call does.   
 
One example of this is that when the ‘ps’ command is used in Linux, it returns a 
list of running processes.  This list of running processes is found when the ‘ps’ 
command issues a system call to the kernel for process information.  If a kernel 
rootkit is installed that intercepts this system call, it is able to hide specific 
programs from the returned list.  The ‘ps’ command output will look normal.  The 
MD5 checksums will match the initial Tripwire or AIDE database to show that the 
program was not modified.  Even if other applications are executed that lists 
running processes, such as ‘top’, they will also fail to show the hidden process.  
Everything user level programs rely on is controlled in the kernel system calls 
that a malicious attacker has modified.   
 
A new concept for honeypot tools is the use of LKM to track hackers.  These are 
in essence a modified LKM rootkit designed to track and monitor all activity of an 
intruder while being virtually invisible to the intruder. 
 

Sebek 
 
Sebek is a system designed for use in honeypots to secretly track attacker’s 
actions and keystrokes. The sebek system is comprised of three separate 
components that operate together to capture, transmit and analyze activity on a 
honeypot.  Sebek advantages are that it is almost completely invisible and has 
the ability to capture and record encrypted secure shell commands (SSH) and 
secure copy (SCP) file transfers.  The version of sebek used for this research is 
sebek version 0.4, written and maintained by Michael Clark and Ed Balas of the 
Honeynet Project.  Sebek can be freely downloaded from 
http://www.project.honeynet.org/papers/honeynet/tools/sebek-0.4.tar.gz. 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 
The main component of sebek is a LKM based on the Adore rootkit.  The Adore 
rootkit implements file and process hiding through the use of patched system 
calls.  This is used to conceal the activities of the sebek system.  Sebek is able to 
capture and record encrypted session by intercepting unencrypted data while in 
kernel space through a patched read() system call.  Unfortunately, Adore does 
not have any networking functionality built in to support remote logging.  To 
compensate for the lack of networking in the Adore rootkit, the author of sebek 
had to create a separate program to handle the remote logging of data collected 
by the sebek LKM.  The sebek device monitor (SDM) handles the remote logging 
for sebek.   It reads from the sebek LKM and transmits this information onto the 
local area network (LAN). SDM uses a wide variety of techniques to make this 
remote logging traffic harder to detect.  All traffic is transmitted onto the network 
using the user datagram protocol (UDP).  The payload of each UDP packet is 
encrypted.  Ethernet, internet protocol (IP) and UDP header information may be 
set to any arbitrary number to obscure the source and destination of the traffic.  A 
variable amount of delay is used in between each packet that is transmitted.  In 
cases where there is little or no network traffic, SDM can even be configured to 
transmit decoys onto the network to help mask it’s own traffic.      
 
A remote log host runs the sebek data capture utility, sebeksniff.   This 
application captures all encrypted UDP packets, unencrypts these packets then 
logs them to a file on the log host.    
 
The third component of the sebek system, sbdump, is a perl script written to read 
through the raw sebek logs created by sebeksniff and produce human readable 
output.  This perl script is able to parse through the log files and extract all 
keystrokes and secure copy file transfers.    
 

 
Example sebek configuration 

Firewall/ 
Router 

Sebek UDP encrypted traffic 

Honeypot 
With Sebek LKM Sebeksniff log parser 

Internet 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Sebek Requirements 
 
Sebek installation is simple and straightforward, as long as your system meets 
the requirements.  Sebek currently only works on Linux, and the Linux kernel 
source must be installed.  Unfortunately, sebek will not install on Redhat 8.0 
(kernel 2.4-18-14) due to changes in the way the kernel handles loadable 
modules, so Redhat 7.3 (kernel 2.4.18-3) was used in the testing environment. 
Building the sebek system creates two tarballs, one for the honeypot named 
sebek.tar and one for the collector called sebek_collector.tar.  
 

Running Sebek 
 
A shell script called sebek.sh provides a configuration and execution control for 
the sebek components on the honeypot. This program is run on the honeypot to 
start the sebek system, which installs and hides the LKM and SDM on the 
machine.   
 
[root@localhost sebek]# ./sebek.sh start 
File '/tmp/sebek/adore.o' hided. 
File '/tmp/sebek/cleaner.o' hided. 
File '/tmp/sebek/sdm' hided. 
File '/tmp/sebek/ava' hided. 
File '/tmp/sebek/sebek.sh' hided. 
File '/tmp/sebek' hided. 
File '/dev/sebek' hided. 
Made PID 13308 invisible. 
File './sebek.sh' hided. 
 
On the collector machine, sebeksniff is executed with the proper command line 
options to begin capturing the sebek traffic. 
 
[root@localhost collector]# ./sebeksniff -d eth1 -m 7777 -s testtesttest 
Device: eth1 
Magic: 7777 
Sebek monitoring enabled 
Sebek symmetric key: testtesttest 
write 192.168.0.3:  602 bytes 
write 192.168.0.3:  172 bytes 
write 192.168.0.3:  41 bytes 
write 192.168.0.3:  41 bytes 
write 192.168.0.3:  41 bytes 
write 192.168.0.3:  41 bytes 
write 192.168.0.3:  41 bytes 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Now the sebeksniff tool is up and running, capturing all traffic sent by the 
honeypot.   
 
The following screenshot displays the network traffic for the subnet running the 
sebek system, which includes multiple encrypted UDP packets from spoofed 
addresses being transmitted to the log host on various destination ports. 
 

 

Sebek Analysis 

To test the functionality of sebek, it was installed on a test computer running 
Redhat 7.3.  The sebek collector was installed on a different computer running 
Redhat 8.0.  A third computer was used to simulate the attacker.  All three 
computers were connected locally to an Ethernet LAN.  With this setup, several 
different scenarios were tested.  The first scenario involved logging onto the 
honeypot locally and running several commands.  Next, a SSH connection was 
made to the machine to run some applications.  A review of the captured data 
was done with sbdump.  Sbdump lists the timestamp, userid, process name, tty, 
file descriptor, and data for each command that was run. 

Output of sbdump without parameters: 
 
Sbdump 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This is a program to parse sebek logfiles, it is handy 
sbdump [-c|-b|-s] filename 
         -c extracts data gathered character by character 
         -b extracts data gathered in bulk 
         -s extracts SCPed files recorded by sebek in the log 
 
The first listing shows the output of sbdump when parsing for keystrokes. 
 
[root@localhost collector]# perl sbdump -c 192.168.0.3 
00:00:00-1970/01/01 [0:bash:1375:vc/2:0]clear 
14:52:25-1971/06/11 [0:bash:1375:vc/2:0]cd 
16:39:06-2003/02/17 [0:bash:1375:vc/2:0]whoami 
16:39:13-2003/02/17 [0:bash:1375:vc/2:0]httpd -v 
15:15:05-1971/06/11 [0:bash:1667:pts:tail /var/log/mess 
17:03:14-2003/02/17 [0:bash:1667:pts:0]ps -ax 
17:03:36-2003/02/17 [0:bash:1667:pts:0]lsmod 
17:04:52-2003/02/17 [0:bash:1667:pts:0]exit 
15:20:51-1971/06/11 [0:bash:1792:ptnslookup 
17:08:12-2003/02/17 [0:bash:1792:pts:0]exit 

 
 

First, a user that is already logged on runs a few commands, clear, cd, and 
whoami.  This is all from the shell interpreter bash on the server.  The following 
entries with pts indicate that they were being sent remotely, in this case through 
SSH.   
 
[root@localhost collector]# perl sbdump -c 192.168.0.3 
00:00:00-1970/01/01 [0:bash:1375:vc/2:0]clear 
14:52:25-1971/06/11 [0:bash:1375:vc/2:0]cd 
16:39:06-2003/02/17 [0:bash:1375:vc/2:0]whoami 
16:39:13-2003/02/17 [0:bash:1375:vc/2:0]httpd -v 
15:15:05-1971/06/11 [0:bash:1667:pts:tail /var/log/mess 
17:03:14-2003/02/17 [0:bash:1667:pts:0]ps -ax 
17:03:36-2003/02/17 [0:bash:1667:pts:0]lsmod 
17:04:52-2003/02/17 [0:bash:1667:pts:0]exit 
15:20:51-1971/06/11 [0:bash:1792:ptnslookup 
17:08:12-2003/02/17 [0:bash:1792:pts:0]exit 
[root@localhost collector]# 

 
Viewing the raw data from the connection log gives an insight into how the SSH 
program runs.  The log shows the files SSH processes, first of which is 
/etc/hosts.allow, then /etc/hosts.deny.  Next SSH calls PAM to verify the 
password and username.  This information is fairly easy to spot by viewing the 
raw, unparsed sebek lag created by sebeksniff. 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SCP file transfer recovery 
Due to the way the Sebek system captures all calls read() system call, it is also 
able to capture Secure copy (SCP) file transfers to and from the honeypot.   
Remote SCP of files to the honeypot will show up in the logs with the date and 
time, program, program data, filename, and the size of data transferred.  When 
an intruder SCP a file to another remote machine from the honeypot, we are able 
to capture the file as well as the password used to authenticate to the remote 
server.   

Sebek Disadvantages 
 
Although the sebek system represents an advancement for host based 
honeypots, there are several areas of the system that could be improved to 
increase the efficiency, reduce detection, and create a better honeypot.  One 
obvious problem detected during the testing of sebek was the error message 
logged to syslog during the startup of SDM: 
 
localhost kernel: sdm uses obsolete (PF_INET,SOCK_PACKET) 
 
This error message can quickly and easily pinpoint this computer as a honeypot. 
A better solution would be to get rid of the SDM application altogether.  
Functionality could be included into the sebek LKM that would hook into the 
network layer, allowing all sebek related network traffic to remain completely 
hidden from the sebek machine.  This would eliminate the need for a separate 
process to handle the data transfer.  Currently, a skilled attacker would probably 
become suspicious of encrypted, spoofed UDP packets constantly being 
broadcast onto the network.  Sebek could also be redesigned to work with 
Redhat 8.0 and later versions of the linux kernel, as well as expanded to other 
flavors of UNIX.  Also, chkrootkit is able to detect the current version of sebek, 
giving intruders another method to determine if the system is running as a 
honeypot. 
 
Conclusion 
 
The use of honeypots is becoming more extensive in the computer security 
industry.  Simple, low interaction honeypots do not provide the amount or detail 
of information that is needed to fully understand the motives and methods of 
hackers, requiring new honeypot technologies to be developed and deployed.  A 
high interaction honeypot like sebek is able to capture a large amount of data, 
including encrypted communications, through patched system calls from loadable 
kernel modules.  The sebek system is able to communicate encrypted log data to 
a remote host for analysis through a highly customizable reporting program.  
Although the sebek system does have some disadvantages and may be 
detected, the concept of using loadable kernel modules in a honeypot 
environment is innovative and should be expanded and improved upon.   
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References: 
 
Barnett, Ryan C.  “--[Honeypots]-- Monitoring and Forensics” 
URL:http://honeypots.sourceforge.net/ (8 February, 2003). 
 
Gubbels, Kecia. “Hands in the Honeypot” November 3, 2002 
URL:http://www.sans.org/rr/intrusion/hands.php (8 February, 2003). 
 
Dai Zovi, Dino. Kernel Rootkits July 4, 2001 
URL:http://www.sans.org/rr/threats/rootkits.php (8 February, 2003). 
 
Johnson, Benjamin. “My Project – Sebek” 
URL:http://mailman.cs.uchicago.edu/pipermail/cs22800/Week-of-Mon-
20020923/000008.html (10 February, 2003) 
 
Miller, Toby. “Detecting Loadable Kernel Modules (LKM)” URL: 
http://www.incident-response.org/LKM.htm (10 February 2003). 
 
Spitzner, Lance. “Honeypots, Tracking Hackers”. Boston: Pearson Education, 
Inc, 2002. 
 
Martin, William W. “Honey Pots and Honey Nets - Security through Deception” 
URL:http://www.sans.org/rr/attack/deception.php May 25, 2001 
 
Honeynet Project, The.  “Know your Enemy: revealing the security tools, tactics, 
and motives of the blackhat community”.  Indianapolis, IN: Addison-Wesley, 
2002. 
 
Whitehatinc.com. “NFR BackOfficer Friendly” URL: 
http://www.whitehatinc.com/nfr/bof.html (9 February 2003). 
 
Honeynet Project, The. “Honeynet Project” URL: http://project.honeynet.org/ (9 
February 2003).   
 
AIDE. “AIDE” URL: http://www.cs.tut.fi/~rammer/aide.html (9 February 2003). 
 
Pragmatic / THC. “(nearly) Complete Linux Loadable Kernel Modules, ver 1.0”  
URL:http://packetstormsecurity.nl/docs/hack/LKM_HACKING.html 03/1999. 
 
Henderson, Bryan. “Linux Loadable Kernel Module HOWTO” URL: 
http://www.tldp.org/HOWTO/Module-HOWTO/. 21 May 2002. 
 
Rd. “Writing Linux Kernel Keylogger” 
URL:http://packetstormsecurity.nl/papers/unix/writing-linux-kernel-keylogger.txt 
June 19th, 2002. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Plasmoid / THC "Attacking Solaris with loadable kernel modules" - Version 
1.0 (c) 1999 URL: http://www.cs.ucsb.edu/~jzhou/security/slkm-1.0.html  


