
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

   

Defense In Depth: 
Company B’s Open-Source 
Network Security Strategy 

 

GSEC Practical Version 1.4b 
Jeff Wolfe 

April 17, 2003



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

   

1 Introduction .....................................................................................................1 
2 Open-source vs. Commercial .........................................................................1 
3 Defining Company B.......................................................................................2 

3.a Security Components................................................................................2 
3.b IP Addressing............................................................................................3 

4 Mandrake 9.1 and Syslog ...............................................................................4 
4.a Mandrake 9.1: Configuaration...................................................................4 

4.a.i Mandrake Setup..................................................................................4 
4.a.ii Harden the system..............................................................................5 
4.a.iii Routing................................................................................................5 

4.b Syslog: Configuration................................................................................5 
4.b.i Rotating Logs with Logrotate ..............................................................7 

4.c Swatch: Configuration...............................................................................7 
5 Defense ..........................................................................................................9 

5.a Iptables .....................................................................................................9 

5.b Defining the Firewall ...............................................................................10 
5.c Writing Firewall Rules With Iptables........................................................11 
5.d Logging ...................................................................................................11 
5.e Iptables Setup.........................................................................................12 

6 Detection.......................................................................................................13 
6.a SNORT ...................................................................................................13 
6.b Signatures and Rules..............................................................................14 
6.c SNORT Setup .........................................................................................15 

6.d Starting SNORT......................................................................................16 
6.e Logging ...................................................................................................17 

7 Prevention.....................................................................................................17 
7.a NESSUS.................................................................................................17 

7.b Installation...............................................................................................18 
7.c Reporting ................................................................................................19 

8 Additional Concerns and Conclusion ............................................................19 
9 References ...................................................................................................20 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 1 of 21 

1 Introduction 
The importance of network security is well established and heavily emphasized. 
Despite this, many businesses, small and large, maintain environments seeming 
to invite a network attack. Some of the reasons for this include lack of security 
knowledge, lack of human resources, and/or lack of funding. Considering the 
latter, network security costs can be minimized without compromising security 
quality and reliability through open-source network security tools. Utilizing a few 
of these adds layers to a company's defense in depth strategy at minimal costs. 
This discussion focuses on implementing multiple open-source utilities in order to 
provide network-based security through a strategy of defense, detection, and 
prevention. The necessary security components are firewalls, intrusion detection 
systems, logging, and vulnerability scanning.  

Simply obtaining and implementing these free utilities alone, however, does not 
yield a secure network. A solid understanding of network and security concepts is 
also necessary; including host-based security measures, security policies, 
updating and patching, and more. Certain aspects of these areas are mentioned 
briefly throughout this discussion but details are outside the scope of this paper.   
2 Open-source vs. Commercial 
Battles for and against open-source solutions as an alternative to commercial 
solutions for network security are still being waged. Open-source programs 
endure unequalled source code scrutiny that serves to provide quality levels 
equal to if not better than commercial products. The development process of 
open-source continues into the distribution process with many consumer eyes 
focused on bug recognition. These bugs are therefore often rapidly reported and 
fixed.1 This theory of quality assurance however becomes questionable when 
reading the following excerpt found in Dennis Fisher’s article on eWeek’s 
website: "Of the 29 advisories issued through October [2002] by the CERT 
Coordination Center at Carnegie Mellon University in Pittsburgh, 16 of them 
addressed vulnerabilities in open-source or Linux products.” However, the article 
does continues to state that CERT tends to focus advisories toward higher risk 
vulnerabilities and that Microsoft published eleven lower risk vulnerabilities of its 
own in October 2002 alone.2 Another forte of commercial products is a dedicated 
source of customer support. Open-source products however provide abundant 
support through numerous mailing lists, message boards, and dedicated product-
specific sites. Open-source programs tend not to be as graphically elaborate, 
entailing a greater understanding of the underlying concepts. Commercial 
products typically employ intuitive GUI’s with advanced auto-configurations which 
can speed implementation time. The point is that there are pro’s and con’s of 
both. 
There may never be a clear winner in this debate but these are some of the real 
issues affecting company security decisions and at least deserve mentioning. 
Finally, a clear strength of open-source is that many utilities are free and highly 
customizable. For organizations of smaller size or extremely tight IT budgets, 
cost may be the factor that decides the issue. If this is the case, open-source has 
the solution. The only product cost incurred is the hardware itself. 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 2 of 21 

3 Defining Company B 
Security should not be an afterthought once a network is built but rather treated 
as an actual component necessary to the network and built into the design. 
Company B must therefore first define the network components necessary to 
support their services. Company B sells products and services and orders are 
processed and shipped at the company office by a sales team or via online 
ordering. The office site includes approximately 40 employees. Three devices 
compose the DMZ: a mail relay, web server, and an external DNS server. The 
three servers that are within the internal network server farm include an internal 
DNS server, DHCP server, and mail server. 
Administrative workstations such as accounting, human resources, etc. are to be 
segregated from the shipping and sales teams’ workstations with each group 
being connected via a switch to their respective network segment. Both groups 
will have limited access to the Internet.  

Figure 3.1 shows the physical layout of Company B’s service network along with 
the logical layout of the implemented security components presented within this 
discussion. It is the result of the planning discussed within this section. Also 
shown are network segment address scheme and the interface numbers of the 
security components and the central router. All servers, switches, hubs, and 
security devices will be stored in a central, physically secure location under lock 
and key at minimum. Other security measures, such as logging physical access 
to machines, host hardening, etc., are necessary but beyond this scope. 

Internet
Router

DNS
Server

Web
Server

Mail
Server

DHCP
Server

  

  

Administrative

  

  

Sales and
Shipping

Hub

Switch w/
Spanning Port

Switch w/
Spanning Port

Swith w/
Spanning Port

Switch w/
Spanning Port

Syslog & Swatch

SNORT 2

SNORT 1

Iptables 1
Internet Gateway

Nessus

Net Segmment 1:
192.168.168.0/24

Net Segmment 2:
192.168.169.0/24

Net Segmment 3:
192.168.170.0/24

Net Segment 4:
192.168.171.0/24

Net Segmment 5:
192.168.172.0/24

2

1

3

0

0

0

00

1

1

12

2

Iptables 2

External
DNS Server

Mail
Relay

Connection to
External Router

 
Figure 3.1: Company B’s Network 

3.a Security Components 
Now that a macro view of Company B’s service is defined, the planning of 
security deployment begins. The deployment of the security components requires 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 3 of 21 

multiple computers in order to have manageability, scalability, and non-
dependency. The solution to secure the network must be versatile and reliable. 
Planning the implementation of defense in depth stages can be the difference 
between success and failure of network security.  
The defense in depth strategy involves three stages: defense, detection, and 
prevention. With these stages implemented, attackers must first devise a way to 
break the network defenses. While doing this, they must attempt to reach their 
goal undetected and also hope the target has done a poor job of prevention. If 
any stage has known shortcomings, compromise will be inevitable. The 
components needed consist of two network firewalls using Iptables, two network 
intrusion detection systems using SNORT, and a vulnerability-scanning device 
using Nessus. Iptable sand SNORT use Syslog to log security alerts to files on 
their hard drives and also to a central Syslog server running Swatch to filter 
through the log files. All security devices will run on the Mandrake 9.1 operating 
system. Nessus will be located on a dedicated laptop for mobility purposes 
allowing vulnerability scanning from a variety of network locations. 
The order of implementation will be as follows: 

1. Syslog/Swatch: set up the device that all other devices will log to. 
2. Iptables: set up the main defense, the Internet gateway, to protect against 

outside attacks, and the internal default gateways for internal segments. 
The various server setups and configurations in accordance to the 
firewalls are not discussed here but quick Mandrake 9.1 HOWTO’s are 
located in the documentation rpm on Mandrake 9.1 CD 1  

3. SNORT: implement the intrusion detection mechanism to detect attempted 
exploits as they traverse the network. 

4. Nessus: complete the strategy by implementing prevention to find and 
patch vulnerabilities before the attacker discovers them.  

When implementing these stages, each component should be configured and 
verified as working before continuing onto the next component or stage. In all, six 
security boxes and two additional small hubs are required for the network.  
3.b IP Addressing 

Having five network segments and six network components dispersed among 
them can create IP confusion. Further adding to possible confusion is the fact 
that Iptables components require multiple interfaces serving as default gateways. 
This confusion is obviously amplified when the implementing organization size 
increases and the number of network segments increases. Defining and 
documenting locally developed IP address conventions can aid in resolving 
future IP address issues. 
As shown in figure 3.1 on page 2, the network consists of five separate 
segments. In order to maintain segregation, these networks need to use different 
network addressing. Once the private addressing scheme for each segment is 
decided upon, considering which interface connects to which network segment 
will help determine the IP address for that interface. In this scenario, eth 0 of 
each security device is reserved to be the interface that logs to the central 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 4 of 21 

Syslog/Swatch device. All other interfaces on SNORT machines will not be 
assigned IP addresses so that they can be in sniffer mode. Also, Iptables device 
interfaces serve as default gateways and will have ending addresses lower than 
five. The following table summarizes the Ethernet interface IP address 
assignments according to these local conventions. This addressing scheme will 
also allow remote administration of all security devices via openssh in Mandrake. 
 

 Table 3.1 Interface Configurations 
4 Mandrake 9.1 and Syslog 
The following Mandrake 9.1 section covers a typical installation that should be 
performed for each security device. Next, configuring the Syslog/Swatch device 
is detailed. While logging and log filtering are technically a form of detection 
within the defense in depth strategy, building the Syslog device is done before 
any other device because all other security components will log to it. With this 
method, each subsequent device built can be completely tested for connectivity 
and logging to the Syslog system. 
4.a Mandrake 9.1: Configuaration 
Mandrake Web Site: http://www.mandrake.com 
Current Version: 9.1   Source: http://www.mandrake.com 
4.a.i Mandrake Setup 
The package selections described here represent the packages needed for all 
security components. On the first package selection screen, deselect all selected 
options, select the individual package selection option, and continue. On the next 
screen, select “Truly Minimal Installation” and continue. In the individual package 
selection window, click the toggle button to view all packages alphabetically. 
Select the openssh server and client packages to be used for remote 
administration in the future and the tcpdump package. Select the additional 
packages Swatch, Iptables, and SNORT for each respective security device. 
Syslog is a mandatory package installation that is installed automatically. When 
configuring the network, have Mandrake auto detect the interfaces but statically 
assign the IP addresses and default gateways according to Table 3.1. Do not 
allow Mandrake to start X interface at boot. Make a boot diskette and reboot. 

Component Interface Network Segment IP Address Default Gateway
Iptables 1 Eth 0 192.168.169.0/24 192.168.169.1

Eth 1 192.168.168.0/24 192.168.168.1
Eth 2

Iptables 2 Eth 0 192.168.169.0/24 192.168.169.2
Eth 1 192.168.172.0/24 192.168.172.1
Eth 2 192.168.171.0/24 192.168.171.1
Eth 3 192.168.170.0/24 192.168.170.1

SNORT 1 Eth 0 192.168.169.0/24 192.168.169.50 192.168.169.2
Eth 1 192.168.168.0/24

SNORT 2 Eth 0 192.168.171.0/24 192.168.171.50 192.168.171.1
Eth 1 192.168.172.0/24
Eth 2 192.168.170.0/24

Syslog Eth 0 192.168.169.0/24 192.168.169.30 192.168.169.2

ISP Assigned Address Block

 N/A - Sniffing Only
 N/A - Sniffing Only

 N/A - Sniffing Only

IP Address of External router

192.168.169.1



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 5 of 21 

4.a.ii Harden the system 
Minimizing unneeded services on the security devices adds another layer to the 
defense by minimizing known and unknown exploitable vulnerabilities. These 
steps will harden the systems by removing any unnecessary services to start at 
boot. 

1. Command to see a listing of all services running after boot: 
a. chkconfig --list | grep :on 

2. Command to turn off desired service for run levels 1-5: 
a. chkconfig --level 12345 <service> off 
b. Repeat this command until only kheader, syslog, network, random, 

rawdevices, crond, and sshd are left with an on status. Of course 
leave the service needed that pertains to the individual security 
device such as Iptables.  

One final note for the operating system installations is to synchronize the times 
on all boxes using the date command. Otherwise, log times can be a cause of 
confusion when diagnosing network issues. 
4.a.iii Routing 
Iptables1 firewall, which is the Internet gateway, must have static routes to be 
able to route to the internal networks. One way to accomplish this is to perform 
the following route commands 
route add -net 192.168.170.0 netmask 255.255.255.0 gw 192.168.169.2 eth0 
route add -net 192.168.171.0 netmask 255.255.255.0 gw 192.168.169.2 eth0 
route add -net 192.168.172.0 netmask 255.255.255.0 gw 192.168.169.2 eth0 
and then create a static-routes file in /etc/sysconfig and manually add the route 
statements  
eth0 net 192.168.170.0 netmask 255.255.255.0 gw 192.168.169.2 
eth0 net 192.168.171.0 netmask 255.255.255.0 gw 192.168.169.2 
eth0 net 192.168.172.0 netmask 255.255.255.0 gw 192.168.169.2 
The same results can be achieved by simply adding the above route command 
lines to the end of /etc/rc3.d/S99local file: 7 
Similar routing must be done on the internal Iptables2 device to achieve internet 
access and limited DMZ access. On both systems, IP forwarding must also be 
enabled but this is accomplished in the Iptables section. 
4.b Syslog: Configuration 
Syslog Web Site: http://www.syslog.org/ 
Current RPM: sysklogd-1.4.1-4mdk.i586.rpm Source: Mandrake 9.1 CD 1
Servers, firewalls and intrusion detection systems can generate countless alerts 
kept in log files. Without auditing capabilities, firewalls and intrusion detection can 
prove useless if those lines of defense and detection are thwarted. Logged 
information can aid in the aftermath forensics following a compromise and can 
also be used to flag compromise attempts while they are happening. Both 
objectives can be accomplished by using the standard Linux Syslog daemon to 
log information locally and externally to a dedicated device. If a system is 
compromised by an attacker, external logging serves two purposes in that it 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 6 of 21 

serves as a backup log source and it also makes it more difficult for attackers to 
cover their tracks. 
Syslog logs messages from services to a specified location according to a facility 
tag and a priority tag. A facility is the subsystem or program generating the event 
and the priority is the level of urgency for the event. The following table 
summarizes the facility names and descriptions and also describes the priorities 
and corresponding meanings. 

Table 5.1: Syslog Facilities and Priorities3 
The priority level associated with a facility is a minimum level. For example, if a 
facility logs messages with a priority of warning, then all events of warning, err, 
crit, alert, and emerg will be syslogged to the specified location. This information 
Syslog uses for handling event messages is stored in the /etc/syslog.conf file and 
is processed early in the boot cycle so that other starting services can log 
information.4 The format of a line in syslog.conf to handle system events is: 
<facility>.<priority><tab><location>. For example, 
 *.debug /var/log/messages 
is the one line used in Company B’s Syslog device’s syslog.conf file and will log 
all facility messages of any priority to the /var/log/messages file. 
While Syslog comes with the syslog.conf file full of preconfigured facilities, levels 
and locations, the strategy implemented for this discussion erases these rules 
and establishes a maximum sensitivity for logging with all messages going to one 
file and delegates the sorting and alerting to Swatch. Swatch will notify the 
system administrator of all messages that are deemed important to the network 
environment while Syslog will maintain all messages for troubleshooting and 
forensics if necessary. On the Syslog system, all preexisting rules in the 
syslog.conf file are deleted and the above rule is added. On other systems such 
as Iptables, SNORT, and network servers, Company B will insert the above line 
while also adding the line:  
*.debug  @syslog.companyb.com 
Each system as a result will send all messages to the local system’s messages 
file and also to the Syslog server. 4  

Name Facility Priority Meaning

kern Kernel emerg Emergency condition, such as an imminent system 
crash, usually broadcast to all users

user Regular user processes alert Condition that should be corrected immediately, such 
as a corrupted system database

mail Mail system crit Critical condition, such as a hardware error
lpr Line printer system err Ordinary error

auth
Authorization system, or programs that ask for user 
names and passwords ( login, su, getty, ftpd,  etc.)

warning Warning

daemon Other system daemons notice Condition that is not an error, but possibly should be 
handled in a special way

news News subsystem info Informational message

uucp UUCP subsystem debug Messages that are used when debugging programs

local0... local7 Reserved for site-specific use none

Do not send messages from the indicated facility to 
the selected file. For example, specifying 
*.debug;mail.none  sends all messages except mail 
messages to the selected file.

mark A timestamp facility that sends out a message every 20 
minutes



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 7 of 21 

Before the logging across the network can happen, a few more steps must be 
performed. 

1. In the /etc/sysconfig/syslog file of the syslog host, the –r option must be 
added within the quotes in the first uncommented line to allow logging 
from remote hosts 

2. The devices involved in syslogging should have their entries in the 
/etc/hosts file of the Syslog device in the following format:        
<ip-address> <fully-qualified-domain-name> alias1 alias2 alias3 etc.  

a. Example: 192.168.169.1 iptables1.companyb.com iptables1  
This will prevent logged files on the Syslog device from having an IP 
address as the source but rather the logs will have the device name of the 
source. 

3. Syslog must be restarted to activate the changes with the following 
command: /etc/init.d/syslog restart 5 

4.b.i Rotating Logs with Logrotate 
Easily overlooked, log files themselves can grow to enormous sizes and fill the 
hard drive. Current hard drive size standards make this possibility a minor 
concern for a company of this size but the precautions should be in place from 
day one. A separate partition is created on all security devices soley for the 
/var/log/messages file. This will prevent the system from crashing due to the log 
files filling up the primary partition. Keeping the log files rotated will also prevent 
the drive partition from being filled. 
Logrotate is a script that by default runs weekly within the /etc/cron.daily directory 
and references the /etc/logrotate.conf file to determine if a rotation is needed. 
The /etc/logrotate.d/syslog file holds the information for which Syslog files to 
rotate and /var/log/messages is already present in the list. Modifying 
logrotate.conf rotate logs daily instead of weekly and also to keep daily logs for 
31 days sets the desired log rotation scheme for company B.6 This configuration 
should be performed on all network servers and security components. 
4.c Swatch: Configuration 
Swatch Web Site: http://swatch.sourceforge.net/
Current RPM: swatch-3.0.4-2mdk.noarch.rpm Source: Mandrake 9.1 CD 1
Logging capabilities will be implemented for all servers and security components 
and all is secure. Wrong! Logging all facility messages of any priority to a single 
file can quickly become much too overwhelming to be of use simply by manually 
scouring the lines for a certain event or events. Finding a particular piece of 
information can be like finding a needle in a haystack. Fortunately, there are 
open-source tools such as Swatch to aid in finding specific entries in log files and 
alerting the system administrator as events are triggered and logged to the 
central log file.  
Swatch is a tool that filters log message files for particular patterns called triggers 
as the file(s) are updated and performs designated actions. Actions can be 
ignore, echo, bell (audio alert), e-mail, and execution of system commands or 
scripts such as notifying a pager. These triggers and actions are kept in the 
/etc/swatchrc configuration file. A text file containing regular expressions, 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 8 of 21 

swatchrc has the following rule syntax: /pattern/pattern/ action,action [throttle]. 
Patterns are regular expressions and can contain a single text pattern or multiple 
patterns to cover a variety of messages with one rule. The actions can also be 
multiple and consist of a variety such as echoing to the console, printing alerts, 
sounding an audible alarm, emailing messages, executing other programs or 
scripts, and more. When echoing to the console, Swatch also has the ability to 
assign colors, bold print, and blinking characteristics to particular alerts sent to 
the screen to aid in determining the severity of each message. Another aid in this 
area is the audible alert which can be assigned one a variety of sounds. The 
throttle field is optional and is used to prevent a large quantity of identical alerts 
within a specified time period in the format HH:MM:SS.8  

An example line within the script to alert on bad login attempts could appear as 
follows: 
watchfor /INVALID|REPEATED|INCOMPLETE|[Ff]ail/ 
 echo bold 
 bell 3 
 mail addresses=root@localhost, subject=”Bad login attempt” 
 throttle 05:00 
When one of the four words in the first line is located in /var/log/messages, the 
message is echoed to the screen in bold, a bell sound is made, an e-mail alert is 
sent to the specified address with the accompanying subject heading, and only 
one alert is generated within a five minute period.  
The swatchrc file that comes with Swatch is a good starting point but it needs 
editing to alert for other messages such as those from SNORT and Iptables 
devices. Fine-tuning, a necessary and continual process in log filtering, must 
then be done to prevent a denial of service (DoS) from due to purposeful, 
frequently occurring messages and to suppress common alerts such as standard 
successful user logins and so forth. 
The final step in configuring Swatch is ensuring that it is started in run level three 
at boot up. Since the security devices are booting into run level 3, edit the 
/etc/rc3.d/S99local file and append the following command to the file: swatch –c 
/etc/swatchrc –t /var/log/messages &. This starts Swatch as a background 
process using the swatchrc configuration file to alert on the specified patterns 
within /var/log/messages as the file is updated via the Syslog service.  

The following three sections contain details for implementing the tools used 
within the defense in depth strategy. Each component subsection contains the 
Internet home page of the indicated security component, the latest rpm or 
program version as of April 2003, a product overview, and installation and 
configuration instructions pertaining to Company B. 

 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 9 of 21 

5 Defense 
5.a Iptables 
Iptables Web Site: http://www.netfilter.org 
Current RPM: iptables-1.2.7a-2mdk.i586.rpm Source: Mandrake 9.1 CD 3 

The first step in securing a network is defending the perimeter. What exactly 
does Company B need to defend against? Company B mainly wants to protect 
their network from intrusions, denial of service, and information theft that may be 
directed from any type of attacker including joy riders, vandals, spies, thieves, 
etc. There are many ways to design a firewall implementation just as there are 
many ways to design a network infrastructure. The key to reliable and effective 
firewalls is configuration. Misconfiguring a firewall can cut off one or more 
segments within a network and/or expose data sensitive networks. Some causes 
of this are creating unnecessary rules and not creating the rules that should be 
mandatory for any company. Another cause may be ignorance of all aspects of 
the particular firewall software. Again, planning is imperative and obviously much 
detail is involved. So much detail that numerous books and articles have been 
written on the subject. With this in mind, meeting the basic firewall needs of 
Company B utilizing Iptables will be discussed without delving into the vast detail 
of a complete rule set. 

Iptables, the successor of Linux's ipchains, comes standard with most Linux 
distributions and offers improved features and options such as a wide variety of 
packet filtering capabilities, packet mirroring, packet mangling, network address 
translation (NAT), and more. The capabilities to perform these actions are 
defined in rule lists that are kept in the kernel. This portion is actually separate 
from Iptables and is called netfilter. The program that allows configuration of the 
rule lists and runs the firewall is the userland application Iptables.9  
Iptables is a progression of ipchains and still uses the initial chains, specifically 
INPUT, FORWARD, and OUTPUT chains, to filter packets. Other chains are 
PREROUTING and POSTROUTING. These chains, which dictate specifically 
how packets are handled through rules, are components of the default tables 
FILTER, NAT, and MANGLE. When a packet is inspected by netfilter, i.e. it 
originates from the local host or is received on an interface, netfilter qualifies the 
packet according to one of three routing scenarios: incoming destined for the 
local system, incoming destined for another host, or originating from the local 
system destined for another host. The packet is then processed by a set of the 
above tables accordingly. For instance, the packet may come in destined for the 
local host; traverse the MANGLE-PREROUTING chain, NAT-PREROUTING 
chain, MANGLE-INPUT chain, and then the FILTER-INPUT chain before being 
processed. Within each table, the above chains inspect the packet information for 
matches specific to one or multiple packet fields as specified by the rules 
implemented for that chain. If a matching option between the rule and packet 
information is found, the packet is handled according to one of many actions or 
targets such as accept, drop, reject, queue, dnat, or return target assigned with 
the rule.10 An action can also be to jump to another chain within the same table. If 
no rule is matched, the commonly accepted approach to firewall implementation 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 10 of 21 

is to drop all packets not matching a rule. These default rules, called policies, are 
usually in the INPUT, OUTPUT, FORWARD chains. This detailed process could 
eat up tremendous amounts of CPU cycles if many unnecessary rules were 
defined within these chains.  
Perhaps, the most important enhancement of Iptables over ipchains is that it 
performs stateful inspection of packets. This is done by state matching within the 
packet and allows for a much more efficient firewall. Stateful inspection keeps 
unused ports above 1024 for return traffic closed and provides a balance 
between vulnerable packet filtering and lower performance application gateways. 
Another improvement of Iptables is the separation of the three initial chains 
during packet inspection. Previously in ipchains, all three chains could potentially 
examine packets regardless of their routing scenario. Now in Iptables, upon entry 
into netfilter, the packets are directed toward the one appropriate chain. In other 
words, a packet will only visit one of the three basic chains.11 The packet will 
traverse other chains within other tables but the chains within each table may 
have no rules. One last interesting note on Iptables’ versatility, as there are many 
more examples, is that it allows the capability to define custom chains within a 
table that can be used as targets. A chain, such as a one to handle catching all 
bad TCP packets, could be created to inspect all TCP packets and dropping the 
bad ones before continuing on to the standard tables and chains. This could save 
precious CPU cycles on machines suspect to extremely high traffic, e.g. an 
Internet gateway.  
With its versatile rule list capabilities and streamlined, stateful packet filtering, 
Iptables provides substantial initial defense for the network. 
5.b Defining the Firewall 
The first step in building a firewall is planning and the planning starts with a 
documented security policy. Reviewing Company B’s architecture is necessary to 
define the security policy as the resulting firewall enforces the documented 
policy. Company B has the following general architecture: 

1. External firewall serving as an Internet gateway connected to a DMZ and 
internal network. 

2. Internal firewall that segregates three internal sub-networks: 
administration, shipping and sales, and a server farm, and is connected to 
the external firewall. 

With the company architecture reviewed, the following security policy will be 
enforced via firewall rule sets. 

1. All employees will have limited Internet access. 
2. The system administrator will have internal and external remote access 

through SSH 
3. The DMZ will have Internet access through the external firewall. 
4. Access between the administration clients and shipping and handling 

clients will be restricted to SSH through the system administrator. 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 11 of 21 

5. IP address specific restrictions will be used to prevent unnecessary 
Internet traffic from the working internal departments. (e.g. ICQ, Internet 
Radio, etc.). 

6. Universally necessary firewall rules will be implemented (e.g. deny all that 
is not implicitly matched, bad packet handling, logging, etc.)  

7. The default policy for the INPUT, OUTPUT, and FORWARD chains will be 
to drop packets that are not implicitly accepted. 

A quick guide for additional necessary rules can be found at 
http://www.spitzner.net/rules.html. 
5.c Writing Firewall Rules With Iptables 
The following is the standard syntax of Iptables’ rules. 
iptables <-t table> <command> <chain> <match> <target or jump>  
One or more of these fields may not be necessary depending on the command. 
Most packet filtering will be done on the INPUT, OUTPUT, and FORWARD 
chains and not specifying a table will default to the FILTER table. Since 
Company B would want to allow icmp packets for troubleshooting, the rules  
iptables -A OUTPUT -p icmp --icmp-type echo-request -j ACCEPT 
iptables -A INPUT  -p icmp --icmp-type echo-reply   -j ACCEPT 
would accomplish this. A more complex rule using a user-defined chain and 
demonstrating the LOG action is a rule to catch bad tcp packets that have a 
NEW state without the SYN bit set. 
IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j LOG \ 
--log-prefix "New not syn:" 12 
As mentioned earlier, a cause of firewall exploits is misconfiguration. One rule to 
follow is to minimize the rule set as much as possible without hampering security. 
The more rules added to the rule set, the more confusing troubleshooting could 
be in the future, not to mention the possibility of unknowingly creating an exploit 
opportunity.  
A crucial aspect in implementing Iptables is that rule order matters. Rules are 
traversed in order of their creation and once a matching rule is found, the 
specified action is performed. Note: a rule can be created and inserted at a 
specific position in the rule set. Taking the above log example, Company B would 
obviously want to drop that packet. 
IPTABLES -A bad_tcp_packets -p tcp ! --syn -m state --state NEW -j DROP 
If the log rule was placed after the drop rule, Company B would not receive the 
alert that these packets were present because the packet would be dropped and 
therefore never reach the log rule. This is just one case of handling odd packets. 
Staying updated on the latest security issues is part of network security 
management and as new security alerts emerge, modifications to the firewall rule 
set will be necessary. 
5.d Logging 
If the final policy of the chains is to drop, one might wonder why have any DROP 
rules since these will be dropped by default if not accepted.  The answer lies in 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 12 of 21 

logging. On each firewall, the last rule of each chain will be similar to the 
following: 
IPTABLES -A INPUT -m limit --limit 3/minute --limit-burst 3 -j LOG \ 
--log-level DEBUG --log-prefix "iptables1 INPUT packet died: " 
This will log all packets that do not match any rules with 3 alerts per minute as a 
limit just before they are dropped by the default DROP policy. This can be helpful 
in detecting a worm or Trojan from within that continuously tries to communicate 
outside the firewall on a port that is not allowed. Some packets that should not be 
logged that are dropped are broadcasts and NetBIOS to name two. Otherwise 
the log files will become cluttered as these packets are harmless and are 
frequently encountered. In order to prevent this, there must be a rule in place to 
drop these packets so that they do not flow to the rule above. Also, it is wise to 
be aware of certain packets being received such as the bad TCP packets, which 
could indicate an attack. These will be dropped by default but the message in the 
log will not be specific to that particular type of event. Therefore the rule set 
should contain rules for the specific packets to drop with a preceding log rule with 
a specific message. This will also allow for the specification in Swatch on certain 
Iptables logs to alert on. This brings up the last issue on logging. It is necessary 
to specify on the Syslog/Swatch server which logs should be alerted on and their 
urgency level. Following the rule example in the Swatch section, this can be 
accomplished. A good strategy for this is to start with a liberal alerting policy in 
place and tune down to an acceptable level.  Care must be taken not to tune the 
alerts down too far as this could allow an exploit attempt to not be detected until 
too late. 
5.e Iptables Setup 
Since it is not only impractical but also impossible to be able to type in the rules 
each time the device reboots, which hopefully is not a common occurrence, 
scripting will be used to load the rules at system boot up. Iptables’ scripting 
structure typically consists of the following sections. 

1. Configuration: define script variables such as those for interfaces, network 
addresses (DMZ, shipping, etc) that will reference throughout the script. 

2. Module loading – load modules that Iptables requires. 
3. Proc configuration - ensure any special configuration requirements are 

met such as enabling IP forwarding with the line  
echo "1" > /proc/sys/net/ipv4/ip_forward. 

4. Rules set up - Insert rule-set: 
a. Filter table 

i. Set policies - Set up all the default policies for the system 
chains such as the default drop policies specifically accept 
desired services coming in.  

ii. Create user specified chains 
iii. Create rules in user specified chains 
iv. INPUT chain 
v. FORWARD chain 
vi. OUTPUT chain 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 13 of 21 

b. Nat table 
i. Set policies  
ii. Create user specified chains 
iii. Create rulesin user specified chains 
iv. PREROUTING chain 
v. POSTROUTING chain 
vi. OUTPUT chain 

c. Mangle table 
i. Set policies 
ii. Create user specified chains 
iii. Create content in user specified chains 
iv. PREROUTING chain  
v. INPUT chain 
vi. FORWARD chain 
vii. OUTPUT chain 
viii. POSTROUTING chain13 

Sample scripts that are detailed by network architecture can be downloaded and 
modified but should serve as a starting model. Close scrutiny must be used to 
ensure the implemented script covers all areas that the implemented network 
requires. Also, scripts will be somewhat different between the internal and 
external firewall as their requirements are different. For instance, the number of 
interfaces and the different connected networks will make a difference in 
variables declarations and NAT rules. Rules must also be put in place to restrict 
access between the two departmental workgroups.  
Once the script is finalized, it must be started at boot every time. If Company B 
names their Iptables1 firewall script iptables1fw, this can be performed with the 
following sequence of commands: 
chmod 700 /etc/rc.d/init.d/iptables1fw 
chown 0.0 /etc/rc.d/init.d/iptables1fw 
chkconfig --add iptables1fw  
chkconfig --level 345 iptables1fw on
  
service iptables1fw start   

-executable permissions 
-change ownership  
-create symbolic link 
-have script executer at specified 
levels at boot 
-start the script 

Many more detailed documents, including HOWTO's and tutorials, are available 
through Iptables' home site. An extremely detailed and well-written resource for 
information pertaining to Iptables can be located in Oskar Andreasson’s “Iptables 
Tutorial 1.1.17.”  Included in this are multiple Iptables firewall scripts, 
troubleshooting, along with command and option explanations. 
6 Detection 
6.a SNORT 
SNORT Web Site: http://www.snort.org/ 
Current RPM: snort-1.9.1-1mdk.i586.rpm Source: Mandrake 9.1 CD 3 

Firewalls are the main line of defense and hopefully this will be the stopping point 
for most attacks. Attacks are going to happen though, many different methods 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 14 of 21 

will be used, and many will not be stopped by firewall rules. Attacks normally try 
to exploit some service or application vulnerability to gain access to a system to 
use as a launching point in the attack chain, to steal information, or to simply 
cause havoc on the system itself. For those attempts that get past the firewall or 
for those originating from within the firewalled network, intrusion detection 
systems can provide the means to detect and stop attacks or malicious activity in 
real time. 

Intruders can gain access via a number of different methods. Some of these 
include software flaws, misconfigured systems (e.g. unneeded vulnerable 
services running), and password cracking. These methods of attack can fall 
within one of three categories: reconnaissance, probing to become familiar with 
the target system and possible exploitable services and programs used; exploits, 
intruders using bugs or hidden features to gain access to and/or control of a 
system; and denial of service attacks (DoS), slow down or crash the system 
through repetitive packet requests.14 Particular vulnerability exploits can include: 
CGI script, web server attacks, web browser attacks, Sendmail attacks, IP 
spoofing, DNS attacks.15 DoS attacks can include the Ping of Death, SYN 
flooding, Land attack and more.16 
Attackers have many different options; the next question is how to stop these 
attacks that will get through the firewall or originate from within. The attacks will 
generally have byte patterns within the packets and sometimes over a number of 
packets. IDS signatures, which contain these patterns, are referenced to 
compare packet headers and payload for certain patterns. If a match is found, an 
alert can be sent to the administrators to notify of a possible attack and hopefully 
stop the attack or by a designed auto-response action. The key to efficient 
detection is minimizing false positives (alerts that are generated due to a general 
signature match but in reality are legitimate traffic) while not missing legitimate 
attacks or minimizing false negatives due to signatures being too general.17 
These are the packets that Company B’s administrator should be alerted on; the 
packets that are legitimate attacks and are not false positives. 
SNORT, an open-source intrusion detection program packaged with Mandrake, 
has extreme versatility and is widely supported by the open-source community. 
Due to this support, it has a very large signature base to detect possible 
reconnaissance, exploit, and DoS attempts. Company B will have two SNORT 
devices, SNORT1 and SNORT2, and both will log to the Syslog server through 
their eth0 promiscuous interfaces. All other interfaces on the SNORT boxes will 
non-addressable interfaces in promiscuous mode to sniff traffic only. 
6.b Signatures and Rules 
As mentioned above, signatures are patterns within network traffic. Rules contain 
the signatures SNORT uses to compare packet data for matches. Some of these 
signatures could be patterns within the packet headers (e.g. SYN and FIN flags 
both set), or DNS buffer overflow attempt within the payload of the packet, or 
DoS attempts through numerous command executions, just to name a few18 and 
an identified signature in network traffic can help stop a malicious attack. SNORT 
comes with numerous signatures already. If abnormal network traffic occurs that 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 15 of 21 

Company B wants to be alerted for in the future. For this, SNORT also provides 
the ability to write custom signatures to match for the pattern within future traffic. 
Rules, similar to firewall rules, check the traffic for a match. IDS rules have two 
sections; the rule header and the rule options. These are kept in multiple files in 
the /etc/snort/rules directory. The rule header contains the rule's action, protocol, 
source and destination IP addresses and netmasks, and the source and 
destination ports information. The rule option section, located within parenthesis, 
contains the alert message that specifies which parts of the packet should be 
inspected. This information will determine if the specified action should be 
taken.19 Standard syntax is as follows:  
<rule action><protocol(s)><src IP(s)><src port(s)> -><><dest IP(s)><dest 
port(s)> \ 
(<keyword>:<args>;) 

There may be multiple protocols, source and destination IP’s, ports, keywords, 
and arguments. This complexity provides the ability to be very specific in the 
traffic that is detected. Caveats exist though. Rules too general will cause false 
positives, which can actually conceal legitimate signature alerts within noisy, 
unnecessary alerts. Rules too specific will produce false negatives, which may 
not be detected until a compromise has already occurred. SNORT’s web site 
provides detailed information on the options and arguments for each field. Also 
Security Focus’ website provides a series of articles on IDS signatures, practice 
and theory. 
Obviously Company B’s system administrator is not going to write all the required 
meticulous rules solely for their network structure from scratch. This is an 
ongoing task as future signatures are created as new vulnerabilities and attack 
methods are discovered. Community support is an enormous strength of open-
source. With this, as new required signatures are published, they can be 
downloaded from a number of sites to help further secure networks. SNORT’s 
website provides a searchable database of the latest signatures. Subscribing to 
security mailing lists and being familiar with the CVE and CERT websites can 
greatly aid in the signature updating process. Again, staying informed is the key 
to success. 
6.c SNORT Setup 
Once the SNORT rpm is installed, the next step in setting up SNORT is 
reviewing and editing the /etc/snort/snort.conf file to be configured for the 
networks being monitored. The snort.conf file contains information such as 
variables that are used in the individual rules, preprocessor directives, and output 
plug-ins. The file provides adequate instruction as to the purpose and methods of 
defining all items within each section. The first section defines the network 
segment being monitored including the addresses of subnets and more 
specifically the IP addresses of particular servers being monitored on those 
networks. The preprocessor directives serve purposes such as detecting scans, 
packet fragmentation and reassembly, and other exploits while output plug-ins 
allow specification of output options. The last section is also well documented 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 16 of 21 

within the file and is reserved for user-defined rule sets. Most directives come 
preconfigured to be included at SNORT startup but can be commented out. 
Fortunately for Company B, SNORT is almost ready to run from unpacking the 
package and installing it. This very well may not be the case for more complex 
network environments as SNORT can be considered the Swiss army knife of 
open-source intrusion detection with its vast number of configuration options. 
6.d Starting SNORT 
SNORT can be started in three different modes: sniffer mode, packet logger 
mode, and network intrusion detection mode. The first, sniffer mode, reads 
packets as received and outputs to the console. Packet logger mode logs all 
received packets to the specified directory. Network intrusion detection mode is 
the mode that Company B will run in. With this mode, the snort.conf specific to 
each interface file will be used to configure SNORT to match signatures to packet 
content and send alerts to Syslog, which in turn will send those alerts to the 
Syslog server.  
SNORT needs configured to run on multiple interfaces, as each interface will 
monitor a separate network segment. This will be accomplished by running 
multiple instances of SNORT. This requires that multiple snort.conf files be used 
so that each SNORT interface instance can have their own respective 
configurations such as network variables. Therefore the SNORT1 device will 
have two snort.conf files and the SNORT2 device will have three. The following 
table shows the variable assignments made for each SNORT device and the 
default commented lines in snort.conf to uncomment. The various snort.conf files 
can be created with the following command syntax: 
cp /etc/snort/snort.conf <rules file name per SNORT device interface> 
This file is created for each interface in each SNORT system according to Table 
6.1 below. This table also reflects the modified variable assigned values and the 
preprocessor directives to uncomment in the files.  

Table 6.1: SNORT Rule Files and Modifications 

Rules File Name Device Monitoring
Inte rface

Variable

snort1eth0 .conf SNO RT1 eth0 RULES_PAT H /e tc/snort/rules

snort1eth1 .conf SNO RT1 eth1 DNS_SERVERS 192.168.168.5

SMTP_SERVERS 192.168.168.4

HTTP _SERVERS 192.168.168.3

RULES_PAT H /e tc/snort/rules

snort2eth0 .conf SNO RT2 eth0 DNS_SERVERS 192.168.171.5

SMTP_SERVERS 192.168.171.4

RULES_PAT H /e tc/snort/rules

snort2eth1 .conf SNO RT2 eth1 RULES_PAT H /e tc/snort/rules

snort2eth2 .conf SNO RT3 eth2 RULES_PAT H /e tc/snort/rules

Value

Rules Files Variables

All commented include lines in the ru le section

More granular detection  o f portscans

output a lert_syslog:

preprocessor portscan-ignorehosts:

preprocessor portscan2:

Useful for p reventing noisy alerts from  
DNS Servers

Enab le syslog ab ilities

Reason

Preprocessor Directives

Start w ith  liberal de tection and tune 
down to  acceptab le level according to  
environment

Directives to  Uncomment Value

scanners_m ax 3200, ta rge ts_max 
5000, target_lim it 5 , port_lim it 20 , 
timeout 60

$DNS_SERVERS

LO G_AUT H LO G_ALERT



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 17 of 21 

With the configuration files complete, the following commands should be placed 
at the end in the /etc/init.d/snortd on SNORT1 in order to start up SNORT at 
boot: 
snort -i eth0 -s -b -c /etc/snort/snort1eth0.conf & 
snort -i eth1 -s -b -c /etc/snort/snort1eth1.conf & 
These commands are placed in the same location on SNORT2: 
snort -i eth0 -s -b -c /etc/snort/snort2eth0.conf & 
snort -i eth1 -s -b -c /etc/snort/snort2eth1.conf & 
snort -i eth2 -s -b -c /etc/snort/snort2eth2.conf & 

SNORT only requires a reboot and it will be running. 
6.e Logging 
The above commands use the –s option to configure snort to use the Syslog 
service for logging alerts. The alerts go to the local hard drive in 
/var/log/messages and are then sent to the Syslog server via the modifications 
made in the syslog.conf file. As with all other logging, the policy begins with a 
very liberal status; logging almost everything. The process needed now is fine-
tuning the logging level in Swatch via the swatchrc file. Rules must be added to 
this file to alert in proper ways for different alerts. Such a rule might be 
watchfor /Denial of Service/ 
 echo bold 
 bell 1 
 mail addresses=sysadmin@companyb.com, subject=”Denial of Service 
Detected” 

As some alerts are investigated, some of these added rules could be eliminated if 
not necessary. This can be a tedious and time consuming task but once at an 
acceptable level, the pay off will be seen once the first exploit is stopped.  
7 Prevention 
7.a NESSUS 
Nessus Web Site: http://www.nessus.org/ 
Current Version: 2.0.3  

Source: 
http://www.nessus.org/nessus_2_0.html

The last phase of Company B’s defense in depth strategy is prevention. 
Prevention is not only preventing what is known but also what is unknown. As 
new vulnerabilities are discovered, there will surely be exploit attempts to follow. 
The primary ways to defend against these attacks are staying informed of the 
latest vulnerabilities, keeping systems updated and patched, and utilizing tools 
such as Nessus Security Scanner to test the targeted systems. Nessus is a 
vulnerability scanner that identifies vulnerabilities in network computers and 
determines if and where a system can be exploited and/or threatened. With tools 
such as this, known exploits can be identified and the necessary remedies 
applied. Company B’s system administrator will be the only person authorized to 
use this tool. 
Nessus, the open-source solution to vulnerability scanning, provides not only 
complex, granular scanning capabilities but also a detailed reporting utility 
describing specific vulnerabilities, CVE advisory references, and suggestions to 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 18 of 21 

remedy the vulnerability. These reports can be saved so that results future scans 
can be compared to ensure the proper solutions were applied. The reason for 
single administrator authorization is that Nessus’ scanning capabilities include 
testing for DoS and other malicious vulnerabilities that can take down systems. In 
the wrong hands this can also be a tool used against Company B. 
Some of Nessus’ features include plug-in architecture, multiple port service 
testing, unlimited or targeted host testing, safe testing mode, and full test mode. 
Plug-in architecture allows Nessus to be updated as new vulnerabilities are 
exposed. By going to Nessus’ plug-in page, http://cgi.nessus.org/plugins, 
Company B can stay updated with the latest plug-ins to detect new exploit 
opportunities. (As a note, Nessus provides an automatic update utility that 
connects to the Nessus web site and downloads new plug-ins via the Linux lynx 
utility. However this connection is not secure so it is recommended to go to the 
site and manually download the new plug-ins.) Users can also create custom 
plug-ins. Multiple port service testing is unique in that it doesn’t test for a specific 
service running on a specific port. In other words if there are multiple web server 
services running, one on port 80 and another on some other port, both ports will 
be detected as running that service. Therefore, any vulnerabilities within that 
service will be detected. Nessus has the option of testing just the local host, a 
single targeted remote host, or a whole range of addresses to detect multiple 
hosts. Safe testing specifies testing for vulnerabilities that will not bring the 
system(s) down such as useless services running. Full mode testing is 
considered dangerous and can exploit a vulnerability to a point of crashing a 
device.20   
7.b Installation  
The Nessus machine will be a laptop that has sole purpose to perform 
vulnerability scanning. Notice the dotted lines in Figure 3.1 flowing from the 
Nessus machine to various locations. This indicates that the connections are not 
permanent. Each time the administrator performs a vulnerability scan he will 
manually connect to the network switch, hub, or router. When not doing this job, 
the machine will be disconnected from the network. The standard hardening 
procedures described earlier will be followed for the Nessus device. However, 
since a graphical environment will be installed, services pertaining to the KDE 
interface such as xfs cannot be turned off. 
Nessus requires the four source code files to compiled and installed. At the time 
of this document, no rpm package was available that accomplished this task in 
one installation. Nessus does provide a shell script that handles the installation 
processes. When initially running the script, there will be compile errors due to a 
conflict between the versions of GTK from the GIMP packages that are installed 
in Mandrake 9.1. The Mandrake 9.1/KDE 3.1 installation contains GTK 2.0 
packages while Nessus tries to compile using GTK 1.2 packages. There are a 
number of ways to work around this issue but these are not detailed here. 

Once installed, the script informs the user of four necessary steps to finalize the 
installation. Most important of these is that it requires a certificate to be created 
for the user along with a username and password. This is significantly important 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 19 of 21 

to prevent malicious doers from utilizing this tool even if the laptop is stolen or 
compromised. Finally the Nessus daemon is started and then the nessus 
command is issued to start the program. Once the username and password are 
entered, scanning can begin. 
7.c Reporting 
Nessus’ graphical interface is intuitive and also provides pop-up tips to guide the 
user. To test the installation, it would be wise to test on a non-critical system 
such as the Syslog server. Note that testing notices should be given to the 
appropriate personnel. Recall the Syslog server IP address is 192.168.169.30. 
All testing will be enabled including dangerous tests. 

The initial reporting interface allows a quick overview of the scanned system(s) 
vulnerabilities. The scan against the Syslog server only showed two security 
alerts, both assessed as low risk factors. Selecting one of these in the port 
window, a security warning and security note are available to view. The selected 
port, general (icmp), and corresponding security warning display the vulnerability 
description, solution, risk factor, CVE’s (Common Vulnerabilities and Exposures) 
related document information, and the Nessus plug-in ID that detected the 
vulnerability. The scan also detected the operating system as well.  
The scan is then saved for future assessment against future scans. When saving 
the report, different formats are possible, the most user friendly probably being 
the HTML format. There is an HTML version with various charting and various 
text formats as well. These HTML formats provide convenient hyperlinks to the 
CVE related document and Nessus ID. As mentioned earlier, staying informed 
and updated is the strongest defense. Using Nessus quickly highlights the areas 
of each system that need attention while completing the three stages of defense 
in depth.  
8 Additional Concerns and Conclusion 
The above systems and configurations were built to model Company B in a test 
environment in order to verify all information presented. There are a number of 
concerns that still need attention within Company B’s network. One of these 
includes defining security policies. Policies need to be documented along with 
making these policies readily available to personnel. Host hardening of all 
workstations will also be necessary. Finally, implementation of host based 
firewalls and IDS should be explored. 
It has been shown that open-source does have the versatile and reliable tools 
necessary and available with more than adequate support to implement network 
security. Much open-source community effort is the reason for this to be possible. 
Company B started with defense, which flowed into detection, which in turn 
flowed into prevention. This prevention, upon realizing vulnerabilities, leads right 
back to the first and second stages through being updated and informed and 
applying fixes. So, it is clear the while it initially appears that the defense in depth 
strategy is composed of three distinct stages, these stages are actually 
intertwined to form a solid foundation for a secure network infrastructure. 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 20 of 21 

9 References 
1 Fisher, Dennis. “Security Fueling Open-Source Adoption.” EWeek. 29 Oct. 

2003. URL: http://www.eweek.com/article2/0,3959,655054,00.asp. (16 Apr. 
2003). 

2 Fisher, Dennis. “Open-Source Comes Under Fire.” EWeek. 22 Nov. 2003. 
URL: http://www.eweek.com/article2/0,3959,720477,00.asp. (16 Apr. 2003). 

3 Garfinkel, Simson., and Gene Spafford. “Auditing and Logging.” Practical UNIX 
& Internet Security. O’Reilly, 1996. URL: 
http://www.plys.dk/docs/bookshelf/puis/ch10_05.htm. (16 Apr. 2003). 

4 “syslog: The UNIX System Logger.” CPL Systems. URL: 
http://www.cplsystems.net/syslog.htm. (16 Apr. 2003). 

5 Harrison, Peter. “Syslog.” Linux Home Networking. 
URL:http://www.siliconvalleyccie.com/logging.htm#_Toc36811062. (16 Apr. 
2003). 

6 Harrison, Peter. “Logrotate.” Linux Home Networking. 
URL:http://www.siliconvalleyccie.com/logging.htm - _Toc36811063. (16 Apr. 
2003). 

7 Harrison, Peter. “How To Configure Two Gateways.” Linux Home Networking. 
URL:http://www.siliconvalleyccie.com/network-linux.htm#_Toc33893560. 
(16 Apr. 2003). 

8 Spitner, Lance. “Watching Your Logs.” Lance’s Security Papers. 19 July 2000. 
URL:http://www.spitzner.net/swatch.html (16 Apr. 2003). 

9 netfilter: firewalling, NAT and packet filtering for Linux 2.4. 
URL:http://www.netfilter.org/. (16 Apr. 2003). 

10 Andreasson, Oskar, “Iptables Tutorial 1.1.17.” Frozen Tux. 6 Apr. 2003. 
URL:http://iptables-tutorial.frozentux.net/iptables-tutorial.html - TARGETS. 
(16 Apr. 2003). 

11 Red Hat Linux 8.0: The Official Red Hat Linux Reference Guide. 2002. 
URL:http://www.redhat.com/docs/manuals/linux/RHL-8.0-Manual/pdf/rhl-rg-
en-80.pdf. 167-169. (16 Apr. 2003). 

12 Andreasson, Oskar, “Iptables Tutorial 1.1.17.” Frozen Tux. 6 Apr. 2003. 
URL:http://iptables-tutorial.frozentux.net/iptables-
tutorial.html#NEWNOTSYN. (16 Apr. 2003). 

13 Andreasson, Oskar, “Iptables Tutorial 1.1.17.” Frozen Tux. 6 Apr. 2003. 
URL:http://iptables-tutorial.frozentux.net/iptables-tutorial.html - 
THESTRUCTURE. (16 Apr. 2003). 

14 Graham, Robert. “FAQ: Network Intrusion Detection Systems"?.” 
RobertGraham.com. 21 Mar. 2000. URL: 
http://www.robertgraham.com/pubs/network-intrusion-detection.html - 1.7. 
(16 Apr. 2003). 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 21 of 21 

15 Graham, Robert. “FAQ: Network Intrusion Detection Systems"?.” 
RobertGraham.com. 21 Mar. 2000. URL: 
http://www.robertgraham.com/pubs/network-intrusion-detection.html - 1.8. 
(16 Apr. 2003). 

16 Graham, Robert. “FAQ: Network Intrusion Detection Systems"?.” 
RobertGraham.com. 21 Mar. 2000. URL: 
http://www.robertgraham.com/pubs/network-intrusion-detection.html - 1.9. 
(16 Apr. 2003). 

17 “Description --> Intrusion Detection System.” LINUXsecure: Issues on Linux 
and Security. 9 Dec. 2002. URL: 
http://www.linuxsecure.de/index.php?action=24 - sig. (16 Apr. 2003). 

18 Frederick, Karen Kent. “Network Intrusion Detection Signatures, Part One.” 
Security Focus. 19 Dec. 2001. URL: 
http://www.securityfocus.com/infocus/1524. (16 Apr. 2003). 

19 Roesch, Martin, and Chris Green. “Snort Users Manual Snort Release: 2.0.0.” 
SnortTM. 2003. URL: http://www.snort.org/docs/writing_rules/chap2.html - 
tth_chAp2. (16 Apr. 2003). 

20 Nessus. 2 Apr. 2003. URL: http://www.nessus.org/doc/datasheet.pdf. (16 Apr. 
2003). 


