
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Programmed Vigilance
Monitoring your Windows NT/2000 network

with Perl and command-line utilities

 Alex Yu
 Assignment Version 1.4b

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Abstract
Monitoring your network environment is critical to its security and stability.

Security holes are constantly discovered, logs can overwhelm reviewers, users
and administrators make mistakes, and viruses and crackers purposely try to
penetrate your defenses. Fortunately, there are many products available for
auditing a Windows NT/2000 network. On the other hand, it takes a lot of time
and discipline to run these tools on a regular basis, and graphically oriented
utilities usually require user interaction. Worse, tight purse strings and layoffs
reflect our current economic condition. How is a security professional supposed
to stay on top of things despite limited resources?

The goal of this paper is to address basic security principles, demonstrate
how to use easily obtainable command line utilities, and orchestrate their use
with the Perl language to effectively watch your network. With the sample scripts
provided herein, it becomes easy to begin automating the scanning of Windows
NT/2000 machines, look for signs of trouble, and alert personnel.

Perl

Larry Wall introduced us to Perl in 1987. Officially known as the Practical
Extraction and Report Language, Perl has, among other things, very robust text
manipulation functions. Programmers will find that Perl has much in common
with C, BASIC, and awk. Your time investment in learning Perl would be well
spent; it has been ported to many operating systems such as Mac OS, Linux,
Unix, VMS, and Windows, just to name a few.

The examples in this paper focus on using Perl 5.8.0 from ActiveState on
Windows NT/2000 machines. The debugger in the Perl Development Kit (PDK)
will help you trace through your code and allow you to see the values of your
program variables one instruction at a time. Perl and the Perl Development Kit
may be freely downloaded from ActiveState at http://www.activestate.com. If you
are using a different distribution or operating system, you will still benefit by
learning how to apply security principles on your OS by using the commands and
utilities that it supports.

Before we continue, allow me to state that there are many ways of writing
the scripts we are about to see to perform the desired results. In fact, the motto
of Perl is “There’s More Than One Way To Do It,” or TMTOWTDI. (Kirrily).
Every effort has been made to present the code in a straightforward manner to
demonstrate the language to a new Perl programmer, but it would be helpful to
have some prior programming experience. The purpose of this paper is not to
teach Perl, so I strongly recommend the reader to peruse Programming Perl, by
Larry Wall, Tom Christiansen, and Jon Orwant. Also known as the Camel book,
this work is widely accepted as the definitive book on Perl, and is referenced
often as we encounter new Perl concepts.

This paper will address a number of security topics. The scripts provided
are intended to show how running scripts may make it easier to promptly address
security issues. If you wish to try these scripts, please seek permission from the
authorities of your network. Each program is heavily commented to show the
logic and lead you through the process. While the programs have been designed

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

for pedagogical purposes, running them may divulge potentially sensitive
information. Furthermore, as important as error checking is, adding such code
would distract us from the concepts at hand and inflates the already abundant
lines of code. At the end of each section, think of ways add enhancements and
implement error checking.

These scripts functioned correctly on the test machines on which they
were run, and did not seem to produce adverse effects; however, the author
cannot accept responsibility for damages that may occur. Let this be a reminder
to always read and understand the code before blindly executing programs. How
do you know I’m not trying to compromise your systems? Remember, according
to Law #1 of Microsoft’s Ten Immutable Laws of Security, “If a bad guy can
persuade you to run a program on your computer, it’s not your computer
anymore.” (Microsoft) With that said, let us proceed onward. Let us begin to
explore Perl by using a simple example – network connectivity.

Connectivity

Network servers that provide a useful function need to stay up and
running. An administrator needs to know when connectivity to a host is lost.
One would normally type the following at a command prompt to send an ICMP
Echo Request to see if a host is reachable on a TCP/IP network:

 C:\>ping 192.168.0.1

If the host in question is alive, and there are no intervening devices that
block ICMP traffic, you may receive the following output:

Pinging 192.168.0.1 with 32 bytes of data:

Reply from 192.168.0.1: bytes=32 time<10ms TTL=127
Reply from 192.168.0.1: bytes=32 time<10ms TTL=127
Reply from 192.168.0.1: bytes=32 time<10ms TTL=127
Reply from 192.168.0.1: bytes=32 time<10ms TTL=127

Ping statistics for 192.168.0.1:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms

Executing this command from Perl is just as easy. Start a text editor such

as Notepad and type the single line below. Make sure the command is enclosed
with backticks (`), also known as command input operators (Wall, p. 80).
Comments appear after the hash mark (#) and are presented to clarify the code;
since the Perl interpreter ignores these comments, it is not necessary to type
them in (Wall, p. 49)

 `ping 192.168.0.1`; # [1] execute shell command

Save this file as ping.pl. (Make sure the file is saved with a .pl extension, not .txt,
which is the default in Notepad.) Then return to the command prompt and run it
by typing:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 C:\>perl ping.pl

This simple script will attempt to send ICMP packets to the device at 192.168.0.1.
When you run this program, you experience the usual four-second delay it takes
to complete the command, but do not see any results because the Perl script still
needs to capture the output. Modify the script like so:

 @results = `ping 192.168.0.1`; # [1] store in array
 foreach $r (@results) { # [2] loop through array
 print $r; # [3] print each element
 } # [4] end of loop

The first line, denoted by [1], stores each line of the output into an array called
@results (Wall, p.51-52). [2] assigns each output line to the scalar variable $r
(Wall, p.51-52), [3] prints $r to the screen, and this loop repeats (Wall, p. 33) until
each output line is printed. You may wish to record the results for future
reference by writing the data to a log file. Take note of the additional bolded lines
in the following code:

 open (LOG, ">>file.txt"); # [1] open file.txt for append
 @results = `ping 192.168.0.1`; # [2] store ping results in array
 foreach $r (@results) { # [3] loop through array elements
 print $r; # [4] print each element
 print LOG $r; # [5] write to file.txt
 } # [6] end of loop
 close LOG; # [7] close file.txt

[1] prepares data to be appended to a file called file.txt (Wall, p.21). The file is
referenced by its file handle, LOG. [5] is responsible for writing each value of $r
to file.txt. [7] saves the data by closing the file.

Let us now be more selective in displaying and recording the data. It is
not necessary to show or record each reply or time-out line. The important data
lies in the line that contains “Packets:” This is where we use Perl’s regular
expressions, or regexes, to help us achieve this end (Wall, p. 139). The bolded
lines below show the changes to pings.pl.

 open (LOG, ">>file.txt"); # [1] open file.txt for append
 @results = `ping 192.168.0.1`; # [2] store ping results in array
 foreach $r (@results) { # [3] loop through array elements
 if ($r =~ /Packets:/) { # [4] check if element contains “Packets:”
 print $r; # [5] print each element
 print LOG $r; # [6] write to file.txt
 } # [7] end of if block
 } # [8] end of foreach loop
 close LOG; # [9] close file.txt

[4] uses the =~ operator to determine if the regex between the pattern match
operator (/ /) appears anywhere in $r (Wall, p.144). If so, $r is printed to the
screen in [5], and to the log file in [6].

Next, it would be useful to extract the data in the statistics line, and use it within
your program. Modify the regular expression as shown below.

 open (LOG, ">>file.txt"); # [1] open file.txt for append
 @results = `ping 192.168.0.1`; # [2] store ping results in array

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 foreach $r (@results) { # [3] loop through array elements
if ($r =~ /Packets: Sent = (\d+), Received = (\d+), Lost = (\d+)/) {
 # [4] capture statistics
 $sent = $1; # [5] save 1st (\d+) in $sent
 $recd = $2; # [6] save 2nd (\d+) in $recd

 $lost = $3; # [7] save 3rd (\d+) in $lost
 print $r; # [8] print each element
 print LOG $r; # [9] write to file.txt
 } # [10] end of if block
 } # [11] end of foreach loop
 close LOG; # [12] close file.txt
 print "You sent $sent packets, received $recd back, and lost $lost\n";
 # [13] show statistics

In [4], we are matching the string to include sent, received, and lost packet
information. Notice the three occurrences of (\d+). This can be deciphered as
follows: \d represents a digit (Wall, p.167); the + quantifier indicates one or more
of each digit (Wall, p. 176); the parentheses () store the enclosed value into
special variables called backreferences, starting with $1, $2, etc. (Wall, p. 182-
184). In summary, this statement compares the line read to the expression
within the pattern match operators, and place the numbers immediately following
the “Sent = “, “Received = “, and “Lost = “ strings into the backreferences $1, $2,
and $3, respectively. These values are stored in scalar variables in [5]-[7]. [13]
displays these values to the screen. (Note: as scripts become more complicated,
they become harder to trace. You might want to install ActiveState’s Perl
Development Kit at this point. Once installed, the Perl Debugger may be invoked
with the –d switch: C:\>perl –d ping.pl)

So far, we have a working program that pings an IP address, then checks
the output for sent, received, and lost packets. Wouldn’t it be a good idea to
continually ping a list of devices and alert an administrator if any device went
down?

 use Net::SMTP; # [1] use SMTP library
 use Win32::Sound; # [2] use Sound library

 $num = 0; # [3] initialize server count
 open (IN, "<servers.txt") || die "Can't open file";
 # [4] read list of server IPs
 while ($line = <IN>) { # [5] read line by line
 chomp $line; # [6] remove CRLF
 $server[$num++] = $line; # [7] store server IP in variable
 } # [8]

 while (1) { # [9] loop until program stops
 open (LOG, ">>file.txt"); # [10] open file.txt for append
 for ($i=0; $i<$num; $i++) { # [11] loop through IP list
 @results = `ping -n 1 $server[$i]`; # [12] make one request per server
 foreach $r (@results) { # [13] loop through array elements
 if ($r =~ /Packets: Sent = (\d+), Received = (\d+), Lost = (\d+)/){
 # [14] get statistics
 $sent = $1; # [15] save 1st (\d+) in $sent
 $recd = $2; # [16] save 2nd (\d+) in $recd
 $lost = $3; # [17] save 3rd (\d+) in $lost
 print $r; # [18] print each element
 print LOG $r; # [19] write to file.txt
 } # [20] end of if block
 } # [21] end of foreach loop
 print "You sent $sent packets, received $recd back, and lost $lost\n";
 # [22] show statistics
 close LOG; # [23] close file.txt

 if ($recd == 0) { # [24] if no replies

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 `net send Janet "Lost connectivity to $server[$i]"`;
 # [25] send popup
 email(); # [26] email message
 Win32::Sound::Play("warning.wav"); # [27] play a sound file
 print LOG "No reply from $server[$i] \n";
 # [28] record in log file
 } # [29] end if block
 } # [30] for loop
 close LOG; # [31] close file.txt
 sleep(120); # [32] pause for 2 minutes
 } # [33] end while loop

 sub email # [34] define subroutine
 { # [35]
 $smtp = Net::SMTP->new('smtp.company.com'); # [36] define SMTP server
 $smtp->mail("ping.pl"); # [37] sender name
 $smtp->to('janet@company.com'); # [38] send to Janet
 $smtp->data(); # [39] start data section
 $smtp->datasend("To: Janet\n"); # [40] send To line
 $smtp->datasend("From: Ping.pl\n"); # [41] send From line
 $smtp->datasend("Subject: Connectivity problem for $server[$i]\n");
 # [42] send subject
 $smtp->datasend("\n"); # [43] send CRLF
 $smtp->datasend("Cannot ping $server[$i]\n");# [44] send body
 $smtp->dataend(); # [45] done with data send
 $smtp->quit; # [46] close connection
 } # [47] end subroutine

This code shows the use of two modules (Wall, p. 299), Net::SMTP by
Graham Barr in [1] and Win32::Sound by Aldo Calpini in [2]. Net::SMTP enables
a Perl script to send e-mail messages via the Simple Mail Transport Protocol;
Win32::Sound will let the script play sounds in Win32 platforms. Make sure
these lines exist; otherwise, Perl will generate errors since it will not know how to
run the associated methods. Natively, Perl does not support SMTP and audio
playback. Instead, these functionalities depend upon modules contributed by
Perl programmers from all over the world. They may already exist in your Perl
distribution, but if they are not, they may be downloaded from CPAN, the
Comprehensive Perl Archive Network at http://www.cpan.org, or from various
mirror sites (Wall, pp.xxi-xxii). Alternatively, one may easily obtain and install a
module through the Programmer’s Package Manager (ppm) utility, as we will see
in a later section. [3]-[8] reads a text file called servers.txt, which contains the list
of IP addresses we wish to monitor for connectivity. Such a file may simply
consist of the following text:

192.168.0.1
192.168.0.2
192.168.0.3
192.168.0.4
192.168.0.5
192.168.0.6
192.168.0.7
192.168.0.8
192.168.0.9

[9] is the start of a while loop (Wall, p.32), which executes for the

remainder of this program run. [11] loops through each IP address (Wall, p.33)
and makes one echo request to each server in [12]. [24] checks to see if no
replies were returned; if this is the case, the administrator is alerted of this
situation by e-mail [26],[34]-[47], popup message [25], audio clip [27], and log

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

entry [28]. The subroutine in [34]-[47] uses functions defined in the Net::SMTP
library referenced in [1]. The commands within this subroutine were taken from
ActiveState’s on-line documentation and modified for our purposes. In [32], the
sleep command (Wall, p.788) causes the process to wait for 120 seconds before
the loop starts over.

With some basic tools, we have created a simple monitoring and alerting
system. We produced a meaningful program to read a list of IP addresses and
alert the administrator when any of the IP addresses fail to respond to an echo
request. Try to make improvements to this script, such as customized audio
warnings, pager support, and reducing the warning frequency after detecting an
unreachable host. The options are unlimited and exciting, but to avoid wandering
off-topic, let us now move on to monitoring user accounts.

User Account Status

If you do not have a policy to govern your user accounts, it would be wise
to start the process. The SANS Institute has compiled policy templates covering
a variety of topics. To assist in increasing Internet security and its awareness,
these resources are freely shared at http://www.sans.org/resources/policies.

For starters, it is a good idea to lock out a user account after so many
logon attempts, to enforce passwords of a certain length, and to require a
password change every predetermined number of days. The script below can
answer questions about the user accounts: Is anyone using the account? Might
someone have tried to break into that account? How old is its password?

Locked accounts may indicate password-cracking attempts; accounts that
don’t expire are more attractive to crackers than those that do; when passwords
are not required, there is a chance that the password is blank; and accounts that
have never been logged on to might have a simple default password.

Much information can be obtained from the command prompt:

C:\>net user janet /domain
User name Janet
Full Name
Comment IT
User's comment
Country code 000 (System Default)
Account active Yes
Account expires Never

Password last set 12/13/2002 7:36 PM
Password expires Never
Password changeable 12/13/2002 7:36 PM
Password required Yes
User may change password Yes

Workstations allowed All
Logon script
User profile
Home directory
Last logon 1/29/2003 3:45 PM

Logon hours allowed All

Local Group Memberships *Administrators
Global Group memberships *Domain Admins
The command completed successfully.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Occasionally executing the net command on a few usernames to give you
immediate account status is not a difficult task. However, to do this for every
member of your organization on a regular basis may leave an administrator with
little time to do much else. Such a task would demand an automated solution.

Before scripting, consider how to manually accomplish the task. One may
first enumerate the users on the domain, then run the net command on each
account on the list, read the relevant output information, alert the administrator if
necessary, and move on to the next account. Now that we have a plan, we need
to know how to obtain the information, and in what format it is presented. The
following command will generate the list of users in a domain:

C:\>net user /domain

User accounts for \\SERVER

Guest IUSR_SERVER01 Janet
User1 User2 User3
User4 User5 User6
IWAM_SERVER01 TsInternetUser
The command completed successfully.

 How would a script be written to extract the usernames? By examining
the output, one could make the following observations: The list of user accounts
is presented after the series of dashes (-). This list appears in three columns and
ends with the line, “The command completed successfully.” In each line, the first
column is always populated; the second and third columns in the line just before
the success message do not necessarily have a username. This information is
sufficient for us to start scripting.

 while (1) { # [1] loop until terminated

@results = `net user /domain`; # [2] run net user
$flag=0; # [3] clear attn flag
foreach $r (@results) { # [4] cycle through output
 if ($r=~/----------/) { $flag=1; } # [5] pay attn after dashes
 if ($r=~/The command completed successfully./) { $flag=0; }
 # [6] til done
 if ($flag==1) { # [7] if flag is raised,
 $r =~ /(\S+)\s+(\S*)\s+(\S*)/; # [8] get usernames
 $col1 = $1; # [9] and store
 $col2 = $2; # [10] them into
 $col3 = $3; # [11] variables
 push @users, $col1; # [12] push 1st into array
 if ($col2 ne "") { push @users, $col2; }
 # [13] push 2nd and 3rd if
 if ($col3 ne "") { push @users, $col3; }
 # [14] not blank
 } # [15] end if block
} # [16] end foreach loop
foreach $u (@users) { # [17] cycle through users
 print "$u\n"; # [18] print username
} # [19] end foreach loop
sleep(60*60*24); # [20] wait for 24 hours

 } # [21] end of while loop

 We begin this code by executing the net command in [2] to generate a list
of users. In [3] a flag variable is set to 0. The reason for doing so is to signal
when it is time to gather the usernames. Since the usernames aren’t listed until

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the dashes are encountered, the script does not need to look for them until that
point. Similarly, the processing of usernames should stop when we encounter
the line, “The command completed successfully.” We set up the script to loop
through each line $r of output [4] until the dashes are reached and set the flag [5]
to start paying attention to usernames.
 Once the flag is set [7], $r is compared to a string of nonwhitespace
characters (indicated by \S) followed by two sets of alternating whitespace
(indicated by \s) and optional nonwhitespace characters (Wall, p.167).
Whitespace refers to spaces, tabs, line feeds, carriage returns, etc. The first
string of nonwhitespace is captured into the special $1 variable. After one or
more whitespaces, there may or may not be more nonwhitespace characters; if
there are, store it in $2. The \S* indicates there may be 0 or more non-
whitespace characters (Wall, p. 176), so if there are not, the null string is stored
in $2. Similarly, the same idea applies to $3 [8].
 The backreferences are then stored into temporary variables, $col1, $col2,
and $col3 [9]-[11]. Since we observed the first column should always contain
some text, $col1 is pushed (Wall, p. 268) in the into the @users array [12]. $col2
and $col3, if not null, are similarly added to the same array [13]-[14].
 The last lines of code [17]-[19] cycle through the usernames and print
them on the screen. Let us now focus on this section to generate more useful
output:

while (1) { # [1] loop until termin'd
 @results = `net user /domain`; # [2] get user list
 $flag=0; # [3] clear attn flag
 foreach $r (@results) { # [4] cycle through output
 if ($r=~/----------/) { $flag=1; } # [5] pay attn after dashes
 if ($r=~/The command completed successfully./) { $flag=0; }
 # [6] until done
 if ($flag==1) { # [7] if flag is raised,
 $r =~ /(\S+)\s+(\S*)\s+(\S*)/; # [8] get usernames
 $col1 = $1; # [9] and store them in
 $col2 = $2; # [10] variables
 $col3 = $3; # [11]
 push @users, $col1; # [12] push 1st into array
 if ($col2 ne "") { push @users, $col2; }
 # [13] push 2nd and 3rd if
 if ($col3 ne "") { push @users, $col3; }
 # [14] not blank
 } # [15] end if block
 } # [16] end foreach loop

 open (OUT, ">alert.txt"); # [17] create an alert file
 foreach $u (@users) { # [18] cycle through each user
 @info = `net user $u /domain`; # [19] get info on each user
 foreach $i (@info) { # [20] cycle through info
 if ($i =~ /Account active\s+Locked/) {# [21] Look for Locked acct
 print OUT "Locked account: $u\n"; # [22] Record in file
 } # [23]
 if ($i =~ /Account expires\s+Never/) {# [24] Look for never-expire
 print OUT "Never-expiring account: $u\n";
 # [25] Record in file
 } # [26]
 if ($i =~ /Password required\s+No/) { # [27] Look for no pswd req'd
 print OUT "No password required: $u\n";
 # [28] Record in file
 } # [29]
 if ($i =~ /Last logon\s+Never/) { # [30] Look for never logged on
 print OUT "Maybe never logged on: $u\n";
 # [31] Record in file

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 } # [32]
 } # [33] end of inner foreach loop
 } # [34] end of outer foreach loop
 close OUT; # [35] save information
 `blat alert.txt -t janet@company.com`; # [36] e-mail file to admin
 sleep(60*60*24); # [37] do again tomorrow
} # [38] end while loop

 Line 17 opens a file to log the problems we encounter. Cycling through
the list of users [18], we execute the net user command and gather the results in
the @info array [19].

Next, we wish to watch for potential security concerns in [21], [24], [27],
and [30]. If there is a match, the line is written to the alert file and may be e-
mailed to an administrator [36]. The process repeats every 24 hours [37].

This time the e-mail mechanism is through Blat instead of Net::SMTP.
Blat is a convenient command line utility from Mark Neal, Pedro Mendes, Gilles
Vollant, and Tim Charron. With this utility, files are easily sent as e-mails from the
command line. It is available for download from
http://www.interlog.com/~tcharron/blat.html (Charron).

Group Membership
 Along the same lines as checking for account status, it would be prudent
to periodically check the members of groups with elevated privileges, such as
Domain Administrators. Note that this command may only be run on Windows
Domain Controllers.

C:\net group “Domain Admins”
Group name Domain Admins
Comment Designated administrators of the domain

Members

--
Janet Bad_Guy William
The command completed successfully.

 This output is very similar to that of net user, so we may modify parts of
the previous script to extract user names:

open (IN, "<admins.txt"); # [1] read admin file
while ($line = <IN>) { # [2] read line
 chomp $line; # [3] remove CRLF
 push @admins, $line; # [4] store into admin array
} # [5] end while loop

while (1) { # [6] loop until termination
 @users = (); # [7] clear users array
 $flag=0; # [8] clear warning
 @results = `net group "Domain Admins"`; # [9] get group members
 foreach $r (@results) { # [10] cycle through output
 if ($r=~/----------/) { $flag=1; } # [11] pay attn at dashes
 if ($r=~/The command completed successfully./) { $flag=0; }
 # [12] no need to pay attn
 if ($flag==1) { # [13] if attn required,
 $r =~ /(\S+)\s+(\S*)\s+(\S*)/; # [14] look for members
 $col1 = $1; # [15] assign into variable
 $col2 = $2; # [16] assign into variable
 $col3 = $3; # [17] assign into variable
 if ($col1 ne "") { push @users, $col1; }
 # [18] if not null,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 if ($col2 ne "") { push @users, $col2; }
 # [19] then store into
 if ($col3 ne "") { push @users, $col3; }
 # [20] users array
 } # [21] end if block
 } # [22] end foreach loop

 open (OUT, ">alert.txt"); # [23] write alert file
 foreach $u (@users) { # [24] cycle through members
 $u =~ tr/A-Z/a-z/; # [25] convert to lower case
 $flag = 1; # [26] assume user doesn't belong
 foreach $a (@admins) { # [27] cycle through admin list
 $a =~ tr/A-Z/a-z/; # [28] convert admins to lower case
 if ($u eq $a) { # [29] if user is admin,
 $flag = 0; # [30] then all is well
 } # [31] end if block
 } # [32] end foreach loop
 if ($flag == 1) { # [33] if flag is still set,
 print OUT "$u is in Domain Admins\n"; # [34] record in log
 `net send Janet "$u is in Domain Admins"`;
 # [35] send popup
 } # [36] end if block
 } # [37] end foreach loop
 close OUT; # [38] save the data
 `blat alert.txt -t janet@company.com`; # [39] email the log
 sleep(60*60); # [40] wait 1 hour
} # [41] end while loop

This code first reads the admins.txt file for a list of accepted administrators
that you provide, in the format shown below [1]-[5]:

Janet
William

When the main loop starts [6], we capture the group members from the

output of the net command [9]-[22]. Next, we cycle through each member [24],
convert the name to lower case [25] (Wall, p.144) and compare the name to each
name in your admin list [29]. We will assume that a username does not belong in
the Domain Admin group until that name is encountered in the list by first setting
a flag to indicate a problem [26]. Only when the username matches an admin
username [29] is the flag cleared [30]. If the flag is still set [33] after all the
comparisons, then log the incident and notify somebody [34]-[35].

In this script, an e-mail log is sent after each hourly cycle. One may
enhance the code so that the alert is sent only if there is a security violation.

Services
 Servers open up ports to await client requests. One way to make sure
your critical services are running is to use the NETSVC utility from the Windows
2000 Resource Kit. This utility is not limited to querying the local system; it can
be used to determine the status of network hosts, provided one is connected to
the remote host with administrative privileges. The command and its output
appear below:

 C:\>netsvc \\server service /query
 Service is running on \\server

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The script we formulate should issue the command and look for the string
“Service is running”

 while (1) { # [1] loop until terminated
 $dt = localtime; # [2] record date and time
 open (LOG, ">>services.log"); # [3] append to log
 open (IN, "<services.txt"); # [4] read service list
 while ($line = <IN>) { # [5] read a line
 chomp $line; # [6] remove CRLF
 @part = split (",",$line); # [7] split the line at comma
 $server = $part[0]; # [8] server precedes comma
 $service = $part[1]; # [9] service is after comma
 @results = `netsvc \\\\$server $service /query `;
 # [10] run command
 $flag=1; # [11] assume service is stopped
 foreach $i (@results) { # [12] cycle through output
 if ($i !~ /Service is running/) { # [13] if service is running,
 $flag=0; # [14] all is well
 } # [15] end of if block
 } # [16] end foreach loop
 if ($flag==1) { # [17] if all is not well,
 print LOG "$dt: Service $service is not running on $server\n";
 # [18] log the problem
 `net send Janet “$service is not running on $server"`;
 # [19] notify admin
 } # [20] end of if block
 } # [21] end of inner while loop
 close LOG; # [22] save log data
 close IN; # [23] close file
 sleep(10); # [24] wait
 } # [25] end main loop

 The file services.txt needs to be created so that the script knows which
servers and services to monitor. To obtain a list of services running on a server,
issue the following command:

 C:\>netsvc \\server /list

Next, create a text file and list each server and service, separated by a comma:

server01,spooler
server02,World Wide Web Publishing Service
server03,Simple Mail Transport Protocol (SMTP)

 We start the loop by reading in each server and service [4]-[9], then
executing netsvc [10]. Again, we assume there is a problem [11] until we
encounter the message “Service is running.” [13]. If there is a problem [17], log
the incident [18] and notify [19]. There are a couple of functions worth noting.
localtime() returns the date and time [2] (Wall, p. 738-739). split() divides a string
into substrings (Wall, p. 794).
 Explore the parameters of netsvc. Enhance this script to automatically
start a service if it is stopped.

Connecting to Services
 There are times when a service is running on a host, but the service port
is does not respond to connection attempts, such as during a Denial of Service
attacks. One can use Perl to telnet to a specific port and look for a banner to
indicate that the service is indeed responding.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This would require the use of the Net::Telnet library. If you are unsure
Net::Telnet is installed, run this at a command prompt:

C:\>perl –e "use Net::Telnet"

This command calls on Perl to execute the one-line command to look for the
Net::Telnet library. If an error message appears similar to the following, then you
may install Net::Telnet through ppm:

Can't locate Net/Telnet1.pm in @INC (@INC contains: C:/Perl/lib C:/Perl/site/lib
 .) at -e line 1.
BEGIN failed--compilation aborted at -e line 1.

C:\>ppm
PPM - Programmer's Package Manager version 3.0.1.
Copyright (c) 2001 ActiveState SRL. All Rights Reserved.

Entering interactive shell. Using Term::ReadLine::Stub as readline library.

Profile tracking is not enabled. If you save and restore profiles manually,
your profile may be out of sync with your computer. See 'help profile' for
more information.

Type 'help' to get started.
ppm> install Net::Telnet
====================
Install 'Net-Telnet' version 3.02 in ActivePerl 5.8.0.805.
====================

.

.

.
Successfully installed Net-Telnet version 3.02 in ActivePerl 5.8.0.805.
ppm> quit

Once the library is installed, run the following code to test for the availability of
the SMTP service on port 25:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 use Net::Telnet; # [1] use Net::Telnet lib

 while (1) { # [2] loop until terminated
 $dt = localtime; # [3] get date and time
 $flag = 1; # [4] assume service is down
 eval{contact();}; # [5] evaluate subroutine
 open (LOG, ">>smtp.log"); # [6] append to log file
 if ($flag) { # [7] if there is a problem,
 print LOG "SMTP server not responding at $dt\n";
 # [8] log it
 $cmd = "net send janet \"SMTP_down\""; `$cmd`;
 # [9] warn with a popup
 } else { # [10] else
 print LOG "SMTP server responded OK at $dt\n";
 # [11] log success
 } # [12] end of if block
 close LOG; # [13] save data
 sleep(120); # [14] wait
 } # [15] end main loop

 sub contact # [16] define subroutine
 { # [17]
 $t = new Net::Telnet(# [18] create a telnet object
 Timeout => 30, # [19] that times out after 30s
 Port => 25); # [20] and connects to SMTP port
 $t->open("mail.company.com"); # [21] attempt to connect
 @lines = $t->get(); # [22] get banner
 $t->close; # [23] close telnet session

 foreach $line (@lines) { # [24] cycle through banner
 if ($line =~ /SMTP MAIL Service/) { # [25] if banner has expected string
 $flag = 0; # [26] then all is well
 } # [27] end of if block
 } # [28] end of foreach loop
 } # [29] end of subroutine

 We see several new scripting developments. Through the eval() function
[5], a call is made to the subroutine contact, which tries to connect to port 25.
Program execution should jump to [16], run through [29], and return to [6]. Why
did I choose to branch into a subroutine when I could have listed the program
lines in the order I want them to be executed? It turns out that as soon as an
error condition occurs (such as when the service is not reachable by Telnet), the
program will halt with a message like this:

problem connecting to "mail.company.com", port 25: Unknown error
at C:\smtp.pl line 34

 By enclosing the subroutine call within eval(), this script will not be
terminated abruptly (Wall, p. 705). In the subroutine, we see the object-oriented
nature of the Net::Telnet library: [18]-[20] creates a telnet object that will attempt
to connect to port 25 within thirty seconds. We open the connection [21], grab
the banner [22], and close it [23]. We cycle through the output to look for an
expected banner [25]. If found, the flag is cleared [26] before execution returns
to [6]. Depending on the value of this flag, either the incident is logged and a
warning is issued [8]-[9], or just a success message is logged [11].

Port Monitoring

Open only the ports you need, because each open port is another avenue
for crackers to attempt to enter your system. When a system is configured,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

document the ports that are supposed to be open. A great tool is fport
(FoundStone). Not only does fport detect what ports are open, but it also
identifies the responsible process ids, protocols, and executables.

First, we need to download from CPAN or ppm, Mark-Jason Dominus’
Algorithm::Diff module, which compares two arrays and determines which
elements have changed. Once installed, the following script calls on the diff()
function to produce the differences.

use Algorithm::Diff qw(diff); # [1] need to access this module

while (1) { # [2] loop until terminated
 `if exist before.txt del before.txt`; # [3] preliminary
 `rename after.txt before.txt`; # [4] file shuffling
 open (IN, "<before.txt"); # [5] read the baseline data
 @before = <IN>; # [6] store file contents in array
 close IN; # [7]

 @after = `fport /p`; # [8] run fport; output to array
 open (AFTER, ">after.txt"); # [9] create new data file
 print AFTER @after; # [10] store data in file
 close AFTER; # [11]

 $diffs = diff(\@before, \@after); # [12] compare baseline to new data

 if (@$diffs) { # [13] if there are differences
 foreach $chunk (@$diffs) { # [14] this section was copied
 foreach $line (@$chunk) { # [15] from Mark-Jason Dominus'
 my ($sign, $lineno, $text) = @$line; # [16] diff.pl script.
 if ($sign eq "+") { # [17] + means the 2nd array
 print "Started: $text\n"; # [18] gained an item not in 1st
 print LOG "Started: $text \n"; # [19] record to log file
 `net send janet "$text started"`; # [20]
 } # [21]
 if ($sign eq "-") { # [22] - means the 2nd array does
 print "Stopped: $text\n"; # [23] not contain an item in 1st
 print LOG "Stopped: $text \n"; # [24] record to log file
 `net send janet "$text stopped"`; # [25]
 } # [26]
 } # [27]
 } # [28]
 } else { # [29] otherwise
 print "No change.\n"; # [30] show that there is no change
 } # [31]
 sleep(30*60); # [32] rest for 30 min
} # [33]

 We begin by reading the baseline (contents of the previous run) and store
it into the @before array [5]-[6]. Fport is run [8], and its contents are stored in
@after. [12] compares the two arrays. If there are differences [13], we run the
lines of code modified from Mark-Jason Dominus’ diff.pl script to determine if an
addition has been made [17] or a deletion [22]. Each instance is logged, and the
administrator alerted. [19]-[20], [24]-[25]. If there were no differences, a
message is displayed stating the fact. The process repeats every 30 minutes
[32].

Periodically check for newly opened ports. Lock down your servers by
disabling extraneous services. If a service port is no longer listening for
connections, it is one less avenue for an attacker to a compromise your system.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Microsoft Baseline Security Analyzer
Patching is a seemingly endless chore; it seems that as soon as you patch

up your system, a new vulnerability is discovered. How does one keep up? One
way is through a free download from Microsoft. The Microsoft Baseline Security
Analyzer is a utility that assesses the security of your server. The script below
uses the /hfnetchk command switch; it checks the patches on a server or range
of servers and quickly informs you which hotfixes are missing.

This script takes the output to generate an HTML file that links directly to
each Microsoft security bulletin, Common Vulnerabilities and Exposures names (
see http://cve.mitre.org), and each server’s list of patches to apply. Load this file
through a web browser from a hardened computer to download and copy the
hotfixes to the new computer. More information about MBSA is available at
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools
/Tools/mbsaqa.asp

while (1) { # [1] loop until terminated
 $dt = localtime; # [2] get date and time
 `c:\\progra~1\\micros~3\\mbsacli -hf -h 192.168.0.1 -f c:\\hf.out`;
 # [3] run HF
 @qlist = (); # [4] clear Qarticles array
 open (IN, "<hf.out"); # [5] prepare to read output
 open (HTM, ">hotfixes2.htm"); # [6] prepare to write
 print HTM "<HTML><TITLE>\n";# # [7] create title
 print HTM “Output of MBSACLI /HF on $dt (by Server)”;# [8] title
 print HTM "</TITLE>\n"; # [9] end title
 print HTM "<PRE>\n"; # [10] preformat
 while ($line = <IN>) { # [11] loop through each line
 if ($line =~ /(\S+)\s+\((\S+)\)/) { # [12] Look for Server and IP
 $server = $1; # [13] server is first part
 $ip = $2; # [14] IP address is second
 push @server_list, $server; # [15] store in server list
 print HTM "\n"; # [16] tag with server name
 } # [17] end of while loop
 print HTM $line; # [18] write line to HTM file
 if ($line =~ /* (.*)/) { # [19] Look for category name
 $category = $1; # [20] when found, remember
 } # [21]
 if ($line =~ /Latest Service/i) { # [22] Look for old srv packs
 $service_pack_warning{$server} = "$category: $line";
 # [23] store in hash
 } # [24]
 if ($line =~ /Patch NOT Found\s+(\S+)\s+(\d+)/) {#[25]Look for missing patches
 $bulletin = $1; # [26] MS Bulletin is first
 $qarticle = $2; # [27] Q Article is next
 $server_affected_by{$qarticle}.=" $server"; # [28] append server to hash
 $flag_found = 0; # [29] clear flag
 foreach $q (@qlist) { # [30] cycle through articles
 if ($q eq $qarticle) { # [31] if QArticle is in list
 $flag_found = 1; # [32] raise the flag
 } # [33]
 } # [34]
 if ($flag_found == 0) { # [35] if flag is not raised
 $bullet{$qarticle} = $bulletin; # [36] store new bulletin
 push @qlist, $qarticle; # [37] remember Q Article
 } # [38]
 } # [39]
 } # [40]
 print HTM "</PRE>"; # [41] end of preformatting
 close HTM; # [42] end of HTM file

 open (HTM, ">hotfixes.htm") or die "Can not create HTM file";
 # [43] create file
 print HTM "<HTML><TITLE>Output of MBSACLI /HF on $dt</TITLE>\n";

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 # [44] title
 print HTM "<BODY><VLINK=\"#FFFFFF\"><H1> Patches</H1>\n";
 # [45] label section
 print HTM "<TABLE BORDER>\n"; # [46] create table
 print HTM "<TR><TH>Bulletin<TH>Reference\n”; # [47] show table header
 print HTM “<TH>Servers affected</TR>\n"; # [48]
 foreach $q (@qlist) { # [49] cycle through articles

 print HTM "<TR><TD><A
HREF=http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/b
ulletin/$bullet{$q}.asp>$bullet{$q} Q$q"; # [50] generate MS link

 print HTM "<TD><A HREF=http://www.cve.mitre.org/cgi-
bin/cvekey.cgi?keyword=$bullet{$q}>CVE"; # [51] generate CVE link
 @part = split(" ", $server_affected_by{$q}); # [52] split server string

 foreach $p (@part) { # [53] for every server
 print HTM "<TD>$p";
 # [54] create link
 } # [55]
 print HTM "</TR>\n"; # [56] end of table row
 } # [57]
 print HTM "</TABLE>\n"; # [58] end of table
 print HTM "<HR><H1>Service Packs</H1>\n"; # [59] label section
 print HTM "<TABLE BORDER>\n"; # [60] create another table
 print HTM "<TR><TH>Server<TH>Service Pack</TR>\n"; # [61] show table header
 foreach $s (@server_list) { # [62] cycle through servers
 if ($service_pack_warning{$s} ne "") { # [63] Any missing srv packs?
 print HTM "<TR><TD>$s<TD> $service_pack_warning{$s}</TR>\n";
 # [64]print row
 } # [65]
 } # [66]
 print HTM "</TABLE></BODY></HTML>\n"; # [67] end of table
 close HTM; # [68] close the HTML file

 `start c:\\hotfixes.htm`; # [69] view the hotfixes
 sleep(60*60*24); # [70] repeat tomorrow
} # [71] end of while loop

This program starts by recording the date and time [2]. MBSACLI is run

[3], and its output file is prepared to be read [4]. [5-10],[16],[18] write to a file that
is essentially the same as the output file, except it includes internal links to make
it easy to jump to the report of each server. The loop from [11]-[40] look for
service packs and patches that have not been applied. [28] remembers each
server that is missing a particular hotfix. [37] records each Q article. Another
HTML file is generated in [43]-[68], containing the links to the relevant Microsoft
Bulletin [50], CVE link [51], and hotfix report [54] from above. Missing service
packs are also shown in [63]-[64]. At the end of the loop, this page is loaded for
your review [69]. In summary, this script displays a web page of missing hotfixes
and service packs, providing links for you to read about the vulnerabilities and
download the hotfixes.

Event Logs
 Event logs are one of the first places to turn to when investigating
computer issues. The information may be seen through Event Viewer, but
another tool is better suited if you wish to automate the event collection process.
Dumpel is a powerful utility from the Windows 2000 Resource Kit. We will use it
in our script to pull log information from not just one server, but from an entire list
of servers. The data is sorted by date and time to give you a bigger picture of
what is happening to your Windows NT/2000 network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

open (IN, "<servers.txt"); # [1] open server list
while ($server=<IN>) { # [2] cycle through each server
 chomp $server; # [3] remove CRLF
 @results = `dumpel -s \\\\$server -l security -c`;

[4] capture its security log
 foreach $r (@results) { # [5] cycle through results
 push @everything, $r; # [6] save to master array
 } # [7]
} # [8]
close IN; # [9]

@sorted = sort @everything; # [10] sort the master array
open (OUT, ">sorted_logs.csv"); # [11] open file to save array
print OUT @sorted; # [12] write to file
close OUT; # [13]

 First, we read the names of the servers in [1],[2]. Dumpel is then run on
each server [4]. Notice the parameters: -s specifies the server, -l indicates which
log, and –c means to store return the data in a comma-delimited format. Every
entry for the security log is captured into the @everything array [6]. This array is
sorted in [10], and written to a file in [12]. By default, dumpel returns the date
first, followed by the time, event type, category, ID, source, user, computer, and
string data. If you do not wish to sort the information by date and time, modify
the sort order through dumpel’s –format switch:

 -format <fmt> Specify output format. Default format is
 dtTCISucs
 where
 t - time
 d - date
 T - event type
 C - event category
 I - event ID
 S - event source
 u - user
 c - computer
 s – strings

 Try to modify the code to save all three logs for each server. Take it one
step further to pull the logs from all servers every hour, use Algorithm::Diff to find
the changes, and alert you when events you define occur. One can see how this
powerful utility, combined with your Perl script can make log reviews much more
tolerable.

File Integrity

Your company’s most valuable asset is its data; protect the integrity of
your data by monitoring your files. If a Network Intrusion Detector fails to detect
an intruder penetrating your network, you need to make sure critical files are
secured on your hosts.

use Digest::MD5; # [1] may already be present
$numfiles=0; # [2] initialize counter
open(LIST, "<filelist.txt") || die "Can't open file list";
 # [3] open file list
while ($line = <LIST>) { # [4] read each line
 chomp $line; # [5] remove CRLF
 $filename[$num_files] = $line; # [6] record filenames
 $orig_hash{$filename[$num_files]} = get_hash($filename[$num_files]);
 # [7] record hashes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 $num_files++; # [8] increment counter
} # [9]
close LIST; # [10] close file

while (1) { # [11] main loop
 for ($i=0; $i<$num_files; $i++) { # [12] cycle through files
 print "origval of $filename[$i] = ", $orig_hash{$filename[$i]}, "\n";
 # [13] before
 print "get_hash of $filename[$i] = ", get_hash($filename[$i]), "\n";
 # [14] after
 if (get_hash($filename[$i]) == $orig_hash{$filename[$i]}) {
 # [15] if same,
 print "Hashes compare ok\n"; # [16] all's well
 } else { # [17] else
 `net send Janet "$filename[$i] has changed"`;# [18] warning
 } # [19]
 } # [20]
 sleep (60*60); # [21] check every hour
} # [22] end while loop

sub get_hash # [23] define sub
{ # [24]
 $filename = shift; # [25] get parameter
 open (FILE, $filename) || die "Can't open file to get hash";
 # [26] open file
 binmode(FILE); # [27] set to binary mode
 $hashval{$filename} = Digest::MD5->new->addfile(*FILE)->hexdigest, " $filename\n";
 # [28] record MD5 hash
 return $hashval{$filename}; # [29] return value
} # [30]

This Perl script uses the Digest::MD5 module [1] to read a list of files to

watch and produces an MD5 hash for each one [7]. Periodically, hashes are
generated and compared to the original hashes [15]. If the hashes match, then
all is well; otherwise, an alert is generated.

Stay vigilant
 As computer security professionals, we need to keep up to date with very
current information. The SANS web site posts a wealth of knowledge, and links
to the Internet Storm Center at http://incidents.org. We may see at a glance the
current condition of Internet Security.

With the aid of Wget, available at
http://www.interlog.com/~tcharron/wgetwin.html, the following script determines
the Internet Threat Level.

`wget -O sans.htm http://www.sans.org`; # [1] grab SANS web page
open (IN, "<sans.htm"); # [2] open web page locally
while ($line=<IN>) { # [3] read each line
 if ($line =~ /threat level is (\S+)\"/i) { # [4] look for threat level
 $level = $1; # [5] capture threat level
 print "Threat level is $level\n"; # [6] show level
 if ($level !~ /green/i) { # [7] if not green
 `net send administrator "Elevated threat level"`;
 # [8] notify administrator
 } # [9]
 } # [10]
} # [11]
close IN; # [12] close local web page

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This concludes the paper, but hopefully not your zeal for programming security scripts in
Perl. There is a large community of Perl programmers. Join the newsgroups. Do a
Google search for Perl tutorials. Armed with the ability to automate the usage of
powerful tools, we may do our jobs more effectively.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Resources

Charron, Tim. “BLAT for Windows.”
URL: http://www.interlog.com/~tcharron/blat.html (4 April 2003).

Foundstone, Inc. “fport.”
URL: http://www.foundstone.com/knowledge/proddesc/fport.html (4 April
2003).

Microsoft Corporation. “Windows 2000 Resource Kits.” URL:
http://www.microsoft.com/windows2000/techinfo/reskit/default.asp (4 April 2003).

Microsoft Corporation. “The Ten Immutable Laws of Security.” URL:
http://www.microsoft.com/technet/columns/security/essays/10imlaws.asp (4 April
2003).

Perldoc. “eval.” URL: http://www.perldoc.com/perl5.8.0/pod/func/eval.html
(4 April 2003).

Robert, Kirrily. “Introduction to Perl: The Perl Philosophy.” URL:
http://www.maths.adelaide.edu.au/cmc/tutorials/perlintro/x175.html (4 April 2003).

SANS Institute. “Security Policy Project.”
URL: http://www.sans.org/resources/policies (4 April 2003).

Scrambray, Joel, and Stuart McClure. Hacking Windows 2000 Exposed. Berkeley:
Osborne/McGraw-Hill, 2001.

Wall, L., Christiansen, T., and Orwant, J. Programming Perl, 3rd Ed. Beijing;
Cambridge, Mass.: O’Reilly & Associates, 2000.

