
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Linux Process Containment – A practical look at chroot and User Mode
Linux

By Paul Lessard

0. Abstract

Process containment has been used for quite a long time in the computing world
for the use of testing beta software and increasing the security of a process.
Containing a process, which is commonly known as “jailing” a process, removes
a process from the full system and stops activity inside of the container from
affecting anything outside the container. There are several jailing tools available,
but this paper will discuss two tools available as part of all major Linux
distributions: chroot, and User-mode Linux.

This document will explore some of the general ideas of how process
containment is performed with chroot and User-mode Linux, and how to help
ensure that a successful attack on a jailed process does not affect the main
system. The benefits of each tool is contrasted, and in conclusion is shown that
neither tool is best for containing all processes for all environments individually,
but rather the tools can complement each other to add even more security.

1. Introduction

The idea of jailing a process was originally conceived for beta testing applications
and securing processes. Jailing a process ideally places the desired process or
processes in a self-sufficient environment that cannot reach the main system
outside of the jail. In general this translates to not allowing the contained process
to utilized resources outside of the container such as files, memory space,
devices, and such. Jailing works equally well for possibly unstable process and
increasing security to a system as a whole, but the focus of this paper will be on
the benefit of increased security. The idea is that if a program, or even a file
system, is jailed and cannot access system resources outside of the jail, then the
damage that is possible if someone does break into this container is further
reduced. Two tools that are capable of jailing resources are chroot and User-
mode Linux. Specifically, this document will explore the basic setup of the tools,
discuss how jailing can be performed, and what documentation is available for
each tool. After a brief discussion on how each tool is used, a set of methods for
adding security to the tool will follow. Finally, relative comparisons of each tool’s
benefits with respect to the other tool will be made. The ending result will show
that for some applications one tool is preferential, but for other applications the
second tool is more fitted.

If a company simply must run an insecure service such as ftpd, it is opening itself
attacks on that service. One method to limit the damage that can be caused is to
limit the resources available to the attacker when system access is obtained.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Proper jailing can completely block off access to important system files such as
shadow, passwd, the main system's log files, and properties and configuration
files for other services, which may contain useful data and in some cases
usernames and passwords. In addition, useful commands such as su, sudo,
telnet, and even ping can be completely absent in the jail even though these fully
function in the main system. By limiting these resources, even when a
successful attack is made the attacker, may be unable to take control of the
machine or even fully cover his or her tracks.

Perhaps the reader at this point is considering the use of containment as a way
of avoiding properly setting filesystem permissions and service permissions.
This should not be a consideration as there is no excuse for not setting up
permissions in a least privileges fashion. Rather, the method of containment
gives yet another layer of protection with respect to defense in depth. Even
inside of the jail, a policy of least privileges should be used, and the contained
service should not be run as root where avoidable. It must always be
remembered that the container itself is a piece of software that is susceptible to
attacks that can allow the hacker to break free of containment. However, if the
hacker is not very determined, he or she may find the system to be too difficult to
take and abandon it in search of a weaker target.

One of the tools that can be used to jail a process is the chroot (Change Root)
system command. This command changes the root filesystem to a target
directory and runs a command. By doing this one can essentially create a barrier
to the real root filesystem and therefore limit the damage that can be done to the
content of the new filesystem. This particular method of containment is
commonly referred to as “chroot jailing” which is available in major Linux
distributions and commercial Unix systems [1]. There is quite an abundance of
information on this topic, including scripts and advice on what can, should, and
should not be jailed. One of the main reasons that chroot still heavily discussed
is because system administrators have complete control as to what services are
available within the container down to the finest detail. Chroot environments are
not indestructible, but provided proper precautions are taken the “chroot jail” can
be quite a formidable advisory.

The other tool that will be discussed in this document is User-mode Linux, which
will be part of future Linux distributions that run on 2.5.34 kernel or greater [2].
This operates as a sort of virtual machine on top of the already running Linux
kernel. Similar to chroot, User-mode Linux can be assigned resources as they
are needed, and can even run it's own networking devices. Unlike chroot
however, it does not have to be started as the root user, which is a significant
security bonus over chroot [3].

Throughout this document, remember that both of these tools run on major
distributions of Linux and are supported to some degree on most Unix based
operating systems. However, for the sake of simplicity, and due to time and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

space constraints, Linux RedHat 7.3 is the assumed Linux platform. If any
general knowledge about differences between RedHat and other distributions is
known it will be stated, but not in great detail, as the general concept should still
be applicable.

2. Chroot Jailing Basics

Chroot jailing can be an incredibly tedious and painful experience. There are
tools available to lessen the pain, but these generally work for a few specific
services such as SSH, FTP, and Apache. In order to be able to jail any process
it is still important to know the basics. Knowing the basics will give a greater
flexibility when creating a jail, and give a great deal of respect for the time and
effort that people have put into creating tools to make this job easier.

One of the biggest benefits of chroot jailing is that the administrator can define
exactly what he/she wants to have available inside of the jail. This is also,
unfortunately, one of the biggest banes to using chroot jails. The reason they are
so tedious is due to fact that we tend to take for granted all of the shared
libraries, configuration files, and devices that are automatically setup for us when
we install Linux. When a jail is created, access to all of these resources is cut
off, so these resources need to be manually included.

So how does one know what resources a service uses while it runs? The
command ldd can be used to discover what libraries are need to load and launch
a particular service, but what about the dynamically bound ones [4]? A simple
method of dynamically bound resource discovery is to copy the desired service
or command into the jail, chroot into the jail directory, and run the desired
program with strace and pipe the output to a file [5]. Run the command until it
crashes, completes, or until you have tested a few pieces of functionality, then
check the output of strace. If you are missing a resource, the strace output will
have errors indicating which files or devices were attempted to be used but
failed. After identifying a missing resource, you simply add it to the jail. Sounds
simple right?

Unfortunately strace resource discovery is a big reason why making chroot jails
is so tedious. You may run strace once, discover a missing shared library, add it
to the jail, then run it again to find that five libraries and two configuration files are
missing. Then, after adding the required libraries, the new libraries require even
more shared libraries and some system devices.

Very quickly you start to realize that the more complex the command or service
the longer the list of needed resources will be. In addition, strace itself requires a
certain set a basic libraries and devices. Luckily, there are a standard set of
libraries and devices that can be added to fully support most basic commands
like strace, ls, and bash. The article, “Go Directly to Jail” featured in Linux
Magazine in December 2002 discusses this basic list very well. The script found

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

in Appendix A was based off the script found in this article. Though it is similar, it
was cleaned up and separated out into commented blocks and some more
generic pieces were added to it. Running it will create a jail in the current
directory with the name “jail_” with a random number attached to the end. It will
copy all the basic shared libraries and some simple commands such as ls, and
bash.

If you do run the script, you need only run the command chroot /path/to/my/jail/
bash as the user root to enter the jail cell. Once inside the jail you can browse
around as you would with any other filesystem. To exit the jail, simply type the
command exit. This script was based on the authors Linux RedHat 7.3
installation so your mileage may vary when running this script on other
distributions or versions.

While perusing the script you will notice that commands such as v i, less, and
more, are not copied into the jail and are therefore not available in the jail.
Depending on what service you are trying to jail, you may not need these
commands. Not having editors or viewers available may be irritating to you while
you configure the jail, but it would also be very irritating to a hacker as well. In
order for a hacker to damage anything, he or she must have the tools available to
do the damage. It maybe trivial to upload some of these tools into the jail once a
hacker has broken in, but why make it easy? Remember, every second that a
hacker spends floundering around trying to get the simplest commands working
is extra time that you have to discover that your system has been compromised.

So a basic jail is not to hard to put together, but then a basic jail is not very
useful. In order to add useful functionality to your jail you need to add more
complex programs, which means that strace becomes invaluable for finding
those dynamically linked resources.

Reading a strace is not always very easy, as you will often detect false positives
in your strace. These false positives are often files that a service looks for in
order to determine how it should be run or what options are available. For
example, if you attempt to jail the daemon sshd after adding some of the required
libraries and devices you may quickly see “No such file or directory” errors for the
directory /usr/lib/mmx. This error could be caused by a multitude of reasons, and
is most likely because your processor does not support MMX or because you do
not have the MMX libraries installed. This particular error is not fatal and simply
means that the service will continue without using MMX.

To discern if an error is a false positive, you generally have to use some common
sense. If the error is for a resource that does not even exist outside of the jail,
then it is probably nothing you need. This assumption is of course based on the
program that you are trying to jail actually working outside the jail. It is generally
a good idea to test the program’s functionality outside of a jail before trying to jail
it, or you might spend hours debugging your jail to find out that a library is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

corrupt, or that you are missing a necessary resource outside of the jail.

The normal output from a strace can be lengthy to go through, but as an
example, Figure 1 shows some brief snippets from running sshd with strace when
all the resources were not available. The errors are fairly easy to identify, as they
all follow the same format. Errors will generally return with the error ENOENT,
which stands for “No such file or directory” [5]. Once you have identified a false
positive you should note it, as you will be seeing it several times throughout the
jailing process. All of the errors in Figure 1 are “No such file or directory” errors,
but the first set towards the beginning of the strace were found to be false
positives on the machine it was run on. Later on in the strace, files like
/etc/host.conf show up which do exist outside the jail and therefore are most likely
needed. With some additional common sense you could expect sshd to need
host.conf since it is a networking application, so you just need to add this resource
to your jail.

After getting the program up and stable, make sure to test as many of the
application's features and options as possible to make sure nothing was missed.
Just because sshd starts up without dying does not mean that everything is in
place. Make sure you can log in using your username and password, as well as
using a key. Make sure you can scp files without crashing the daemon. If you
miss something, you can be assured that an attacker will find it, and try to take
advantage of it.

towards the beginning of the strace...

open("/lib/i686/mmx/libpam.so.0", O_RDONLY) = -1 ENOENT (No such file or directory)
stat64("/lib/i686/mmx", 0xbfffed20) = -1 ENOENT (No such file or directory)
open("/lib/i686/libpam.so.0", O_RDONLY) = -1 ENOENT (No such file or directory)
stat64("/lib/i686", 0xbfffed20) = -1 ENOENT (No such file or directory)
open("/lib/mmx/libpam.so.0", O_RDONLY) = -1 ENOENT (No such file or directory)
stat64("/lib/mmx", 0xbfffed20) = -1 ENOENT (No such file or directory)
open("/lib/libpam.so.0", O_RDONLY) = 3

several system calls later...

gettimeofday({1043819874, 821194}, NULL) = 0
getpid() = 16280
open("/etc/resolv.conf", O_RDONLY) = -1 ENOENT (No such file or directory)
uname({sys="Linux", node="webserver", ...}) = 0
open("/etc/host.conf", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/etc/hosts", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/var/nis/NIS_COLD_START", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/lib/libnss_dns.so.2", O_RDONLY) = -1 ENOENT (No such file or directory)
open("/usr/lib/libnss_dns.so.2", O_RDONLY) = -1 ENOENT (No such file or directory)
write(2, "Could not reverse map address 19"..., 46) = 46
write(2, "debug1: PAM setting rhost to \"19"..., 46) = 46

strace continues on...
Figure 1 - Snippet from an strace of sshd

3. Securing a Chroot Jail

There are a few things to consider when using chroot jails. Though it can be
difficult to get out of the jail, it is by no means impossible. Most known exploits

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

involve having root privileges, but there are ways of affecting the system outside
the jail without root access if careful consideration has not been taken when
constructing it.

First, when building a jail do you need all of the contents of configuration files?
Just blindly adding resources to your jail as the strace shows them could be just
as dangerous as not having the jailed program to begin with. These files may
contain information that is not only unnecessary in the jail, but can also lead to
system compromise if a hacker were to obtain the information. For instance, you
may need to include the file /etc/passwd in your jail, which contains the list of all
users on the system. Though you may not include the /etc/shadow file in your jail,
handing a hacker the list of user id's on your system is not wise. A list of users
can tell a hacker a lot about a system such as what services are running on the
system, and thus possibly what exploits the system has. When including files
like /etc/passwd, make sure you remove information that is not needed in the jail.
In this case, remove all user entries that are not needed in the jail.

Specific attention should be paid to the /etc/passwd file because it contains user to
uid mappings. If a hacker gains write access to the /etc/passwd file within the jail,
all the user mappings could be changed to map to uid zero which would grant
root access to all users within the jail next time the jail is started up [6].

Just as in a normal system administration, do not run anything as root unless the
program running requires root access to function. There are several sites
available on the internet that contain exploits for breaking out of jail, provided you
have root access, and some of them, like BPFH.net, even include source code
[7]. Though these exploits maybe patched in some versions of chroot, other
vulnerabilities may very well appear. Whether or not the version of chroot is
vulnerable, it is still good practice not to run any process as root unless you have
to. If the hacker cannot obtain root access, the damage to your jail maybe far
reduced which in turn quickens most steps of incident handling.

When considering file permissions in the jail, keep in mind that the normal
permissions for a directory or file are based on dozens of applications that need
to run on the system, as well as allowing for users to bring up directory listings. If
the jail doesn't need a wide-open tmp directory like a full system does, then
restrict the permissions so that a hacker cannot take advantage of this space.
Write access should be specifically prohibited for most files, but also make sure
that root owns all files [6]. Since you should be running the jailed application as a
user other than root (where possible), this will prevent users from modifying files
or changing the permissions on them.

In most cases you need to be root in order to run chroot, so once you are inside
of the jail you should “give up” root for a less privileged id. In order to do this one
of the recommended methods is to run the chroot command using a “wrapper”
such as the one available at the Linux Magazine site [8]. This program takes in

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

parameters such as the directory you will chroot into, the user to become after
entering the jail, and what command to run after becoming the user. After
entering the chroot jail, it “gives up” root access and changes to the specified
user provided that user exists in the jail.

Do not include any hard links out of the jail. Hard links lead directly out of the jail
to the main system, which may lead to a vulnerability [6]. Also, when creating
your jail keep in mind that symbolic links do not work with respect to linking
outside a jail. This may not seem the case as the link will work for the system
admin, but it will not work for the jailed program [6].

Finally, though this seems somewhat picky, when you actually run the jail for
production use make sure you change your current directory into the jail before
running the chroot jail. Some implementations of chroot do not change the
current directory into the jail when the chroot is initialized, which helps a hacker
utilize the root user exploits [7].

4. Chroot Tools

Now that you know the grueling details of how to put a jail together and the
basics of securing one, this section will briefly cover some of the tools available
to make your job easier. There are two main types of tools available for
automating jail setup, one of them being an actual open source project and the
other being a general category of tools.

There is an open source project called, “Jail Chroot Project” which greatly
reduces setup time for several basic and even more advanced jails [9]. This
project is a set of programs and scripts used to setup and configure a jail. It
features the ability to setup several fully functional server jails such as telnetd,
ftpd, and sshd, and runs on several Unix based operating systems including all
major Linux distributions.

The other tool, or rather the other set of tools, is less packaged and easy to work
with. These tools are the scripts & programs written and developed for
performing more specific tasks on a jail. This category includes scripts found on
the Internet from various people, and individual Sourceforge.net projects.
Though this seems very general and possibly not very useful, consider this: I
typed “apache jail chroot linux” into the internet search engine
http://www.google.com and the third result was called “Apache in a chroot jail”
[10, 11]. This site contained a break down of how to put apache into a jail, and
included specific list of libraries and resources needed within the jail. This very
same technique could be used to find people who have made lists of resources,
or maybe even scripts, to jail many common programs.

Sourceforge.net is another great resource for open source projects [12]. A great
deal of the projects found at this site are focused toward Unix based systems,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

and all projects are open source. By being open source, you can have a little
more trust in projects you find there, as all code is under public scrutiny.
However, do not take this to mean that malicious code cannot exist in the open
source community; it is just harder for it to exist. To find chroot projects at
Sourceforge.net, go to http://sourceforge.net and use their search engine to
search for the word “chroot”.

A good tip to remember is that for what you want to jail, someone will likely have
already done it. Unless you are just curious as to how tedious it is to jail
something, it is recommended that you first do a couple searches on the Internet
for jailing the desired application.

Before running any scripts or projects that you find on the Internet, you should
analyze the tool or tools before running them on a production system. Anything
you get from the Internet might not be as benign as the author would lead you to
believe. A hacker might have written the script you just downloaded in hopes
that you run it on a productions system and compromise yourself. Scripts and
projects that are licensed as open source may be more trust since they are open
to public scrutiny, but that does not mean they do not have bugs or security holes
in them. Several projects make use of md5sums which allows you to validate the
software’s integrity. This can help prevent outsiders from tampering with the
software while in transit to your machine. If a software package utilizes
md5sums you should always check the validity of the package before installing it.
Even with md5sums, the most important lesson here is always run unknown
code on a test system before running it on a production system.

5. User-mode Linux Basics

User-mode Linux commonly referred to as UML in the open source community is
somewhat like a virtual machine that can run without special admin rights. In
fact, it enables you boot a full Linux kernel inside of a user space [3]. For those
who have heard of Vmware or Plex86, UML is very similar but can only serve
and run on Linux kernels. The differences between UML and virtual machines
such as VMware and Plex86 could probably be covered in its own paper, and
even then may not be of much interest to the security community.
Consequentially, these differences will not be covered in this paper. One basic
and important difference will be noted though: UML has now been merged into
the 2.5.34 Linux development kernel [2].

With UML now a part of the main kernel, it will be available in future distributions
of Linux making it just as readily available as chroot. For now you can download
it from the “User-mode Linux Kernel Home Page” [14]. To setup UML on RedHat
with a kernel of 2.3 or higher, simply download the RPM and install it. If you are
running a kernel less than 2.3, you should really upgrade your kernel, but there is
a patch available. Also, if you are not running RedHat, the source is available
and has been compiled and tested on all Linux distributions. If you do need to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

compile the source, then you will have to follow the instructions as documented
on the User-mode Linux Kernel site [15].

After installing UML, you only need a file system to boot in order to get started.
Several pre-built filesystems are available at the “Downloading it” section of the
UML Home Page, so you have a quick place to start [14]. If a pre-built system
does not suite your needs there is a great deal of documentation on how to build
your own filesystem under the “Creating your own filesystems” section of the
UML Home Page [13].

Assuming you chose to download a pre-built filesystem, check the md5sum to
validate the filesystem, decompress it, and create a symbolic link to it called
root_fs. Then run the command Linux in the same directory as the symbolic link.
This will boot the filesystem and bring you to a login prompt. On the pre-built
filesystem that was tested for this paper, the root account's starting password is
root.

An important note is that you do not have to run the virtual machine as the root
user [3]. This means that if a hacker broke into a service running on your virtual
machine, then later broke out of the virtual machine into the main system, the
hacker would only have the privileges available to the user that started the virtual
machine.

Though there is some setup needed to utilize important functionality such as
networking, unlike chroot this is a very well documented and standard process.
Due to the amount of tutorials and documentation available this will not be
covered in this paper and will be left up to the reader to research. There are
several tutorials on how to setup networking, honeypots, X-Windows, etc. on the
UML Home Page under “Tutorials” on the navigation bar [16].

6. Securing a User-Mode Linux kernel

Securing a User-Mode Linux kernel is really just like securing a full production
system. You should use your experience as a system administrator to guide you
through securing the virtual machine, but this section will offer a few pieces of
advise.

Turn off and remove anything that is not necessary. If you aren't going to run a
telnet server from your virtual machine, disable it and remove it so an intruder
cannot turn it back on. To find unnecessary services, run chkconfig –list to see
what is started at different run levels for the system. Identify services that will not
be used and make sure they are turned off for all run levels. If you are unsure
whether the service is necessary or not, make a backup copy of the virtual
machine, turn off the service, and see if anything breaks. If something you need
breaks, then turn the service back on for the desired run levels. If nothing breaks
then you do not need it. Additionally look for services that may be bootstrapped

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

to other services such as xinetd. Once you have turned off the unnecessary
services you should remove them. On an RPM based system you can remove a
service or software package by typing the command rpm -e package_name. If you
do not know the name of the package you need to remove, use rpm -qa|more to
look through the package names. To query a package to see what software it
contains use rpm -qi to get a description of the package's contents.

Practice the philosophy of least privileges and remove any unnecessary rights
from all users. Reduce file permissions where possible, and make root the
owner of files that users should not be touching.

Run services and programs as a non-root user where possible. A User-Mode
Linux virtual machine is not indestructible, but there is more difficulty breaking out
of a UML jail if an attacker cannot gain root access.

To really secure a service, run UML as a non-root user in a chroot jail. UML is
easy to chroot as there is a program available from the User-mode Linux Kernel
site called “jail_uml” [14]. This program runs your virtual machine in a jail so
there is no reason not to chroot jail your virtual machine. The truly paranoid
system administrator can run a jailed program inside of a chroot jail, which is
inside a UML virtual machine, which is inside a chroot jail, and all programs run
as non-root users. This may seem quite paranoid but it really depends on what
you are jailing. The bottom line is that there is no reason not to combine tools
together to increase security. In fact, this is what defense in depth is really
about.

Finally, UML has the ability to limit the amount of RAM that a virtual machine can
use [18]. Implementing a RAM limit can decrease the number of possible DoS
attacks by not allowing a hacker to run a script that consumes all the memory on
the machine.

7. Chroot Benefits over User-mode Linux

Chroot has a limited number of benefits over UML. The main benefit is that it is a
tried, tested, and true way of securing an application, without a huge
performance overhead. Chroot has been around for a long time, and it is not
going away anytime soon. Some applications such as Postfix are setup to be run
in a chroot jail [17].

Due to the age of chroot, system administrators can have a good deal of
confidence that if they jail an application correctly, there is a very limited chance
for complete system compromise. Its age has also lead to several case studies
and tools available to make the job easier to do [1, 9, 10, 17]. Due to the years
of public scrutiny, system administrators can have greater confidence in the
integrity of this software.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Some applications have gone to lengths to be chroot jail “compatible”. These
programs run as a contained package that is easily separated from the main
system. This by far eases the workload for jailing the process.

The performance hit induced by running User-mode Linux may not be acceptable
for some systems. If an application is jail compatible, why induce the overhead
of running a full Linux virtual machine? The performance hit from running a
chroot jail is minimal, allowing you to run several jailed programs on one system.
The overhead from UML just maybe too much for older systems or very CPU
intensive applications.

8. User-mode Linux Benefits over chroot

There are several benefits that UML offers, some of which are not as obvious as
others. Though there is an overhead to running a UML virtual machine, it is a full
virtual machine and therefore can be relatively easy to jail programs. The
documentation for setting up a UML filesystem is fairly good. UML filesystems
are also generally contained within one single file on the host system. This
single file offers a huge number of benefits that may not be inherently obvious.
Though UML does impose an overhead, this overhead can be limited by
specifying the amount of RAM the virtual machine is allowed to consume.
Finally, UML itself is chroot jail compatible, so the virtual machine can be run
inside a jail for even more security with very minimal additional overhead.

Chroot is a great tool for jailing small or jail compatible applications.
Unfortunately, the larger and more complex the application, the higher the
probability that the jailed application will be very difficult to setup and maintain. If
a jail is too difficult to maintain, something might be missed which might decrease
the security of the application as a whole. This problem is not an issue with
User-mode Linux since it is a full Linux system onto itself. Jailing an application
becomes much easier, as there is a great deal of documentation on how to get
basic functionality working. After the basics are in place, adding and maintaining
a complex application is just as easy as adding it to the host system. This also
means you do not have to play with tools such as strace and ldd to create a
working jailed process.

There is a great deal of documentation on creating your own virtual system, or if
you trust the User-mode Linux developers, there are several existing virtual
system available on the User-mode Linux Kernel website [13, 14]. The tutorials
tell you how to get the basics such as X-Windows, networking, and even
Honeypots working.

A major benefit is that virtual system can be entirely contained in one file, which
makes backup and restore of the virtual system very easy. If someone attacks
and even damages your system, incident containment and eradication time can
be far reduced. Simply turn off the virtual system, make a copy of the file

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

containing the filesystem, then (if desired) restore from backup a copy of the file
from before the system was compromised. The eradication step can be begin in
a lab within minutes of the containment phase. Multiple copies of the same
filesystem can easily be given to several incident handlers to check concurrently
instead of everyone crowding around one console. In addition, all the incident
handlers can analyze several copies of the compromised system on one physical
machine due to UML's ability to run in the user space. Once the security hole is
identified, it can be patched on the restored copy of the virtual machine and the
recovery phase can begin.

For system setup and initial research, the single file filesystem also means you
can experiment with a copy of the virtual system without worrying that you will
damage the system and have to re-install. Wonder if the system will be able to
function properly without a device or library but worried you will not be able to
boot up if you remove it? Simply make the desired change on a copy and see
what happens. If things blow up in your face, delete the copy and go back to
your pre-change copy.

The single file filesystem is also very useful for applying patches as well. Most
company policies require that you test a security patch on a test system before
applying it to production. The problem with testing patches is sometimes they
can be complex. They are not always as easy as going to a site, downloading a
binary and running a patch command. When using a virtual system, you can
repeatedly apply the patch to a pre-patched system. If your production servers
are running UML virtual machines, you can obtain a copy of the production
filesystem and test the patch in a lab. Having done these repeated patches and
patching production, you will be more confident that you will apply the patch
correctly to the production systems.

Once you have achieved a secure virtual machine, you can easily deploy it to
multiple physical machines. If you have a standard way of setting up a web
server within your infrastructure, you can setup an initial server with your default
settings, then deploy and tweak as necessary. This method gives you a strong
base to start on, and avoids missing those small but important steps of setting up
security.

UML’s ability to limit RAM usage is not just a security bonus. It is useful for
limiting a process from consuming all of your systems resources in the case of
memory leaks [18].

A final noteworthy benefit of UML is that it is chroot jail compatible. As previously
discussed the utilities tarball available at the download site for UML comes with a
program called “jail_uml” which runs your virtual machine within a chroot jail.
There does not have to be a choice between chroot and UML, as they run well
together. If you can afford the overhead of running UML, you really should run it
in a chroot jail.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

9. Conclusion

The use of jailing processes for security has been used for quite some time in the
industry, but has in the past been quite a lot of work. With new tools such as the
Jail Chroot Project and User-Mode Linux the job has become much easier for the
system administrator. By use of jailing jails, a new level of defense in depth can
be achieved with little setup by the system administrator. No one tool will ever be
the catch all for security, but jailing an application may drastically slow or irritate
an attacker to the point of leaving your server in search of an easier target.

There is no rule that works 100% of the time for choosing chroot over UML, but
there are some basic suggestions. If a program is simple, or is chroot jail
compatible, then the application should be run in a chroot jail. If it is complex and
the overhead is not an issue, then a UML virtual machine is probably the better
candidate. If the application is to be run in UML, you should run UML within a
chroot jail for optimal security. Jailing all processes on a machine would be very
difficult to maintain and would most likely cause too much overhead (whether
system overhead, or system administration overhead) so jail only the most
security sensitive applications that you feel have the highest probability of being
attacked.

10. References

1.Friedl, Steve. “Go Directly to Jail”. Dec 2002. URL: http://www.linux-
mag.com/2002-12/chroot_01.html
(accessed on March 23, 2003)

2.Nimrod. “Linux: UML Merged Into 2.5”. 13 Sept 2002. URL:
”http://kerneltrap.org/node.php?id=409
(accessed on March 23, 2003)

3.LeBlanc, Dee-Ann. “User-mode Linux: Coming to a Kernel Near You, Part
1”. URL: http://www.linuxplanet.com/linuxplanet/tutorials/4712/1/
(accessed on March 23, 2003)

4.Friedl, Steve. “Go Directly to Jail”. Dec 2002. URL: http://www.linux-
mag.com/2002-12/chroot_02.html
(accessed on March 23, 2003)

5.Friedl, Steve. “Go Directly to Jail”. Dec 2002. URL: http://www.linux-
mag.com/2002-12/chroot_03.html
(accessed on March 23, 2003)

6.Friedl, Steve. “Best Practices for UNIX chroot() Operations”. 18 Jan 2001.
URL: http://www.unixwiz.net/techtips/chroot-practices.html
(accessed on March 23, 2003)

7.Simon. “How to break out of a chroot() jail”. 12 May 2002. URL:
http://www.bpfh.net/simes/computing/chroot-break.html
(accessed on March 23, 2003)

8.Friedl, Steve. “runchroot.c”. Dec 2002. URL:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

http://www.linuxmagazine.com/downloads/2002-12/jail/runchroot.c
(accessed on March 23, 2003)

9.Casillas, Juan. “Jail Chroot Project”. 29 Oct 2001. URL:
http://www.gsyc.inf.uc3m.es/~assman/jail/index.html
(accessed on March 23, 2003)

10.Mourani, Gerhard. “Chapter 29. Software – Network Server, web/Apache”.
URL: http://en.tldp.org/LDP/solrhe/Securing-Optimizing-Linux-RH-Edition-
v1.3/chap29sec254.html
(accessed on March 23, 2003)

11.“Google”, URL: www.google.com
(accessed on March 23, 2003)

12.“Sourceforge.net”. URL: http://sourceforge.net
(accessed on March 23, 2003)

13.Dike, Jeff. “Creating your own filesystems”. URL: http://user-mode-
linux.sourceforge.net/fs_making.html
(accessed on March 23, 2003)

14.Dike, Jeff. “Downloads”. URL: http://user-mode-linux.sourceforge.net/dl-
sf.html
(accessed on March 23, 2003)

15.Dike, Jeff. “Compiling the kernel and modules”. URL: http://user-mode-
linux.sourceforge.net/compile.html
(accessed on March 23, 2003)

16.Dike, Jeff. “Site Home Page”. URL: http://user-mode-linux.sourceforge.net
(accessed on March 23, 2003)

17.Borland, Matt. “Locking Down Your Daemons: An Overview of 'chroot
jailing' services in Linux”. 20 May 2001. URL:
http://www.sans.org/rr/linux/daemons.php
(accessed on March 23, 2003)

18.LeBlanc, Dee-Ann. “User-mode Linux: Coming to a Kernel Near You, Part
1”. URL: http://www.linuxplanet.com/linuxplanet/tutorials/4712/2/
(accessed on March 23, 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix A

A Sample make jail script. It was succe ssfully tested on a Linux RedHat 7.3 system, so
you mileage may vary depending on what flavor of Linux you test this on. Also, though the
principle of this script is applicable to most Unix based systems, I can almost guarantee it
will not function without major tweaking in a non-Linux system.

M ake the Jail direc tor y
JAIL_N AME=j ail_$RAND OM
mkdir $JAIL_NAM E
if [! -e $JAIL_N AME]
then
echo "C ould not cr eate the jail direc tor y."
exit 1
fi
cd $JAIL_N AME

Create direc tor y structur e
mkdir bi n dev etc li b usr tmp
mkdir usr /bi n usr/sbin
mknod dev/null c 1 3
mknod dev/zero c 1 5

C opy Basic li braries
cp /li b/l d-linux.so.2 lib
cp /li b/libc.so.6 lib
cp /li b/libnsl.so.1 lib
cp /li b/libnss_nispl us.so.2 lib
cp /li b/libter mcap.so.2 lib
cp /li b/libcr ypto.so.2 lib
cp /li b/libdl.so.2 lib
cp /li b/libnss_fil es.so.2 lib
cp /li b/libpam.so.0 lib
cp /li b/libutil.so.1 lib

C opy some basic commands
cp /bi n/bash bin
cp /bi n/ls bin
cp /usr/bin/str ace usr/bi n

Create etc entri es
echo "r oot:x:0:0:r oot:/ :/bin/bash"> etc /passwd
echo "r oot:x:0:r oot">etc/group
echo " passwd: files nisplus
shadow: files nisplus
group: files nisplus
hos ts: fil es nisplus dns
networ ks : files
protocols: files ni spl us
ser vices: files nispl us
publickey: nisplus">etc/nsswitch.conf
cp /etc/localti me etc

C hange permissions
#First bol t down the per missi ons
chmod -R 000 *
chown -R r oot *
chgrp -R r oot *
#Now gradually open the permissions
chmod -R 550 bi n
chmod -R 550 usr /bi n
chmod -R 550 usr /sbi n
chmod -R 770 tmp
chmod -R 440 etc
chmod -R 550 lib

