
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Certification

GSEC Practical Assignment

Version 1.4b Option 2

SSL Web Proxy

 A Secure and Inexpensive Remote Access Implementation

Prepared and Developed by David E. Culp

April 2, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Abstract:

With our network perimeter expanding, the type of clients that need
remote access changing, and IT budgets decreasing in today’s economy; The demand
for a secure, inexpensive, and multi-platform solution is gaining momentum. For years
VPNs (Virtual Private Networks) using the IPSEC protocol have proven to be a stable
and secure remote access solution. However, in addition to the initial cost of the
implementation, the time and cost of maintaining the clients are becoming more
apparent. Furthermore, the need to support clients other than ‘Window PCs’ has
increased.

 Within this paper, I will outline a system that I developed using the proven
technology of SSL (Secure Socket Layer), and the combination of stable, secure Open
Source software with some custom programming. The objective of this system is to
allow external clients without any configuration changes to securely access our internal
web applications via the Internet. For my implementation, I was given a set of criteria
which are outlined in the following section. With the criteria declared, my objectives set
and a vast sea of information via the Internet and the Open Source community before
me, I was eager and confident that this journey would be successful. I have included all
the paths that my research took me, because each path resulted in a great system.
However for one reason or another, the system did not meet all of the criteria. But after
many hours of research and development, a system was created that met the criteria
and satisfied our needs.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SECTION: (Before) Setting the Stage:

 The State of the Industry and the Growing Needs:
 For secure remote access, companies have been using VPNs (Virtual
Private Networks) for years. The technology is stable and secure. In practice, more and
more network administrators are finding there are some drawbacks to VPN
implementations. They include:

* The extra administrative workload involved in maintaining the remote clients.
 This includes changes to the remote VPN client version, issues with the remote
 client OS version, and issues with home and office firewalls.

 * A limited range of client types are supported. Most of the VPN Vendor clients

 are written for the Windows platform. With the growing emergence of PDAs
 and Linux Desktops, this is becoming more of an issue. For Linux desktops, a
 solution can be found with FreeS /WAN (http://www.freeswan.org/).

In that past year, a new technology that offers secure remote access

without the shortcomings listed above has been gaining industry attention and market
share. This new technology is known as “SSL VPNs”. In turn the traditional VPNs are
now referred to as “IPSEC VPNs”. Some of the phrases you may read from a
commercial product’s marketing literature are ‘client–less” and “access from any
Internet-Enabled device”. Aventail (www.aventail.com) is the current leader in this
market with it’s ASAP Platform. Nortel (www.nortelnetworks.com) announced their
Alteon SSL product line back in September 2002. While these products offer a rich set
of features, they do not come cheap. On average, the base price usually starts around
$25,000. So after researching the commercial products, I decided to develop a system
using OSS (Open Source Software) and SSL on a Linux OS platform.

Current Remote Access Structure:

 Our current Remote Access solution involves a combination of two Nortel
Contivity VPN/Firewall switches for our broadband users and branch office tunnels. The
number of clients and their types are increasing at a rapid pace. In addition we are
beginning to experience the additional administrative workload of maintaining the
remote clients: VPN client versions, and remote firewall issues. A “SSL Remote Access”
solution can supplement our current infrastructure and help solve these problems as
well as place us in our better position for future growth. The management of remote
clients can be greatly reduced.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Criteria For Remote Access Solution:
a) Secure

 b) Inexpensive
 c) Allow any client (PC Windows, PDA, Linux) to be able to access our
 internal web applications. The only requirement is that the client has a
 browser capable of establishing a SSL connection.
 d) No changes to our internal infrastructure (servers, web pages …)
 e) No changes on the client, i.e. client drivers, proxy settings in their
 browsers
 f) Authentication into our Intranet will be done via RSA SecurID tokens
 Note: This SSL Web Proxy system can be used with other

Authentication methods (see notes later in the document)

Overall Goal of the System:

Listed in Figure 1 is the network layout of the proposed solution.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 The overall goal of the system is to allow a public client to be able
to access our private web applications through SSL. Initially the public client will
establish a SSL connection to the public SSL Web Proxy server: www.sslwproxy.com.
After Authenticating, our main Intranet web page will be presented to the client.
Any embedded host links within the web page will have been parsed and rewritten to
point back to the external SSL Web Proxy server. Using Figure 1, embedded links will
be changed as follows:
 www.mainwebserver.com becomes www.sslwproxy.com
 www.was1.com becomes www.sslwproxy.com/srv1
 www.was2.com becomes www.sslwproxy.com/srv2

 Now when the public client selects one of the links associated with
a private web application server, he is directed back to the public SSL Web Proxy
server with a new URL associated with the private web application server.

The Research Paths Taken:
 My first step of the research involved SSL. More specifically the widely
available and secure OpenSSL (www.openssl.org). You can download and install
the tarball from their website or use the version installed with your Linux distribution.
Important note: Throughout this document, I will be giving http/ftp links to download
the needed sources. You should always check the integrity and authenticity of the file.
The file should have either an associated MD5 checksum, or a PGP signature file (you
will need the author’s PGP public key). Common programs used for this are md5sum
and gpgv.

 SSL allows one to create a secure (encrypted) tunnel between a client
and a server. In my case, I will be using the HTTP protocol (standard port 80) which is
converted into the familiar HTTPS (standard port 443). Stunnel (www.stunnel.org) was
the first system that I found to allow me to use SSL to create a secure tunnel for the
HTTP protocol. Stunnel is basically a TCP wrapper for a variety of protocols (HTTP,
POP, IMAP, etc). This is a great system that allows you to secure a tunnel over un-
secure protocols without changing the code or the configuration of either the client or
the server. I downloaded and installed the system. It worked as advertised. However I
encounter a ‘Design Problem’ that the system could not solve, and would also direct the
rest of my research.
The ‘Design Problem’:
 In most of our internal web pages, there are embedded links to internal
servers. The initial web page can be sent successfully to the client. However if the client
selects one of the embedded links; he would be directed to a server that does not exist
on the “public network”. One option that was discussed was to setup our external DNS
servers to refer back to the SSL Web Proxy server for all internal DNS names. This was
saved as a last resort option, and thankfully was never used.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 The next system that I reviewed was SQUID (http://www.squid-cache.org/)
One of the best proxy / reverse-proxy servers available. Although I could definitely use
the proxying / reverse-proxying features , it still did not help me with the “Design
Problem”. Getting somewhat frustrated, I then turned to one of my favorite research
portals: SANS Reading Room (http://www.sans.org/rr/). Here I found two articles that
gave me some good ideas and reference links, but still did not help with the problem of
“Rewriting the Embedded links”. The articles I reviewed were:
 1. “A Reverse Proxy Is A Proxy By Any Other Name”, Art Stricek 1/10/02
 http://www.sans.org/rr/web/reverse_proxy.php

 2. “Perimeter Defense-In-Depth: Using Reverse Proxies and other tools to
 protect our internal assets”, Lynda L. Morrison 2/18/02
 http://www.sans.org/rr/main/reverse_proxies.php

 The next step in my research brought me to Apache 1.3.x
(http://httpd.apache.org/) . The number one web server on the Internet is also an
excellent proxy / reverse-proxy server. The existence of DSOs (Dynamic Shared
Objects) makes it a flexible and highly customizable system. After reviewing the
‘mod_proxy’ and ‘mod_rewrite’ modules, I thought I had a solution. ‘Mod_rewrite’ is a
powerful module that allows rewriting of URLS based on regular expressions.
But as I found out while deep in the documentation, the Rewriting only occurs
on URLS and not the HTML Body.
 With many hours already spent on this project and still not close to solving
the ‘Rewriting the embedded links within the HTML page’ problem, I started looking at
the new features of Apache 2.x. One of the new features was almost too good to be
true: mod_ext_filter (http://httpd.apache.org/docs-2.0/mod/mod_ext_filter.html)
This was exactly what I needed to get the project finally going. I downloaded the
source for Apache 2 , configured it with the needed options, installed, and verified
all was running OK. Next I added my own custom routines to the mod_ext_filter
module. When I pointed my browser to the SSL Web Proxy Server, our internal
web server’s main web page was loaded with the embedded links Rewritten !
With this issue resolved, I then turned to the implementation of RSA SecurID
as our authentication method.

Note: A quick note on Testing Methods:

The majority of testing for these systems was performed from a client on our
private network. To compensate for this, I used two Sniffers (Packet Analyzers) to
monitor the network traffic. The paths monitored were:

1) Between the client workstation and the “SSL Web Proxy” server. I
 verified that all network traffic between the two devices was encrypted.
2) Between the “SSL Web Proxy” server and our main Internal web server.
 I verified that the only traffic going to/from the web server was from the
 “SSL Web Proxy” server and not the client workstation.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Note: Authentication methods other than RSA SecurID.
 The largest cost of implementing this system will be with using RSA
SecurID’s Authentication if you do not already have a RSA Authentication system in
place.
 Other Authentication methods besides RSA SecurID can be used with this
system: BASIC , Auth_DBM, Auth_DBI, Auth_LDAP, etc … Authenticating using
BASIC (plain text and password) is secure since all traffic will be passing through an
encrypted tunnel (SSL).

Problem with RSA SecurID and Apache 2.x
 The next part of this project was to add RSA’s SecurID as our Authentication
method. I reviewed the available options from RSA for Linux and Apache. I then
downloaded the RSA ACE/Agent 5.1 for Apache. Installation was done via a simple
./install script. However I found out that only Apache 1.3.x and Stronghold 4.0 (Red
Hat’s Commercial Apache Server) were supported, not Apache 2.x. After opening a
support ticket with RSA, I was informed that there were no plans at the moment to add
compatibility with Apache 2.x ! After that setback, I was forced back to Apache 1.3.x .

Final Research Path

After searching the mailing lists for Apache and later mod_perl, I came upon a
solution using the best tool on the Internet: Perl or specifically mod_perl: Perl embedded
within Apache. Working directly with the Apache API, it seems that one can insert code
at any of 11 stages of a HTTP transaction via a Handler Subroutine. I then researched
deeper into mod_perl and Apache Handlers by reviewing the books: Writing Apache
Modules with Perl and C, and The mod_perl Developers Cookbook. I was looking for
the stages at which I can intercept the Response Object before it is sent back to the
client. At this time, I could rewrite the embedded links. While researching these topic, I
came across a system that was developed back in December, 1999 at ATT’s Research
Lab: ABSENT http://www.research.att.com/projects/absent/) . This system had the
same goals of the system I need to develop. However there were parts of the system
that would not work in our environment. One of the team members of the project:
Christian Gilmore, transferred the majority of the Rewrite code into a perl module for
Apache, Apache::ProxyRewrite. From the documentation for the Apache::ProxyRewrite
module, I was certain that I finally had all the items needed to make this system work.
This system will be using custom handlers to perform the proxying and the rewriting.
 After installing the needed files (details in the following section). I pointed
my browser to the ‘SSL Web Proxy’ server and our main internal web page came up;
However the embedded links were not rewritten. After reviewing the code of
Apache::ProxyRewrite and changing the parse() subroutine to handle the newer HTML
tags; It worked! The next section details the Installation & Setup instructions of the SSL
Web Proxy Server using Apache 1.3.x, mod_perl, mod_ssl and RSA SecurID.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SECTION: (During) Developing the SSL Web Proxy System :

 Setting up the actual server was the first phase of this system. I chose Red Hat
7.3 as the operating system. During the installation, I chose the “Custom Installation”
and installed the minimal amount of applications possible. Later on during the final
phase of this implementation, I will remove additional programs. After the initial install, I
ran Red Hat’s Up2date agent and updated the needed applications as well as the
kernel. OpenSSL, version 0.9.6b-28, was installed as two RPMS, the core openssl-
0.9.6b-28 and the needed header files openssl-devel-0.9.6b-28.

Next I removed Apache 1.3.x that was installed during the installation by the
following commands:
 rpm –e apache-devel
 rpm –e --nodeps apache

Installation of Apache 1.3x, mod_perl , and mod_ssl
 Next I downloaded the source files and checksums to a temporary location. I
used the standard location /usr/src/redhat/SOURCES. To extract the source files, I
used the command: “tar –zxvf filename” which unzips and untars the files into a
subdirectory.

For our system, we will need the following source files:
 a). apache 1.3.27.tar.gz from http://httpd.apache.org/download.cgi
 source directory: => ../apache_1.3.27

 b). mod_ssl 2.8.12-1.3.27.tar.gz from http://www.modssl.org/
 source directory: => ../mod_ssl-2.8.12-1.3.27

 c) mod_perl mod_perl-1.0-current.tar.gz (choose mod_perl 1.0 Stable)

from http://perl.apache.org/download/source.html
 source directory => ../mod_perl-1.27

Each of the systems will be installed via the standard sequence:
 ./configure, make, make install.
with some adjustments. The order of installation is important. Installing both mod_perl
and mod_ssl will add the needed files into the Apache source directories and adjust
some lower level configure scripts.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1) First we install mod_ssl: Here is my configure script for mod_ssl:
 % cd ../mod_ssl-2.8.12-1.3.27
 % ./configure --with-apache=../apache_1.3.27 \

 --with-ssl=/usr/include/openssl
 % make
 % make install

2) Next we will install mod_perl. Here are my options and steps for mod_perl:
 % cd ../mod_perl-1.27
 % perl Makefile.PL APACHE_SRC=../apache_1.3.27/src NO_HTTPD=1 \
 USE_APACI=1 PREP_HTTPD=1 EVERYTHING=1
 % make
 % make install
 This creates /updates the src subdirectory in the Apache source directory.

3) We will now install Apache 1.3.x. You can change the layout of the directory and
file locations via the -- with-layout=x compile option. I prefer the default layout which
places everything under one directory tree: /usr/local/apache

Configure Script (configure compiler and make options)
This is my final configure script for Apache. After everything was working, I

went back and disabled all the modules that were not needed. This reduces the
footprint of Apache as well as enhances the security
% cd ../apache_1.3.27

 % ./configure --activate-module=src/modules/perl/libperl.a --enable-module=so \
--enable-module=ssl --disable-module=asis --disable-module=cgi --disable-module=imap \
--disable-module=status --disable-module=userdir --disable-module=actions \
--disable-module=autoindex --disable-module=negotiation --disable-module=alias \

% make
% make certificate

 This will generate the initial server key and a demo certificate needed for
SSL. You will be prompted for a PEM passphrase. Make sure you record this, it
will be needed elsewhere. Also you will be entering information needed for your
certificate. The template for this information is stored in the OpenSSL
configuration file (openssl.conf) usually located in /usr/share/ssl/.

% make install

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4) The final item to install is the Apache perl module, Apache::ProxyRewrite.
 You can download the source tarball from CPAN
 http://search.cpan.org/author/CGILMORE/Apache-ProxyRewrite-0.17/
 Then run the following commands:
 a) % tar –zxvf Apache-ProxyRewrite-0.17.tar.gz
 b) % cd Apache-ProxyRewrite-0.17
 c) % perl Makefile.PL
 d) % make
 e) % make install

 This will install the package file (ProxyRewrite.pm) into one of your Perl
 Library paths. To find all your Perl Library paths (from @INC), issue the
 command: perl –le ‘print join “\n”, @INC’ In my case, it was
 usr/lib/perl5/site_perl/5.6.1 and then in the Apache subdirectory.

 Note: You may be able to use the module without modifications. Review
 the man {documentation} page on setting the variables for your
 environment via the PerlSetVar. I had to change the parse()
 subroutine within the package to make it work.

Starting Apache 1.3x and the needed changes to httpd.conf

 Start apache via the command: ../bin/apachectl startssl . You will
need to enter the PEM passphrase that you setup earlier (Did you write it down?).If you
get any errors due to the associated modules not being loaded, comment out the
affected line(s) in the Apache configuration file (httpd.conf).
 The additions to your Apache configuration file (httpd.conf) to use the
ProxyRewrite module are:

PerlModule Apache::ProxyRewrite
 # Now within A Directory, Location or Virtual Host Block you can include for example:
<Location / >
 SetHandler perl-script
 PerlHandler Apache::ProxyRewrite
 PerlSetVar ProxyTo http://myinternal.com
 PerlSetVar ProxyAuthInfo “BASIC aGb2c3ewenQ6amF4szzmY3b=”
 PerlSetVar ProxyAuthRedirect On
 PerlSetVar ProxyRewrite “http://myinternal.com/ => http://pubserver.com”
</ Location >

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Using the example outlined in Figure 1 and with a modified ProxyRewrite
module (SSLProxy.pm), here are the additions to my httpd.conf file.

PerlModule Apache::SSLProxy

Main Web Server
<Location />
 SetHandler perl-script
 PerlHandler Apache::SSLProxy
 PerlSetVar ProxyTo http://www.mainwebserver.com
</ Location>

Web Application Server WAS1
<Location /srv1>
 SetHandler perl-script
 PerlHandler Apache::SSLProxy
 PerlSetVar ProxyTo http://www.was1.com
</ Location>

Web Application Server WAS2
<Location /srv2>
 SetHandler perl-script
 PerlHandler Apache::SSLProxy
 PerlSetVar ProxyTo http://www.was2.com
</ Location>

 I handled the “Embedded Links Rewriting” logic within the modified parse()
routine, so I did not need to include the PerlSetVar ProxyRewrite parameters.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Installing and Configuring RSA SecurID
 Before installing the RSA Webagent for Apache, you will need to setup
the agent host on the RSA ACE Server.
 1) Add a new Agent Host (type Unix), use the internal DNS name
 2) Change the Name Locking feature to match your environment
 Note: this must be the same for the ACE server and the RSA WebAgent
 3) Uncheck the “sent node secret” field
 4) Generate a configuration file (sdconf.rec) for the Agent Host
 5) Transfer this file to the SSL Web Proxy Server:
 make a directory /var/ace and put the file there.
 6) change ownership of the directory /var/ace to the user & group that
 Apache will run as: e.g. chown nobody:nobody /var/ace

 Next we will need to install the RSA WebAgent for Apache. You can
download it from their website (www.rsasecurity.com). You will need to
fill out a general form before downloading. The file that I used was
WebAgent5.1.1.tar.gz. Place this file in your source directory and unzip it into
its subdirectory. You will next run the installation script: ./install.
Note: You will need to change the script to take into account Apache 1.3.27.
There is a test in there for 1.3.26. Just add ‘ | 1.3.27’ to the condition.
Then follow the prompts and be sure that it found your /var/ace and Apache directories.
The installation makes a small change to your httpd.conf. It adds a few lines near
the bottom; The most important is the include statement.
 One problem that I encountered that cost me a few hours was an issue with the
handling of MIME types (PDFS, DOC , XLS …). When I selected a link that pointed to
one of these document types, a message box came up asking me to save with no
option to view. However when attempting to save, another error occurred. To solve this
issue, you will need to change a configuration setting via the command: config which is
located in the rsawebagent directory. Change the following setting from ‘enabled’ to
‘disabled’:
 Attempt to prevent Browser to cache protected pages [disabled]

 Now restart Apache.

 You can verify that the RSA SecurID Agent is working properly from
the command line.
 To verify the settings: % ../rsawebagent/acestatus
 To test Authentication: % ../rsawebagent/acetest
 Enter your user ID, PIN # + {current token passcode }

 To customize the Web Templates used by RSA or change any of the
other settings, review the documents (pdfs) supplied with the agent software.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SECTION: (After) Implementing the SSL Web Proxy Server:
 Before this system can be used by our remote users, I need to make
sure the system is as secure as possible. The overall goal of this system is to provide
secure access for our remote users. I do not want to introduce any new vulnerability to
our existing network infrastructure.

Securing the SSL Web Proxy Server:
 In addressing the issue of securing the SSL Web Proxy server, I took
a multi-layer approach. The inner layer of security will be the securing of the Apache
web server. The next layer of security will be the “hardening” of the Linux server that
runs the SSL Web Proxy. The final layer of security involves the network placement and
verification of the “upstream network security”.

Securing the Inner Layer: Apache
 If you used the compile options from above, then a lot of the work
has already been done. By disabling such modules as mod_cgi, mod_userdir, etc …
we have eliminated potential vulnerabilities which could be exploited. A lot of the
compromises come through CGI scripts. Since we enabled the use of DSO (Dynamic
Shared Objects) and to be 100 % certain, you will need to verify that your configuration
file does not contain any commands that could load the modules dynamically. For
example: Loadmodule cgi_module modules/mod_cgi.so …
 Addmodule mod_cgi.c
 You can check which modules have been compiled into Apache
by the command: httpd –l . To get the available Configuration Directives for your
compiled version of Apache, use the command: httpd –L.

 Also verify that the user/group defined in the Apache configuration file
has limited rights. When Apache starts, it will always run as root in order to setup the
environment and then spawn its child processes. It is the child processes that do all
the work of handling the HTTP transactions. The child processes run as the user/group
specified in the configuration file (httpd.conf). Following the principle of ‘Least Privilege’,
ensure the user/group specified in your configuration has limited permissions and no
shell.
 Changing the port(s) that the server will listen on will also help.
Since this server is functioning as a SSL proxy only. I changed the Listen Directive
to only use Port 443 (Standard Secure HTTP port). A simple port scan can verify
that indeed only that port is open.

 Another step is to make your Containers (Directory, Location, Files)
as restrictive as possible by including the following in each Container.
 Options none
 AllowOverride none

 To improve security of the Directory and File Hierarchy, make sure
that root is the owner of all directories except ./htdocs. Also change the mode
of all directories to 755. File modes within the directories should be set to 644,
except in ./cgi-bin (750), ./libexec (755), and the main executable httpd set to 511.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Securing the Next Layer: Hardening the Server
 In securing the server, I first examined the list of installed
programs by the command: % rpm –qa | sort > curprogs.lst . From this list,
I removed the unnecessary programs via the command: $ rpm –e ‘package’.
Note: This procedure will not find programs installed without the RPM utility.
 I next reviewed the increasingly popular mechanism for hardening
Linux servers: Bastille Linux (http://www.sans.org/projects/bastille_linux.htm).
This collection of perl scripts automates and takes a lot of the complexity
out of identifying and resolving the security issues associated with setting up
a Linux server. In addition to hardening your server, Bastille-Linux is also
a great educational tool. Detailed explanations are given during each step
of the ‘Hardening’ process. For the Bastille user interface, I chose the ncurses (text) and
not the X (Tk) GUI. I used the following files: perl-Curses-1.05-10.i386.rpm,
and Bastille-2.0.4-1.0.i386.rpm. During the Bastille-Linux Hardening scripts, I chose
to setup SysLog Forwarding to one of our centralized SysLog servers on the private
network.
 Once the Bastille scripts had completed, and the needed adjustments
performed on the server, I proceeded to adjust my internal Firewall (iptables/netfilter). I
took a conservative approach and denied all initially. I then trusted my l0 and eth0
(private) interfaces. Finally I enabled just TCP traffic on port 443 (HTTPS) on the eth1
(public) interface.
 The next step was to obtain the latest version of TripWire and install
it. I used the steps outlined in SANS’s GSEC Security Toolkit in setting up Tripwire.
See Chapter 3 on the steps and notes on setting up Tripwire. I then created the policy,
the initial checksum database, and performed some quick tests. Once I was satisfied
with the policy, I created a cron job to run it daily.
 The final step that I performed before activating the ‘public’ interface
was to change the Run Level of the server. Not only will this enhance security but
will also increase the available resources. I changed the Run Level from the common
default of 5 (multi-user / X Windows) to 3 (no X Windows).

Introducing the SSL Web Proxy Server to the Internet
 After securing the SSL Web Proxy Server and adjusting the firewall (iptables)
filters for the public interface, I then enabled the “public” interface (eth1). Next I
performed a quick verification that the system was working as planned. From a ‘public’
client, I entered the external DNS name of the SSL Web Proxy server into my browser:
The RSA SecurID Login page was displayed. After entering the needed RSA SecurID
parameters, our internal Intranet home page was loaded in the browser. Thus without
any changes to the client’s configuration and without loading any drivers, I was able to
access our company’s main internal web page from the Internet in a secure manner.
 Before spending the time to verify all of our Intranet’s web page links, I
proceeded to perform some security scans of the SSL Web Proxy Server using the
following tools:
 a) For Port Scans I used NMAP (www.insecure.org/nmap/)
 b) For Vulnerability Scans I used Nessus (www.nessus.org)
 These security scans were done on the server’s ‘public’ interface.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Still feeling somewhat paranoid, I next added two rules to our NIDS (network
Intrusion Detection System): Snort (www.snort.org). I created temporary rules to log all
traffic going to and from the SSL Web Proxy server. In addition, I set up a Sniffer to
monitor the traffic on the ‘private’ interface. The final item for monitoring that I set up
was SysLog Forwarding to our central syslog server located on our private network.

 From the results of the security scans, I had to make some minor adjustments to
the server and firewall rules. After the adjustments, I proceeded to perform more detail
testing of the SSL Web Proxy server. The majority of testing involved selecting all the
links on our Intranet web pages and modifying the parse() subroutine of the Apache perl
module to handle the new internal hosts. In addition to the high-level testing, I also
examined the network traffic between the ‘public client’ and the SSL Web Proxy server.
All traffic was as expected: encrypted.

 Now that the system is in place and being used by a subset of our remote users,
my attention turns to the operational tasks of the system as well as the next phase of
the system. Some of the day to day tasks that I foresee with this system are:
 1) Contacting remote users to check on any performance issues or areas where
 web pages are not working.
 2) Monitoring of Logs:
 a) Central Log Server
 b) Snort Logs/Alerts
 c) Tripwire Alerts
 3) Adding new internal hosts to the Rewriting/Proxy modules

 From time to time during the operation of this system, you may have
the need to modify the Server Key and/or Certificates. I have included some general
information concerning OpenSSL and Apache in Appendix A. Besides the important
files and where they reside, I have included useful commands to view and maintain
server keys and certificates.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Recent Upgrades Because of Vulnerabilities:
 One needs to keep abreast of any security alerts associated with
the components we have assembled here: Apache 1.3.x , mod_ssl , mod_perl and also
the core OS .
 For instance, (CAN-2003-0078, CAN-2003-0147 , CAN-2003-0131) were issued
within the last month. These are concern with the recently discovered OpenSSL
vulnerabilities. In addition Red Hat issued an alert a few weeks ago concerning
a vulnerability in the kernel with ptrace that could lead to elevated privileges.
RHSA-2003:098 - Security Advisory.
 Because of these recent security alerts, Red Hat has released a new version of
their kernel and patches for OpenSSL. In addition, there is an updated tarball for
mod_ssl (2.8.14-1.3.27).

Future Enhancements for SSL Web Proxy Server:
 The next stage of this system will include the ability for public clients to run
true Client-Server applications. A prime example in our environment is the thin client:
Citrix. Initial research on this has directed me to using JAVA and JSSE (Java Secure
Socket Extension). I believe Java will allow me to go deeper into the network protocol
layer to provide a secure tunnel. I should be able to continue to use Apache with Java ,
i.e. TomCat.
 Feel free to contact me to see how this stage is progressing.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

REFERENCES

Bibliography

- Network Security with OpenSSL , by John Viega, Matt Messier , and Pravir Chandra
 O’ Reilly & Associates , 1st Edition June 2002, ISBN: 059600270X

- Apache: The Definitive Guide, 3rd Edition, by Ben Laurie and Peter Laurie
 O’ Reilly & Associates , 3rd Edition December 2002, ISBN: 0596002033

- Writing Apache Modules with Perl and C , by Lincoln Stein and Doug MacEachern
 O’ Reilly & Associates , 1st Edition March 1999, ISBN: 156592567X

- mod_perl Developer’s Cookbook , by Geoffrey Young, Paul Lindner, and Randy Kobes
 Sams, 1st Edition January 2002, ISBN: 0672322404

- Perl & LWP, by Sean M. Burke
 O’ Reilly & Associates , 1st Edition June 2002, ISBN: 0596001789

- Building Secure Servers With Linux , by Michael D. Bauer
 O’ Reilly & Associates , 1st Edition October 2002, ISBN: 0596002173

- GSEC Security Essentials Toolkit , by Eric Cole, Mathew Newfield, John M. Millican
 SANS Press, 1st Edition March 2002, ISBN: 0789727749

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Online Resources

- Apache 1.3.x http://httpd.apache.org/docs/

 Mailing List Archive: http://marc.theaimsgroup.com/?l=apache-httpd-users

- Mod_SSL http://www.modssl.org/docs/2.8/
 http://www.modssl.org/docs/2.8/ssl_intro.html.

- Mod_Perl http://perl.apache.org/docs/1.0/guide/index.html
 http://modperl.com:9000/

Mailing List Archive:
http://marc.theaimsgroup.com/?l=apache-modperl&r=1&w=2#apache-modperl

- Articles from SANS Reading Room
 1. “A Reverse Proxy Is A Proxy By Any Other Name” , Art Stricek 1/10/02
 http://www.sans.org/rr/web/reverse_proxy.php

 2. “Perimeter Defense-In-Depth: Using Reverse Proxies and other tools to
 protect our internal assets”, Lynda L. Morrison 2/18/02
 http://www.sans.org/rr/main/reverse_proxies.php

- Bastille Linux: http://www.sans.org/projects/bastille_linux.htm

- Web Security: http://www.w3.org/Security/faq/
 http://www.apacheweek.com/security/

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Appendix A
Using OpenSSL to View and Maintain the Server Keys and Certificates

Files created after requesting a PassPhrase and entering your company’s information:
{Apache Directory}
 .../conf/ssl.key/server.key Your private key file
 .../conf/ssl.crt/server.crt Your X.509 certificate file
 .../conf/ssl.csr/server.csr The PEM encoded X.509 certificate-signing request
 file. It is this file to send to a CA to get a real server
 server certificate to replace “server.crt”
Some command commands:
To view the contents of a private key file in plain text (PassPhrase may be needed):
 % openssl rsa -noout -text -in <name>.key

To view the ingredients of a particular certificate file in plan text
 % openssl x509 -noout -text -in <name>.crt

To view the ingredients of a particular CSR file (Certificate Signed Request) in plan text
 % openssl req -noout -text -in <name>.csr

Creating Keys – Certificates – Self Assigning
Note: The following are excerpts from the mod_ssl (faq):

 (1) Create a RSA private key for your Apache server (will be Triple-DES encrypted
and PEM formatted):
$ openssl genrsa -des3 -out server.key 1024

 Remember PEM PassPhrase

 (2) Create a Certificate Signing Request (CSR) with the server RSA private key
 (output will be PEM formatted):

$ openssl req -new -key server.key -out server.csr
 {Enter required / optional info as outlined in openssl.conf: org name, FQDN …
 It is important that the FQDN matches your server name}

 (3) To be your own CA (Certificate Authority)

(a) $ openssl genrsa -des3 -out ca.key 1024 (Remember PEM PassPhase)
(b) Create a self-signed CA Certificate (X509 structure) with the RSA key of the
 CA (output will be PEM formatted):

 $ openssl req -new -x509 -days 365 -key ca.key -out ca.crt
 Enter info for your CA (MyCertificateAuthority)
 (c) Sign via script within mod_ssl distribution pkg.contrib/ {sign.sh}
 ./sign.sh server.csr This creates a server.crt file

