
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A Tour of TOCTTOUs
J. Craig Lowery

SANS GSEC practical v.1.4b (August 2002)

“Time of check to time of use” (TOCTTOU) vulnerabilities exist due
to race conditions arising from an invalid assumption: That nothing
affecting the validity of a security assertion changes between the
time it is checked and the time an operation that depends on that
assertion is performed. In fact, it is quite possible that the security
of the environment changes with respect to the assertion during this
interval. If these changes are cleverly timed and orchestrated, the
operation may result in a security breach. This paper characterizes
this particular category of security vulnerabilities, describes various
types of TOCTTOUs and particular situations in which they have
arisen historically, and presents a short set of guidelines for
reducing or eliminating these flaws.

Problem Context

It is an accepted fact that poor software quality accounts for a vast majority of
security vulnerabilities in modern computer systems1. Software quality can suffer
for a number of reasons ranging from poor design to poor implementation.
Making invalid assumptions is one of the primary mistakes. For example, the
architect or programmer may assume that certain input combinations will never
be presented because they are unlikely, resulting in a brittle implementation that
fails or is compromised when these unlikely inputs occur.

Similarly, one may not fully comprehend the side effects and timing issues
associated with integrated components, or one may make other invalid
assumptions about their function. The operating system that provides the
execution context for a program can be viewed as a “black-box” component.
Operating systems purposefully present the face of a single-user virtual machine
to client programs in multiprogrammed environments. What logically is a single
thread of execution is, in reality, a distributed component in an encompassing
execution thread comprising the operating system and the interleaved executions
of hosted programs.

Characterizing TOCTTOUs

The illusion of a single-thread of execution may encourage invalid
assumptions that do not account for the existence of external agents; some of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

these external agents, typically other processes hosted by the same operating
environment, may be malicious and capable of exploiting the context switching
mechanism to wage an attack on other processes. Consider the typical algorithm
for accessing a resource within a programming environment:

1. Obtain a reference to the resource
2. Determine resource characteristics by querying the reference
3. Analyze the query results to determine fitness of the resource
4. If the resource is fit, access it using the reference

Steps 2 and 4 of this algorithm are of particular importance, as they
constitute the boundaries of what may be considered a critical code section.
Step 2 is commonly known as the “check” step. Step 4 is commonly known as
the “use” step. The resource reference is the object being checked and used. If
the resolution of the resource reference changes between the check and use
steps, then actions performed in step 4 may cause a security breach. This is the
essence of the “time of check to time of use” vulnerability, commonly denoted by
the acronym TOCTTOU.

References to TOCTTOU vulnerabilities date as far back as at least 1973.
One particular paper2 describes security measures taken in the IBM VM/370
environment to prevent against vulnerabilities due to “discrepancies between
parameters at time-of-check and time-of-use”. The acronym TOCTTOU is
generally attributed to a research paper published in 19743. Since then, flaws
characterized by race conditions created by potential changes in a resource
reference’s resolution have been systematically labeled TOCTTOU.

A form of serialization flaw4, TOCTTOUs occur due to the programmer’s
invalid assumption that the resolution of the resource reference will not change
between the check step and the use step. A poor solution to this problem is to
reduce the window of opportunity to an attacker by reducing the size and running
time of the critical section; although this may make the vulnerability more difficult
to exploit, it does not resolve it.

Three methods for mitigating TOCTTOU vulnerabilities are presented in the
Handbook of Information Security Management:5

§ Increase the number of checks: More frequent checks create
multiple smaller windows of timing vulnerability, making it more difficult
for the attacker to achieve the necessary synchrony to successfully
penetrate the system. Although helpful, this method only reduces the
window of exposure and does not eliminate it.

§ Check nearer to use: By moving the time-of-check closer to the time-
of-use, the window of vulnerability is proportionally reduced. Again,
this merely reduces the window of exposure rather than eliminating it

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

completely.

§ Immutable bindings: Making a reference such that its resolution is
immutable (i.e., cannot be changed) means that it will always resolve
to the same object. This approach eliminates TOCTTOU
vulnerabilities, but may not be possible in some situations.

To re-emphasize: Although reducing the window of vulnerability is helpful, it
merely makes it harder for an attacker to penetrate, not impossible. Therefore, of
the three solutions presented above in the Handbook, only the last is truly
acceptable.

The assumption that the resolution of a reference is as static as the
reference itself is valid in some circumstances. Therefore, one effective way to
avoid TOCTTOU errors is to choose resource references that are guaranteed to
resolve consistently at both the check and use steps. Immutable bindings can be
achieved in several ways. First, the reference may be so closely bound to the
object that it simply cannot be by an external agent or, if it were changed, would
break all pre-existing references. An example commonly given is the file
descriptor within a process table data structure, as opposed to a file name in a
directory. File names in UNIX can be up to four levels of indirection away from
the file itself: symbolic link resolves to a hard link resolves to an i-node index
resolves to a file descriptor. Each of these indirections provides an opportunity
for a TOCTTOU attack.

The second way to achieve immutable bindings is to insure that the
reference’s binding, normally mutable, cannot be changed between the check
and use steps: a “temporary immutability.” This can be accomplished by
providing an atomic operation which both checks and uses the reference, similar
to the atomic “test and set” operation commonly used to implement hardware-
based semaphores.

Simulated atomic operations can be implemented by treating the code
section from check to use as a classical critical section, guarded at entry and exit
by a mutual exclusion primitive, or by using other existing locking mechanisms,
such as those provided by database management systems to lock records or
tables for update. More sophisticated systems that have been designed against
TOCTTOU vulnerabilities may employ a reference monitor to track object
references and detect when unsafe changes have occurred during an operation.

Prototypical Examples

What follows is a representative list of TOCTTOU vulnerabilities. Some of
these examples are historical in nature, having actually occurred in production
software. Others are contrived examples.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Filename Redirection

Bishop and Dilger6 analyze an attack set forth by Tanenbaum7 in which the
resolution of a UNIX filename changes from the time a privileged process creates
a file to the time that process attempts to change ownership of it.

The privileged program’s intended function is to create a new, empty
directory and assign ownership of it to the requesting user. It does this by first
exercising mkdir(), then chown(). If the new directory is created within a directory
to which the requesting user has full access, then that user can unlink the new
directory entry and replace it with a link of the same name to some other file on
the system, such as /etc/passwd. If this is done before the privileged program
exercises chown(), then when the chown() is executed, it will follow the new link
and change the ownership of the targeted file to be the requesting user.

The resource reference in this case is the name of the new directory. The
time of check is when the mkdir() is exercised: At that time it is certain that the
name references the newly created directory. The time of use is when the
chown() is exercised. However, the meaning of the name – that is, the i-node
that it ultimately maps to – changes between the check and use.

Source code can be statically analyzed to help determine if filename
redirection TOCTTOUs exist. Examples of available scanners include ITS48 and
RATS9. Another oft-cited way to prevent filename redirection vulnerabilities is to
make use of immutable references, such as a file descriptor within the kernel’s
data structure representing the process. For example, in POSIX environments,
use of the fstat() system call is preferred over that of stat() or lstat() to obtain file
status information10, since the fstat() takes an immutable (by external methods)
file descriptor as reference to the file to be checked.

Setuid Scripts

Tsyrklevich10 explains how the functionality of early versions of the UNIX
exec() system call can lead to security breaches when combined with setuid
scripts.

When exec() is presented a file to execute, it first opens the file to examine
the first two bytes. If it finds a magic number in this position, it proceeds to load
and execute the file as a binary executable. If it finds the character bytes “#!” –
indicating that the file is a script – it reads additional characters until encountering
a line feed. This string is the pathname and optional parameters of the command
interpreter which will execute the script. The interpreter is loaded and pointed to
the script file by exec().

Normally, exec() does not change the privileges of a process when its
context is changed, as in the loading of a new binary. However, if the file to be

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

executed has the setuid bit set, then a setuid() system call is performed prior
passing control to the new program, effectively changing the process’s user ID to
that of the owner of the file being executed. If the file to be loaded is a true
binary, then it is certain that the subsequent execution is under the control of that
file’s contents. By contrast, if the file is a script with the setuid bit set, then the
associated command interpreter is executed with the privileges of the script’s
owner. Because there is a period of time between when the script is inspected
by exec() to when it is opened and read by the interpreter, the possibility exists of
a TOCTTOU attack, as follows.

1. The attacker creates a symbolic link to an existing script owned by
user “root” (the superuser).

2. The attacker attempts to execute the symbolic link.
3. The system follows the link to root’s script, opens it, gets the

interpreter pathname, and observes the setuid bit is “on.”
4. In the meantime, the attacker redirects the symbolic link to a malicious

script that the attacker owns. The status of this malicious script’s
setuid bit is immaterial.

5. The system executes the interpreter as root, and points it to the
symbolic link.

6. The interpreter follows the symbolic link to the malicious script and
executes it with root privileges.

In this scenario, the resource is the symbolic link. The time of check is when
the exec() system call follows the symbolic link and finds a script file owned by
root with setuid turned “on.” The time of use is when the interpreter follows that
same link, which now points to a malicious script. This problem can be resolved
by having exec() pass an open file descriptor rather than a pathname to the
command interpreter.

Relocated Subdirectory

Yet another specialized instance of filename redirection reported by
Tsyrklevich10 involves a false assumption made by implementers of the GNU file
utilities package.

The rm command can remove a directory structure by recursing through the
directory hierarchy in a depth-first fashion. After removing the contents of a child
directory, the program returns to the parent directory by using the “..” directory
entry of the child directory. If an attacker is able to move the child directory to a
new location at the right moment, then rm will change to the new parent directory
and delete its contents, which was not intended.

In this example the resource reference is the “..” parent link. The time of
check is when rm enters the child directory; at that time, the child’s “..” link is not
explicitly checked, but it is known to point to the parent directory in a consistent

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

file system (which we usually must assume). The time of use, however, is the
return to the parent directory, at which time we are no longer guaranteed that “..”
references the original parent directory.

The exposure can be mitigated in several ways. One is to fork a child that
deletes the subdirectory while the parent waits, its current working directory
unaltered; this solution has obvious performance drawbacks. Another is to
remember the i-node number of the parent directory and re-check it upon return;
although not foolproof, this method drastically reduces the exposure without the
overhead of creating child processes 1-to-1 for each deleted subdirectory.

SQL SELECT Before INSERT

The dbi-users mailing list archive contains an entry11 describing a
vulnerability introduced by using an SQL SELECT statement to determine that a
proposed key value does not currently exist in an opt-in database of e-mail
addresses. If the SELECT returns no rows, then an INSERT follows to populate
the table with the new row. One way to exploit this scheme is for an attacker to
observe the proposed new key value in transit and request the same key value in
a nearly concurrent request. If this second request completes before the first, it
results in denial of service to the legitimate requestor, because the second
INSERT from the earlier request will fail on a primary key constraint. If the
attacker can influence processor workload or process priority, then the attack can
be sustained indefinitely across repeated subsequent requests.

The resource reference in this case is the primary key value of the requesting
subscriber: an e-mail address. When the SELECT is executed (time of check) it
returns an empty result set, indicating the e-mail address is not yet registered.
This assertion is assumed to be intact when the subsequent INSERT (time of
use) is performed.

One way to resolve this particular vulnerability is to make use of table locking
within the database management system. Prior to testing for the existence of a
particular record, the table can be locked for writing, guaranteeing mutual
exclusion of the critical section. If the SELECT query returns an empty result set,
then the new user record can be inserted with a guarantee that another insert
request has completed.

Java Class Loader

Dean12 describes the situation encountered in early, poorly implemented,
Java virtual machines in which the Java classloader does not enforce compile
time type checking at run time. Most of these problems arise from runtimes that
impose insufficient restrictions on classloader behavior, such as Sun’s Java
Development Kit 1.0.2. Classloaders were only required to validate a byte
stream as being properly formatted Java byte code, and were not required to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

enforce type compatibility between the loaded class and those classes to which it
dynamically interfaced.

From a client perspective, it was thus possible for a malicious applet to
provide its own classloader that permitted improper runtime typecasting, resulting
in increased privileges. From an author’s perspective, it was possible for a
program, running in a different execution context than that in which it was tested,
to unwittingly interface with rogue code in libraries that found their way onto the
target system by other means.

The resource reference in this case is the Java byte code. The time of check
is the compilation time, at which point the Java source is compiled, verified, and
the byte code is created. The time of use is run time, in which the assumption is
made that checks verified at compile time are still in force, when they may not be.

System Call Interposition

LOMAC13, a loadable mandatory access control module, is a security
enhancement for Linux kernels. It gains supervisory control over kernel
operations by intercepting system calls, inspecting them, and comparing them
against an access control policy. It does this by interposing itself between user
processes and the kernel. Essentially, user processes make calls to the LOMAC
“wrapper,” which in turn makes an access decision (known as mediation) prior to
forwarding the request to the kernel for processing.

Ironically, LOMAC – a supposed security enhancement – introduced many
new TOCTTOU vulnerabilities into the kernel due to the way it handled
parameter checking. During the mediation phase, LOMAC copied a parameter,
such as a path name, into its own buffer space. This copy was checked by
LOMAC for adherence to the security policy. Upon a successful check, however,
the parameter was re-copied from user space to the kernel. The intervening time
between the first and second copy provided the opportunity for attack as the
parameter could be overwritten with a value that would not have passed
mediation, yet is then passed to the kernel because the original value did pass
mediation.

Later versions of LOMAC corrected this flaw by first copying the user
parameters to kernel space, performing the mediation, then calling the kernel on
the same parameter copies, thus avoiding opportunities for an attacker to modify
them.

Replay Attacks

Computer networks introduce even more possibilities for TOCTTOU
vulnerabilities14. Consider a naive implementation of a Web application: A user
accesses the remote Web server by providing credentials in an authentication

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

dialog, which grants access to a restricted portion of the Web site. Subsequent
communication can be copied by a network sniffer, or may remain in the client’s
cache for an indefinite period. In either case, HTML forms submitted originally by
the legitimate user can be resubmitted at a later time (replayed) by an
unauthorized user.

The assumption that enables the replay attack is that the HTML form would
not be available to the client, and therefore could not be transmitted from that
client, unless a legitimate user had not first authenticated with the server,
permitting access to the form. In this case, the resource is the HTML form, the
time of check is the legitimate user’s authentication and subsequent initial
transmission of the form, and the time of use is when the form is presented
(whether by the legitimate user or an attacker).

Communication in a session context15 is usually employed to thwart replay
attacks. A session is a period of time bounded on the left by a successful user
authentication and bounded on the right by a logoff or timeout. Upon session
instantiation, a unique session identifier is created, and all messages exchanged
during the session carry this identifier. The Web server will only honor incoming
communications if the identified session is still active (i.e., has not been
discontinued by logoff or timeout). Further strengthening session semantics with
message sequence numbers, relying on server-side state preservation, and
adding encryption can reduce or eliminate replay attacks in Web applications.

Summary

TOCTTOU vulnerabilities arise from software design errors that assume a
checked condition to be invariant when, in reality, it is not. Attackers exploit the
failure of the software to account for asynchronous, external agents that can alter
the checked condition in such a way as to take advantage of it. Although static
code scanners can identify common TOCTTOU errors, they are not a completely
sufficient solution to guarding against them. Software designers and
implementers should take the following steps to avoid introducing TOCTTOUs
into their products:

§ Any conditional test that resolves an external reference should be
flagged as a possible TOCTTOU introduction.

§ References with mutable resolutions, such as filenames, should be
replaced with references having immutable resolutions, such as file
descriptors.

§ Atomic operations, such as those similar to “test-and-set,” should be
used whenever available.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

§ If an immutable reference resolution or atomic operation is not
possible, then the code spanning from the check step to the use step
should be placed in a critical section that guarantees mutually
exclusive control of the reference, so that alteration of the reference’s
resolution cannot occur while the critical section is executing.

Although minimizing the window of time during which the vulnerability can be
exploited may reduce the exposure, it is not an acceptable solution as it merely
reduces the still non-zero probability that a single attack will succeed, rather than
eliminating the possibility entirely.

Identified now for more than a quarter of a century, TOCTTOU vulnerabilities
are well understood. They can be subtle, and have often been overlooked even
in products purporting to have a security focus. However, designers and
programmers who watch for the TOCTTOU warning signs and consistently follow
good programming practices should have no difficulty avoiding them.

1 Labbate, Evelyn. “Vulnerability as a Function of Software Quality.” SANS Institute Reading
Room, March, 2001. URL: http://www.sans.org/rr/code/quality.php (25 Mar 2003)

2 Attansasio, C. R. “Virtual Machines and Data Security.” ACM Proceedings of the Workshop
on Virtual Computer Systems, 1973.

3 McPhee, W. S. Operating system integrity in OS/VS2. IBM Syst. J. 3, 3 (1974), 230–252.

4 Landwehr, Carl E. et al. “A Taxonomy of Computer Program Security Flaws.” ACM
Computing Surveys, Vol. 26, No. 3., September 1994, pp. 211-254.

5 Krause, Micki and Tipton, Harold F. editors. Handbook of Information Security
Management. CRC Press LLC, 1998.

6 Bishop ,Matt and Dilger, Michael. “Checking for Race Conditions in File Accesses.” URL:
http://seclab.cs.ucdavis.edu/projects/vulnerabilities/scriv/ucd-ecs-95-09.pdf (7 Feb. 2003)

7Tanenbaum, A. S. Operating Systems Design and Implementation. Prentice-Hall, Inc. 1987.

8 John Viega , et al. “Token-based scanning of source code for security problems.” ACM
Transactions on Information and System Security (TISSEC) VOl. 5, No. 3, August 2002.

9 Nazario, Jose. “Source Code Scanners for Better Code.” LinuxJournal.com, 26 Jan 2002.
URL: http://www.linuxjournal.com/article.php?sid=5673 (21 Mar 2003).

10 Tsyrklevich, Eugene. “Dynamic Detection and Prevention of Race Conditions in File
Accesses.” http://www.cs.ucsd.edu/users/etsyrkle/thesis.ps.gz (Mar 20 2003)

11 Leffler, J.et al. “Re: Re: Error Handling.” dbi-users mail list archive. URL:
http://opensource.nailabs.com/lomac/docs/lomac-freenix01.pdf (6 Feb. 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

12 Dean, Drew. “The Security of Static Typing with Dynamic Linking.” URL:
http://www.cs.princeton.edu/sip/pub/ccs4-preprint.pdf (20 Mar. 2003)

13 Fraser, Timothy. “LOMAC: MAC You Can Live With.” URL:
http://www.usenix.org/events/usenix01/freenix01/full_papers/fraser/fraser_html/node4.html (21
Mar 2003)

14 Stanley, Richard A. “CS 697 Computer Security.” URL:
http://www.cs.umb.edu/cs697/CS697A-Class 1.ppt (21 Mar 2003)

15 Lowery, J. Craig. “A Checklist for Network Security.” Dell Power Solutions, May, 2002.
URL: http://www.dell.com/us/en/esg/topics/power_ps2q02-lowery.htm (21 Mar 2003)

