
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Cryptanalysis of RSA: A Survey

Carlos Frederico Cid
GSEC – GIAC Security Essentials Certification

Practical Version 1.4b

1 Abstract
The RSA is the most widely deployed public-key cryptosystem and is used for
both encryption and digital signature. It is commonly used in securing e-
commerce and e-mail, implementing virtual private networks and providing
authenticity of electronic documents. It is implemented in most Web servers and
browsers, and present in most commercially available security products. In fact,
the ubiquity of RSA has placed it at the heart of modern information security. It
would not be an overstatement to say that Internet security relies heavily on the
security properties of the RSA cryptosystem.
Since its invention in 1977, the RSA cryptosystem has been extensively analyzed
for vulnerabilities. While no devastating attack has ever been found, years of
cryptanalysis of RSA have given us a broad insight into its properties and
provided us with valuable guidelines for proper use and implementation.
In this paper we give a survey of the main methods used in attacks against the
RSA cryptosystem. We describe the main factoring methods, attacks on the
underlying mathematical function, as well as attacks that exploit details in
implementations of the algorithm. While many attacks exist, the system has
proven to be very secure, and most problems arise as a result of misuse of the
system, bad choice of parameters or flaws in implementations. To conclude, we
list a couple of countermeasures that can be used to prevent many of the attacks
described.

2 Overview of Public-Key Cryptography
Cryptography can be defined as the study of mathematical techniques related to
the security of transmission and storage of information. Cryptography is an
important tool in today's information security, and although it has been historically
linked to confidentiality, modern cryptography addresses also the issues of
integrity, authentication and non-repudiation.
Basically, there are two types of cryptography: symmetric-key cryptography and
public-key cryptography. Symmetric-key (or secret-key) cryptography can be
seen as an outgrowth of classical cryptography. If users want to securely
communicate with each other, they must share a key, which is used to both
encrypt and decrypt messages1. The security of a symmetric-key scheme should
rely on the secrecy of the key, as well as in the “infeasibility” of decryption without
knowledge of the same. Examples of symmetric-key encryption algorithms are
DES, RC4, Blowfish and AES.

1 Technically, the encryption and decryption keys may be distinct, but it must be easy to derive one from the other.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Symmetric-key schemes are usually fast. One of the main issues when deploying
symmetric-key cryptography is the problem of key establishment. The problem is
that users must share a secret key to be able to securely communicate, which by
nature should be known by no one else. Historically, key distribution was done in
advance using a secure channel (e.g. trusted courier). When considering a
network of users wishing to communicate securely, each pair of users must
share a secret key, which makes it impractical for any medium-size network. A
solution could involve a central entity, which would be trusted by all the users
(e.g. a trusted third party) and whose job would be the issuance of ephemeral
session keys. There are a number of other solutions, but it should be clear that
key establishment is one of the main problems.
The concept of public-key cryptography was proposed in 1976 by Whitfield Diffie
and Martin Hellman in their pioneering paper [7]. As explained in their paper, the
main motivation for this new concept was to “minimize the need for secure key
distribution channels and supply the equivalent of a written signature”. In public-
key cryptography each user has a key pair (e, d), which consists of a public key e
and a private key d. The user A can make e publicly available and keep only d
secret. Now anyone can encrypt information with e, while only A can decrypt it
with d. Alternatively, the private key can be used to sign a document, and anyone
can use the corresponding public key to verify its authenticity. What makes
public-key cryptography work is that it is computationally infeasible to derive the
secret key d from the corresponding public key e (compare with symmetric-key
above). Examples of public-key cryptosystems are Diffie-Hellman key exchange
scheme, ElGamal and RSA encryption and signature schemes.
At the heart of public-key cryptography lies the concept of one-way function. We
say that a function f is “one-way” if it is easy to compute f(x) for every x in the
domain of f, but for most randomly chosen y in the image of f, it is
computationally infeasible to find x such that f(x) = y. A trapdoor one-way function
is a one-way function for which given an extra information (the trapdoor), it
becomes feasible to find x such that f(x) = y. One can consider the encryption
with e as the one-way function, with d being the trapdoor information.
We can think of the situation above analogous to a safe mailbox. Anyone can
insert a message into the box (the box is in public domain), while only the owner
can open it (with his private key). One could still try to break the box to read any
message, but depending of the physical strength of the box, this might be
infeasible.
Compared with symmetric-key cryptography, public-key cryptosystems are
usually slower and require longer keys. On the other hand, it simplifies key
distribution2. Also conventional symmetric-key algorithms have a limited lifetime:
it turns out to be useless once exhaustive key search becomes feasible due to
computational progress. Public-key is more flexible, as all one has to do is to
select larger keys. In practice, it is common to use hybrid schemes: public-key

2 There is still the need to authenticate users’ public keys, which in practice is done by public-key
certificates.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

techniques are used to establish short-term (symmetric) keys, which are used to
secure the communication.

3 The RSA Cryptosystem
The RSA cryptosystem was created in 1977 and named after its inventors
Ronald Rivest, Adi Shamir and Leonard Adleman [16]. It is widely used to secure
communication in the Internet, ensure confidentiality and authenticity of e-mail,
and it has become fundamental to e-commerce. RSA is deployed in the most
popular security protocols, including SSL/TLS, SET, SSH, S/MIME, PGP,
DNSSEC, as well as most PKI products. Several standards cover the use of RSA
for encryption, digital signatures and key establishment. In fact, RSA is usually
present wherever security of digital data is a concern.
The underlying mathematical structure of the RSA function is qui te simple and
this might be another reason for its popularity; people do feel more comfortable
on working with an algorithm one can understand. It is based on basic algebraic
operations on large integers. Before the description of the algori thm we need to
set some conventions though:

- if a, b and n are positive integers, we say that a is equal to b modulo n
(denoted as a ≡ b mod n) if b is the remainder of a divided by n;

- we denote by Zn the set of integers modulo n. This set can be
represented by all non-negative integers less than n. We can define
the operations addition and multiplication in this set by using the usual
operations on integers, but taking the result modulo n as defined
above. These are called modular addition and modular multiplication.

- we denote by gcd(a, b) the greatest common divisor of a and b. This is
defined as the largest positive integer which divides both a and b.

We can now describe the RSA algorithm (for more details see [13]):
• generate two distinct large primes p, q, each roughly the same size;

• compute n = pq and •(n) = (p-1)(q-1);

• choose an integer e < •(n) such that gcd(e, •(n))=1.

• calculate3 d such that de ≡ 1 mod •(n).
The pair of integers (e, n) is the public key. The pair (d, n) is the private key (the
primes p, q are in principle no longer needed, although they can not be made
public). The integer n is the modulus. We will call e and d the public and private
exponents, respectively. It is also convention to call the bit length of the modulus
n the size of the RSA key.
We typically have the modulus n 1024-bit long (each prime is 512-bit long), and
the public exponent a relatively small integer (3 and 65537 are commonly used
values). In this case the private exponent d will be roughly the same size as n.

3 using the Extended Euclidean Algorithm.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Now we have:
Encryption:

• represent a message to be encrypted as an integer M ∈ Zn

• encrypt M as C ≡ Me mod n

• the resulting ciphertext C can be decrypted by computing D ≡ Cd mod n. It
follows from de ≡ 1 mod •(n) that D = M.

The RSA algorithm is also used for generating digital signatures, which can
provide authenticity and non-repudiation of electronic legal documents.

Signing:

• represent a message to be signed as an integer M ∈ Zn . This is usually
done by first calculating the hash of the message.

• M can be signed by calculating S ≡ Md mod n.

• the signature can be verified by checking if M ≡ Se mod n.
In practice messages are encoded (padded) before encryption and signing. The
use of the RSA function without prior encoding does not satisfy basic definitions
of security and is considered insecure. Also the same private key should not be
used to both decrypt and sign messages. Users should have different keys for
encryption and signing.
The RSA encryption scheme is a public-key cryptosystem, and the RSA trapdoor
function is defined as f(x) ≡ xe mod n. The trapdoor is the private exponent d,
since (xe)d ≡ x mod n. The problem of how to invert the RSA function without the
knowledge of the private exponent d is known as the RSA problem.
The security of the RSA cryptosystem relies on the very well known problem of
factoring large integers, which is widely believed to be intractable. Factorization
of the modulus is devastating for the system. If an adversary can factor n, he can
easily calculate the private exponent by solving the congruence ed ≡ 1 mod •(n),
and thus invert the RSA function.
One interesting point to note is that it has been shown that recovery of the private
exponent d is equivalent to factoring the modulus n (see [2]). That means that an
adversary who knows (e, d, n) can efficiently factor n. This illustrates a possible
misuse of the RSA cryptosystem. To avoid generating new primes for every user,
it was thought that a trusted central authority could generate a common modulus
and distinct exponent pairs (ei, di) for each user. Although this might seem at first
glance a good idea, the fact above shows that it is completely insecure: any user,
knowing its own key pair, could factor n and then recover all the other private
keys. This shows that an RSA modulus should never be used by more than one
entity.
Note that the fact above does not prove the equivalence between the RSA
problem and the integer factorization problem. The RSA problem is, given (e, n)
and C, to recover M such that C ≡ Me mod n (i.e. calculate eth-roots modulo n). To

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

recover the private key d is a much more ambitious target, and above we see
that it is as hard as factoring the integer n. Currently it is not known if the RSA
and integer factorization problems are computationally equivalent. In fact, there is
evidence that, at least for low public exponents, breaking RSA might be easier
than factoring [2]. This provides no sign of weakness in the RSA system though;
it shows only that the problems might not be equivalent (the RSA problem is still
likely to be a hard problem).

4 Cryptanalysis of RSA
While cryptography is the science concerned with the design of ciphers,
cryptanalysis is the related study of breaking ciphers. Cryptography and
cryptanalysis are somehow complimentary sciences: development in one is
usually followed by further development in the other. In particular, cryptanalysis is
an important tool for vulnerability assessment of cryptosystems.
In an encryption scheme, the main objective of the adversary is to recover the
plaintext M from the related ciphertext4. If he is successful, we say he has broken
the system. In the case of digital signatures, the goal of the adversary is to forge
signatures. A more ambitious attack is to recover the private key d. If achieved,
the adversary can now decrypt all ciphertexts and forge signatures at will. In this
case the only solution is the revocation of the key.
Below we give a brief description of the main methods used to attack the RSA
cryptosystem. We talk about the main factoring methods, attacks on the
underlying mathematical function and attacks which exploit implementation
details and flaws. Some of these attacks apply only to the encryption scheme,
some result in the key recovery (e.g. factoring). It should be clear from the
context to which situation a particular attack applies.
As it is already standard in examples of use of cryptography, we name three
entities involved in the system as Alice, Bob and Caroline. Alice and Bob wish to
securely communicate with each other, while Caroline is a malicious adversary,
trying passively or actively to disturb the communication.

4.1 Factoring
The problem of finding non-trivial factors of a given positive composite integer n
is known as the integer factorization problem. The integer factorization problem
is widely believed to be a hard problem, i.e., there seems to be no polynomial
time algorithm that solves the problem for a large proportion of possible inputs.
Note that factoring is obviously not always hard, but a hard instance of the
problem can be easily created, by simply multiplying two large chosen prime
numbers. That is exactly what we do when working with RSA.
As we have seen, the security of the RSA cryptosystem is intimately related to
the integer factorization problem. If an adversary can factor the modulus n, he
can efficiently calculate the private exponent. In this case we say that he has

4 Sometimes the adversary may want to recover any information about M, even a single bit.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

completely broken the encryption scheme: he not only can recover a particular
plaintext M, but also decrypt all ciphertexts encrypted with the respective public
key.
Therefore, although factoring methods are not used in practice in attacks against
RSA, they are important in deriving lower bounds for key sizes and properties of
the security parameters. Taking into account the value of data and the threat
model, parameters should be chosen such that factoring the modulus is
computationally infeasible.
Factoring methods can be divided into special-purpose and general-purpose
factoring methods. Special purpose methods depend on special properties of the
number to be factored, as the size of the smallest factor p of n, the factorization
of p – 1, etc. General-purpose methods depend solely on the size of n.
Below we give only an outline of the main factoring methods; apart from
advanced mathematical techniques, there are a number of improvements,
optimizations and implementation details that are beyond the scope of this
article. More details can be found in [10], [11], [12].

4.1.1 Trial Division
Trial division can be considered as an exhaustive search for the RSA private key.
The method is to attempt to divide n by all successive primes until one divisor is
found. Because a composite number n must have a prime divisor ≤ n½, one has
only to check for all primes up to the square root of n. It then follows from the
Prime Number Theorem that the number of attempts is bounded by •
(2n½)/(log(n)). Although this method is very effective when trying to factor a
randomly selected composite integer5 or relatively small numbers, it is useless
against the kind of numbers currently used with RSA.

4.1.2 Pollard’s p – 1 Method
This is a special purpose factoring method, which relies on a special property of
a divisor of n. Suppose that p is some (yet unknown) prime divisor of n, for which
p – 1 is a product of (possibly many) small primes ≤ B (we say that p - 1 is B-
smooth). If we make K the product of large enough powers of all primes less than
B, then we have that K is a multiple of p – 1. If a is a small integer (e.g. a = 2), it
follows from Fermat’s Little Theorem that ak • 1 mod p, and therefore p divides
the greatest common divisor of ak – 1 and n. Note that K might be very large, but
(ak –1) can be computed modulo n.
With this method one can find a prime factor of n in time proportional to the
largest prime factor of p – 1. The problem is that we do not know the factorization
of p – 1 beforehand (we want to find p !), so we have to choose a bound B and
perhaps increase it until we are successful. Thus this method is practical only if B
is not too large. For the typical size of RSA primes used today (512 bits), the
probability that one can factor n using Pollard’s p – 1 method is very small.
Nevertheless, the very existence of this method is a reason why some

5 It is known that more than 91% of integers have a factor < 1000.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

cryptographic standards (e.g. ANSI X9.31) require RSA moduli with primes for
which p – 1 has at least a large prime factor (known as strong primes).

4.1.3 Pollard ‘s rho Method
This method is based on a fact known as the birthday paradox. If you have 23
people in a room, the probability that at least 2 of them share the same birthday
is greater than 50%. This fact might seem surprising to many people, thus the
name. More generally, if you have a set with N elements and you draw elements
at random (with replacement) from this set, then after around 1.2(N)½ draws you
would expect to have drawn an element twice.
Pollard’s rho method works by successively picking at random numbers less than
n. If p is an unknown prime divisor of n, then it follows from the above fact that
after around 1.2p½ draws we would expect to have drawn xi, xj such that xi ≡ xj
mod p. Thus we have p = gcd(xi – xj, n).
For this method to be effective, one has to choose a function from Zn into Zn
which behaves “randomly” in Zn (f(x) = x2+1 will do it), and starting with any x0 in
Zn, repeatedly calculate xj = f(xi-1). One does not have to calculate gcd(xj – xi, n)
for all previous numbers xj (which would require very large memory and would
make the method nearly as expensive as exhaustive search). It has been shown
that one needs only to compare xi with x2i. This decreases the requirement for
storage and the number of operations, but it can happen that we might miss an
early collision, which would only be caught later. The spatial description of the
sequence of elements xi is of the Greek letter ρ (rho), starting at the tail, iterating
until it meets the tail again, and then it cycles on from there until the prime p is
found.
The runtime of this algorithm is therefore proportional to the size of the smallest
prime dividing n. For the size of today’s RSA moduli this method is impractical.
But Pollard’s rho method was used on the factorization of the eighth Fermat
number 2256 + 1, which unexpectedly had a small prime factor.

4.1.4 Elliptic Curve Method
The Elliptic Curve Factorization method was introduced by H. W. Lenstra in
1985, and can be seen as a generalization of Pollard’s p – 1 method. The
success of Pollard’s method depends on n having a divisor p such that p – 1 is
smooth; if no such p exists, the method fails. The Elliptic Curve method
randomizes the choice, replacing the group Zp (used in Pollard’s method) by a
random elliptic curve over Zp. Because the order of the elliptic curve group
behaves roughly as a random integer close to p + 1, by repeatedly choosing
different curves, one will find with high probability a group with B-smooth order
(for a previously selected B), and computation in the group will provide a non-
trivial factor of n.
The Elliptic Curve method has a (heuristic) subexponential runtime depending on
the size of the prime factors of n, with small factors tending to be found first. The
worst case is when p is roughly (n)½, which applies for RSA moduli. So although

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the method cannot be considered a threat against the standard (two-prime) RSA,
it must nevertheless be taken into account when implementing the so-called
“multi-prime” RSA, where the modulus may have more than two prime factors (as
described in [4], [19]).

4.1.5 Quadratic Sieve and Number Field Sieve Methods
The Quadratic Sieve and the Number Field Sieve methods are the most widely
used general-purpose factoring methods. Both are based on a method known as
“Fermat Factorization”: one tries to find integers x, y, such that x2 ≡ y2 mod n but x
≠ ± y mod n. In this case we have that n divides x2 – y2 = (x - y)(x + y), but it does
not divide either term. It then follows that gcd(x - y, n) is a non-trivial factor of n. If
n = pq, a random solution (x, y) of the congruence x2 ≡ y2 mod n would give us a
factor of n with probability of 50%.
The general approach for finding solutions (x, y) of the congruence above is to
choose a set of relatively small primes S = { p1, p2, …, pt } (called factor base) and
enough integers ai such that bi ≡ ai

2 mod n is the product of powers of primes in
S. In this case every bi can be represented as a vector in the t-dimensional vector
space over Z2. If we collect enough bi’s (e. g., t+1 of them), then a solution of x2 ≡
y2 mod n can be found by performing the Gaussian elimination on the matrix B =
[bi], with chance of at least 50% of finding a factor of n.
The first step above is called the “relation collection stage” and is highly
parallelizable. The second step is called the “matrix step”, in which we work with
a huge (sparse) matrix, and will eventually produce a non-trivial factor of n.
It should be clear that the choice of the number of primes of S is very important
to the performance of the method: if this number is too small, the relation stage
will take very long time, as a very small proportion of numbers will factor over a
small set of primes. If we pick too many primes, the matrix will be too large to be
efficiently reduced. Also crucial are the methods for choosing the integers ai’s
and testing division by primes in S.
The Quadratic Sieve (QS) Method was invented by Carl Pomerance in 1981, and
was until recently the fastest general-purpose factoring method. It follows the
approach above, introducing an efficient way to determine the integers ai’s, by
performing a “sieving process” (recall the “Sieve of Eratosthenes”). It has a
subexponential runtime and was used in the factorization of the RSA-129
challenge number in 1994. The effort took around 8 months, with the factor base
in this case containing 524,339 primes [11].
The Number Field Sieve (NFS) Method is currently the fastest general-purpose
factoring method. The technique is similar to the Quadratic Sieve, but it uses a
factor base in the ring of integer of a suitably chosen algebraic number field [10].
From the sieving step on, the QS and NFS methods coincide. For NFS, the
matrix is usually larger, but the initial step is more efficient. NFS has also a
(heuristic) subexponential runtime, which is (asymptotically) better than the QS.
Experiments show that NFS outperforms QS for numbers from 110-120 digits

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

long, although A. Lenstra states that the crossover point is probably much lower
than expected [12].
The Number Field Sieve method was used in the factorization of the RSA-155
challenge number (around 515 bits) in 1999. In total 124,722,179 relations were
collected, while the resulting matrix had 6,699,191 rows and 6,711,336 columns.
The total elapsed time was 7.4 months [18].

4.2 Attacks on the RSA Function
The attacks below take advantage of special properties of the RSA function.
These usually exploit the misuse of the system, bad choice of either the private
exponent d or the public exponent e, relation between encrypted messages, bad
padding, etc. Many of these attacks use advanced mathematical techniques that
are outside the scope of this article; a good reference is [2].

4.2.1 Low Private Exponent Attack
The RSA decryption and signing are very compute-intensive operations, which
take time linear to the length of the private exponent d. Thus some low-power
devices may want to use a small d instead of a random one, in order to improve
performance. However an attack due to M. Wiener shows that the choice of a
small d can lead to a total break of the system. More specifically, he showed that
if n is the modulus and d is the private exponent, with d < 1/3(n)¼, then given the
public key (e, n), an attacker can efficiently recover d (Boneh and Durfee have
recently improved the bound to d < n0.292).
In practical terms, this means that for a typical 1024-bit RSA modulus, the private
exponent d should be at least 300 bits in length. If the public exponent e is
chosen to be 65,537 (the most commonly used value), and we calculate d as de ≡
1 mod •(n), then we are guaranteed to have d nearly as long as n, and this attack
should not pose a threat.

4.2.2 Partial Key Exposure Attack
A well-known principle in cryptography says that the security of any cryptographic
system should rely solely on the secrecy of the private key. An attack on the RSA
cryptosystem due to Boneh, Durfee and Frankel shows the importance of
protection of the entire private exponent d.
They have shown that, if the modulus n is k bits long, given the (k/4) least
significant bits of d, an attacker can reconstruct all of d in time linear to (e log(e)),
where e is the public exponent. This means that if e is small, the exposure of a
quarter of bits of d can lead to the recovery of the whole private key d.
The issue of safeguarding of RSA private keys is a crucial one, but it is a problem
that is often overlooked. In SSL-enabled servers for example, it is not unusual to
have the private key stored in the computer’s HD, in plaintext form so that the
server can be re-started without human interference (an encrypted file would
require the encryption key in order to start the server).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Also taken into account the fact that when e is small the RSA system always
leaks half the most significant bits of d [2], plus a clever technique described in
[22], in which one searches for randomness in order to locate private keys in
large volumes of data, such as the hard disk filing system (or memory), it should
be clear how important the safe storage of the RSA private key is. Perhaps the
best solution is the use of tamper-resistant hardware modules or tokens, in which
the private key is securely stored and the private operation is performed.

4.2.3 Broadcast and Related Message Attacks
If Bob broadcasts the encryption of the same message M to a sufficient large
number of recipients (which have different public keys (ei, ni)), Hastad has
described an attack in which a malicious eavesdropper can efficiently recover M
if all the public exponents are small. This attack can be extended to the case in
which instead of sending (M)ei mod ni to each recipient, Bob sends (fi(M))ei mod
ni , where fi are known polynomials (for example, some kind of known padding).
This is done by solving a system of univariate equations modulo relatively prime
composites, which can be efficiently done if sufficiently many equations are
given.
There is also an attack when Bob sends to Alice related encrypted messages
using the same modulus. If M1 and M2 are 2 messages such that M1 = f(M2),
where f is again a known polynomial function, and Bob sends C1 ≡ (M1)e mod n
and C2 ≡ (M2)e mod n, then a malicious eavesdropper can again efficiently recover
both messages if e is small. An example of such scenario is one where Bob
sends the first encrypted message to Alice, which Caroline intercepts. Because
Alice has failed to respond, Bob sends the message again, using a different
padding (the function f). Caroline can now recover M using the attack above.
Both of these attacks are more effective if the public exponent e is 3, although
they can be prevented if we remove the relation between the messages, usually
by adding some kind of random padding.

4.2.4 Short Pad Attack
Related to the attacks above, Coppersmith has shown that an adversary can still
be successful if the random padding Bob adds to the messages is not long
enough. For example, if e is 3, the length of the random padding must be at least
1/9 of the message length. A variant of the attack is successful in decrypting a
single ciphertext when a large fraction (2/3) of the message is known. For
example, PKCS#1 standard ([19]) recommends the use of its simpler padding
scheme (v1.5) only for encryption of relatively short messages (typically a 128-bit
symmetric key). If a long message is to be encrypted, or if part of a message is
known, then the attack above may be a concern, in which case an alternative
padding method should be used (e.g. RSA-OAEP also defined in [19]).

4.3 Implementation Attacks
All the attacks against the RSA we have seen so far apply to the underlying
cryptographic primitive and parameters. On the other side, implementation

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

attacks (also called side-channel attacks) target specific implementation details.
In this case, an attacker typically uses some additional information leaked by the
implementation of the RSA function or exploit faults in the implementation. The
attacks are usually applied against smart cards and security tokens, and are
more effective when the attacker is in possession of the cryptographic module.
Defense against side-channel attacks is hard; one usually tries to reduce the
amount of information leaked or make it irrelevant to the adversary.

4.3.1 Timing Attack
Timing attacks against RSA were introduced by P. Kocher in 1995 (see [8]).
Timing attacks take advantage of the correlation between the private key and the
runtime of the cryptographic operation. Recall that the RSA private operation
consists of a modular exponentiation, using the private key d as exponent.
Modular exponentiations are usually implemented using an algorithm called
repeated squaring algorithm. If the private key is k bits long, this consists of a
loop running through the bits of d, with at most 2k modular multiplications. In each
step the data is squared, with the execution of a modular multiplication if the
current bit of the exponent is 1.
By measuring the runtime of the private operation on a large number of random
messages, an attacker can recover bits of d one at a time, beginning with the
least significant bit. Note that in view of the partial key information attack
described earlier, if a low public exponent is used, the attacker needs only to find
the first k/4 bits using this method; the remaining bits can be found using the
previous method.
To defend against timing attacks, one must try to lessen the correlation between
the runtime and the private exponent. One solution is to add a delay, so that
every modular operation takes the same fixed time. This obviously affects the
performance of the operation, which many times may not be a serious issue
though (for example, when working with smart cards).
Another solution is called blinding. This transforms the data before the private
operation using a random value generated by the cryptographic module. Now the
operation is performed on a random data unknown to the adversary, which
precludes the attack. Recently Boneh and Brumley published a paper [3]
describing a timing attack against OpenSSL, which can be done remotely (timing
attacks were believed to be effective only when the attacker was in possession of
the cryptographic module). They explore OpenSSL's modular exponentiation
software implementation, and their attack also recovers the RSA private key. To
defend against this attack they recommend performing RSA blinding. Apparently
blinding is implemented in OpenSSL, but it is not enabled by default (the
performance penalty is of around 2% - 10%).
One important point to note is that timing attacks are not only defined against
RSA. A recently announced attack against the SSL protocol took advantage of
the difference in the time taken by the current OpenSSL implementation to
respond to different errors in the decryption of carefully chosen messages when
using a symmetric-key block cipher in the CBC mode [5].

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.3.2 Power Analysis
Following his work on Timing Analysis, P. Kocher, together with researchers from
his company Cryptography Research, introduced in 1998 a new form of attack on
smart cards and cryptographic tokens called power analysis. These attacks are
mounted by monitoring the token’s power consumption. Based on the fact that
the power consumption varies significantly during different steps of the
cryptographic operation, an attacker can recover the secret information.
They defined two types of attacks: Simple Power Analysis attacks work by
directly observing a system’s power consumption. Differential Power Analysis
attacks are more powerful, using statistical analysis and error correction
techniques to extract information correlated to private keys.
Although these attacks are quite complex and require a high level of technical
skill to implement, Kocher says “they can be performed using a few thousand US
dollars of standard equipment and can often break a device in a few hours or
less” [6]. These attacks are most effective against smart cards, and there are a
number of techniques (both in hardware and in software) that can be used to
prevent them.

4.3.3 Fault Analysis
Fault Analysis attacks work by exploiting errors on key-dependent cryptographic
operations. These errors can be random, latent (e.g. due to bugs in the
implementation) or induced. There are a number of fault analysis attacks against
public-key and symmetric-key cryptographic devices. In 1997 Boneh, DeMillo
and Lipton introduced an attack against RSA, which exploits possible errors on
the RSA private operation in cryptographic devices (see [9]).
As noticed before, the RSA private operation is a very compute-intensive
operation, consisting of a modular exponentiation using numbers typically in the
range of 300 decimal digits. Many implementations of RSA decryption and
signing use a technique known as the Chinese Remainder Theorem (CRT),
which by working modulo p and q (instead of module n = pq), can give a four-fold
improvement in the performance. Boneh, DeMillo and Lipton described a
technique, which by exploiting an error occurring during the decryption or signing
and analysing the output, an adversary could factor the modulus n and therefore
recover the device’s private key. Both the output and the input of the operation
are necessary for the attack to succeed (making it more effective against signing
devices). To perform this kind of attack, one needs only to induce an error into
the device during the private operation (for example, by voltage or clock speed
variation). We should also note that unlike many of the attacks described before,
the difficulty of this one is independent of the key length.
This fault attack against RSA can be easily prevented by requiring the device to
verify the operation with the public key before outputting the result. This should
not particularly degrade the performance, as the RSA public operation is very
fast6. Also we note that the attacker needs to have full knowledge of the actual

6 OpenSSL currently does that, resulting in a 5% slowdown.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

string being signed or decrypted; the addition of random padding that is unknown
to the attacker by the device prior to the operation would also prevent this type of
attack. Nevertheless the existence of fault analysis attacks stresses the need for
special care when implementing secure cryptographic applications.

4.3.4 Failure Analysis
Failure analysis exploits feedback from the implementation indicating success or
failure of the decryption operation. Attacks using failure analysis are generally
adaptive chosen ciphertext attacks, and an application performing the decryption
could be seen as an oracle that tests the validity of the transmitted ciphertext. An
example of this type of attack was introduced by D. Bleichenbacher in 1998 and
is known as the Million Message Attack (see [1]). This attack exploits the
cryptographic message syntax of some implementations.
Prior to RSA encryption, a message is usually padded by adding a few random
bytes and some form of redundancy, which can be used later to check
correctness of decryption. A widely used encoding format, defined in [19], is
known as PKCS#1 v1.5. This is the encoding used by a number of cryptographic
protocols, including SSLv3. When using this method, a message M after being
encoded would have the following format:

PM = 00 02 || PS || 00 || M,
where 00 and 02 are bytes of value 0 and 2, PS is a padding string of non-zero
random bytes, and || denotes concatenation. Now the string PM would be
encrypted with the RSA public key, and the corresponding ciphertext transmitted.
At the other end, the application (usually a web server) decrypts the ciphertext
with its private key, checks if the result has the expected format, and if so,
removes the padding and continues with the processing of M.
A problem with the PKCS#1 v1.5 encoding format is that it does not have a
property known as plaintext-awareness. Informally speaking, this means that it is
quite feasible to generate a ciphertext, of which the decryption has a valid format
without actually knowing the corresponding plaintext. Using this fact
Bleichenbacher proposed an attack in which one could decrypt a ciphertext of
choice based on the responses he would get from the application following the
decryption of carefully chosen ciphertexts (a typical example of adaptive chosen
ciphertext attack). For example, if the adversary wanted to decrypt a ciphertext C,
he would generate and transmit a related ciphertext C’. If the decryption of C’ did
not have the expected format, some SSL implementations would return an error
indicating “decryption failed”. On the other hand, if the decryption did have the
expected format, the implementation would then continue processing the
message M’, which one expected to be the SSL session’s pre-master secret, but
it is probably just a random string. This would probably cause a failure at the end
of the SSL handshake, and the error returned by the server would be different.
Depending on what response he got, the attacker could choose the next
ciphertext to send and eventually after around 220 queries (for a typical 1024-bit
modulus), he would decrypt the original ciphertext C.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

To prevent this attack, one could make sure that implementations returned the
same kind of error in both of the situations above, preferably at the same stage
during the negotiation (to preclude timing attacks as well). Another solution is to
use another encoding system, which has stronger security properties. PKCS#1
v2.1 defines another encoding format known as OAEP [19], which is plaintext-
aware and has some other security attributes 7.

5 Prevention and Countermeasures
Years of cryptanalysis of RSA have provided us some very clever attacks, and
although no devastating attack has ever been found, there are a number of
issues users and developers alike must be aware when working with RSA. Points
that deserve special attention are: key size, properties of parameters (primes,
exponents), encoding and implementation details.
Key Size – As a rule, RSA keys should be long enough so as to make attacks
against the system infeasible. The choice should take into consideration a
number of factors such as the value of data being protected, the expected
lifetime of the data, the threat model, and the best possible attacks. Many of the
current standards require a minimum length of 1024 bits for RSA keys. Since the
solution of the RSA-155 challenge, there is a general consensus that 512-bit
keys are too short and should not be used.
The Number Field Sieve method is the most effective general-purpose
factorization method and is typically used to derive lower bounds for RSA key
sizes. The NFS has two distinct phases, the sieving phase and the matrix phase.
The sieving phase requires thousands of computers running in parallel. The
space required for the matrix phase seems to be the biggest practical problem to
scale current attacks.
In [21] Silverman concludes that 1024-bit keys should be secure for at least
another 20 years. His estimate follows a cost-based analysis, which takes into
account not only time complexity, but also the cost of memory (space) and the
difficulty of scaling hardware. The National Institute of Standard and Technology
(NIST) Key Management Guideline [15] recommends the use of RSA keys with
length of at least 1024 bits for data that needs to be protected no later than the
year 2015. For data that needs to be protected beyond that, the key size should
be at least 2048 bits.
In 2002 D. Bernstein published a paper in which he proposed some
improvements to NFS, mostly to do with implementation issues (parallelization).
By also following a cost-based analysis, he estimated that the cost of mounting
attacks against RSA for very large key sizes might not be as great as previously
thought. His paper did cause concern to some, followed even by announcements
of revocation of 1024-bit keys [14]. Still most experts do not believe the practical
key sizes (e.g. 1024-bit) are impacted by his new methods. RSA Laboratories
considers NIST guidelines to be reasonable, while stressing that the value of
data must always be taken into account [20].

7 although J. Manger has also described a side-channel attack on RSA-OAEP.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

One should however note that cryptanalysis is a science that is steadily
advancing. Silverman defends a flexible, pro-active security policy, where key
sizes are not statically defined and therefore can be increased with any
improvement in factoring techniques.
Strong Primes - Apart from a minimal length, some cryptographic standards
also require that the primes used for RSA have some special properties. In
particular, that p –1 needs to have a large prime factor. These so-called strong
primes8 are required in order to prevent Pollard’s p – 1 factorization method (see
4.1.2). In spite of that, Rivest and Silverman find these requirements
unnecessary [17]. In view of the Elliptic Curve and Number Field Sieve methods
(which have better runtime than Pollard’s p – 1 method), they believe that strong
primes offer a negligible increase in security when compared with random
primes. The real security comes from actually choosing large enough primes p
and q.
Multi-prime RSA – To speed up the RSA private operation, there are proposals
of using more than two primes to generate the modulus. Using CRT, the speedup
of an RSA system using k primes over the standard RSA is of around k2/4. For
example, a system deployed with 1024-bit modulus n, which is the product of 4
distinct (256-bit) primes, would perform around 4 times faster than the standard
two-prime system. While the Number Field Sieve method cannot take advantage
of this special form of n, 256-bit primes are currently considered within the
bounds of the Elliptic Curve method (which is quite effective in finding small
primes). Therefore, it is not recommended that 1024-bit moduli use more than
three factors [4].
Public Exponent – In most RSA implementations, the public exponent e is
usually chosen to be either 3 or 216 + 1 (= 65,537), with which the public
operation takes 2 and 17 modular multiplications, respectively (instead of ~ 1000
multiplications expected for a randomly chosen e). In view of some of the attacks
presented in section 4.2, we believe 65,537 is more secure and should be used.
Private Exponent – As described in section 4.2.1, Wiener’s low private exponent
attack is quite effective, and if successful, can result in total recovery of the
private exponent d. For the typical 1024-bit key, the private exponent should be
at least 300 bits long. One should also pay special attention to the safeguarding
of the private key. We saw that the knowledge of a fraction of the key might allow
the recovery of the entire key. The hardware solution is the most secure and
should be considered whenever possible.
Encoding – The RSA algorithm applied to messages without any kind of
preprocessing (known as raw RSA) offers a very weak level of security and
should never be used. Messages should always be encoded prior to encryption
or signing. The study of properties of the encoding method to be used is an area
of active research, as it has great impact in the overall security of the resulting
cryptosystem. There are a number of different encoding methods defined, with all

8 Other definitions of strong primes may require further properties.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

of them adding enough randomness as well as some redundancy. Special care is
needed when using small public exponent and short padding. PKCS#1 [19]
defines two encoding (padding) methods for encryption: PKCS#1v1.5 is a simple,
ad-hoc design, which is widely deployed (SSL/TLS). Optimal Asymmetric
Encryption Padding (OAEP) method is more complex, but has much better
security properties.
Implementation – Given the amount of research done on the underlying
mathematical structure of RSA, one can probably say that currently the greatest
threats to the security of the RSA cryptosystem are flawed implementations. In
fact, the existence of side-channel attacks shows that extensive study of the
mathematical structure of the RSA algorithm is not enough. Timing attacks are
particularly effective, especially ones that exploit feedback from the
implementation. Therefore developers and designers of cryptographic
applications and protocols need to pay special care and attention to
implementation details, in particular leakage of information and error handling.

6 Conclusions
The RSA cryptosystem is the de facto standard for public-key encryption and
signature worldwide. It is implemented in the most popular security products and
protocols in use today, and can be seen as one of the basis for secure
communication in the Internet. Its underlying function and properties have been
extensively studied by mathematicians and security professionals for more than a
quarter of a century. While a number of attacks have been devised during this
period, exploiting special properties of the RSA function as well as details in
particular implementations, it has stood up well over the years and its security
has never been put in doubt. No devastating attack has ever been found and
most problems appear to be the result of misuse of the system, bad choice of
parameters or flaws in implementations. In fact, years of research have probably
increased the trust the security community has on RSA, and we have every
reason to believe that it will remain the most used public-key algorithm for years
to come.

7 References
[1]. D. Bleichenbacher, B. Kaliski and J. Staddon. Recent Results on PKCS

#1: RSA Encryption Standard. RSA Laboratories’ Bulletin No. 7, June
1998. ftp://ftp.rsasecurity.com/pub/pdfs/bulletn7.pdf

[2]. D. Boneh. Twenty Years of Attacks on the RSA Cryptosystem.
Notices of the American Mathematical Society, 46(2):203--213, 1999.
http://crypto.stanford.edu/~dabo/abstracts/RSAattack-survey.html

[3]. D.Boneh and D. Brumley. Remote Timing Attacks are Practical. 2003
http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html

[4]. D. Boneh and H. Shacham. Fast Variants of RSA. CryptoBytes. Volume 5,
No. 1 – RSA Laboratories.
http://www.rsasecurity.com/rsalabs/cryptobytes/CryptoBytes_January_200
2_final.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[5]. B. Canvel. Password Interception in a SSL/TLS Channel.
http://lasecwww.epfl.ch/memo_ssl.shtml

[6]. Cryptography Research. Differential Power Analysis (DPA)
http://www.cryptography.com/resources/whitepapers/DPA.html

[7]. W. Diffie and M. Hellman. New Directions in Cryptography.
IEEE Trans. Inform. Theory IT-22 (1976), 644-654

[8]. B. Kaliski. Timing Attacks on Cryptosystems. RSA Laboratories’ Bulletin
No. 2, January 1996. ftp://ftp.rsasecurity.com/pub/pdfs/bull-2.pdf

[9]. B. Kaliski and M. Robshaw. Comments on Some New Attacks on
Cryptographic Devices. RSA Laboratories’ Bulletin No. 5, July 1997.
ftp://ftp.rsasecurity.com/pub/pdfs/bulletn5.pdf

[10]. N. Koblitz. A Course in Number Theory and Cryptography. 2nd Edition.
Springer-Verlag, 1994

[11]. E. Landquist. The Quadratic Sieve Factoring Algorithm.
http://www.math.uiuc.edu/~landquis/quadsieve.pdf

[12]. A. Lenstra. Computational Methods in Public Key Cryptology
Available at http://citeseer.nj.nec.com/lenstra01computational.html

[13]. A. Menezes, P. van Oorschot and S. Vanstone.
Handbook of Applied Cryptography. CRC Press, October 1996
Available for free download at http://www.cacr.math.uwaterloo.ca/hac/

[14]. News Group Discussion. 1024-bit RSA keys in Danger of Compromise.
BugTraq Archive, March 2002
http://www.securityfocus.com/archive/1/263924

[15]. NIST. Key Management Guideline - Workshop Document. Draft, October
2001. http://csrc.nist.gov/encryption/kms/key-management-guideline-
(workshop).pdf

[16]. R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital
Signatures and Public Key Cryptosystems. Communications of ACM 21
(1978) 120-125 http://theory.lcs.mit.edu/~cis/pubs/rivest/rsapaper.ps

[17]. R. Rivest and R. Silverman. Are Strong Primes Needed for RSA?
RSA Laboratories Technical Notes and Reports
ftp://ftp.rsasecurity.com/pub/pdfs/sp2.pdf

[18]. RSA Laboratories. Factorization of RSA-155.
http://www.rsasecurity.com/rsalabs/challenges/factoring/rsa155.html

[19]. RSA Laboratories. PKCS #1 v2.1 - RSA Encryption Standard. June 2002.
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html

[20]. RSA Laboratories. Has the RSA Algorithm been compromised as result of
Bernstein’s paper? RSA Laboratories Technical Notes. April 2002
http://www.rsasecurity.com/rsalabs/technotes/bernstein.html

[21]. R. Silverman. A Cost-Based Security Analysis of Symmetric and
Asymmetric Key Lengths. RSA Laboratories’ Bulletin No. 13, April 2000.
http://www.rsasecurity.com/rsalabs/bulletins/bulletin13.html

[22]. A. Shamir and N. van Someren. Playing hide and seek with stored keys.
Lectures in Computer Science, 1998
http://www.simovits.com/archive/keyhide2.pdf

