
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Secure OS Environments for Linux

By
Pedro A. Luz-Romero

April 14, 2003

GIAC Security Essentials Certification (GSEC)
Practical Assignment – Version 1.4b
Option 1 – Research on Topics in Information Security

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 2

 SANS Institute 2003. As part of GIAC practical repository. Author retains full rights.

Abstract
In this paper I make a review of the main set of tools and resources available
for Linux system administrators willing to build an operating system with
enhanced security features that allow applications to run securely in a network
accessible from the Internet. I have summarized the state of the art in this
subject by offering an overview of the tools, compiling the most useful
references and classifying them accordingly. The ultimate goal of the paper is
to make more affordable the initial work for anyone interested in this topic.

Software architecture complexity
Currently firewalls and other access control methods are used as gatekeepers
to control the access from internal and external sources. However, some ports
must remain open in firewalls to enable the application server to be accessed.
The protection provided by firewalls is not enough over these open ports
because their work is to block some ports and to forward IP packets in others,
in a state-based way in some cases, so hosts receiving requests are
responsible for enforcing security measures needed. On the other hand, in
most situations, hazards are not originated by Internet intruders, but are the
result of system abuses from authorized internal users. In the latter case
firewalls cannot offer any protection so hosts must protect themselves against
this threat.
At the same time, current software systems are becoming more complex. As
we can see in the figure, each box represents a software subsystem probably
developed independently by different suppliers and later integrated by another
company. Therefore, in such systems we have to ensure security both in each
box and at the integration process. Basically, we have to trust that everybody
made his work with security in mind.

Webserver JVM Database

Operating system

Hardware

e-commerce application

Application server

One expects that in case any software subsystem has any kind of security
defect, the security of the entire host or others host in your intranet should not
be compromised. You can prevent this by limiting communications and
relationships to those that are absolutely necessary. In fact, you will need to
look carefully at two issues. First, and this is what traditional firewall security is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 3

 SANS Institute 2003. As part of GIAC practical repository. Author retains full rights.

all about, to define services the host provides to internal and external
machines and determine, on a service-by-service basis, what communication
channels hosts really need to have. Secondly, you must also think about the
relationships between processes and objects inside the host. Once you have
made these decisions, you can use a variety of mechanisms to enforce them.
Through this paper I will describe the most representative mechanisms to
restrict the relationships between processes and objects inside the host, given
their relevance in today’s computer security field. The best place to implement
these security mechanisms is the OS layer. After all, this layer is the base for
all the other subsystems and should be the one on which we have more
control. I have chosen to focus in mechanisms available for the operating
system Linux, given its growing relevance in computer user community.
In next section I will review different Linux distributions currently available and
will describe their built-in security features. It is possible that some of them
match your requirements straightforwardly. If that is not the case, the following
section offers general guidelines to design an ad-hoc customization process
to suit your security needs. Finally, there are some cases where very specific
features are need. I will describe in the last section several modifications that
can be applied to the Linux kernel in order to add, enhance or modify some
security characteristics.

Linux Distributions Maze
As mentioned in the previous section, the operating system is the best place
to implement security policies. In the Linux world it is not difficult to find
hundreds of different distributions, each having its pros and cons. It is not the
objective of this paper to compare them but rather to classify them according
to the way they handle computer security. Among all of them, it is possible to
distinguish clearly two relevant types of distributions for the context of this
paper: general-purpose distributions and “secure-featured” distributions. To
set up a secure operating system environment we could use any distribution
of the two types. A general-purpose one should follow a hardening process.
On the other hand, a secure-featured one would meet our requirements
without needing a lot of customization.

General purpose distributions
We can classify in this category the majority of the most popular Linux
distributions. Basically, each of them consists of a kernel plus a set of diverse
utilities and application packages. These distributions offer the added value of
a simplified and homogeneous installation and administration environment in
such a way these distributions adopt a unique personality. Red Hat[24],
Mandrake[19] or SuSE[27] are all well-know general-purpose distributions.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 4

 SANS Institute 2003. As part of GIAC practical repository. Author retains full rights.

Linux security-featured distributions
These distributions offer to system administrators some added value from the
point of view of securing the operating system. It is easy to distinguish among
the following three types of distributions.

Appliances Linux
These are reduced Linux distributions. The aim of these distributions is to
enable small hardware resources boxes with a minimal kernel and
configuration to perform a very specific task. Normally, they present a subset
of the followings features

• They boot from a removable storage, possibly write-protected (CD,
EPROM, floppy) avoiding an intruder could write the file system.

• They are executed in a ram disk, they normally don’t need/use a hard
disk, so zero administration can be easily fulfilled.

• These distributions allow the configuration to be stored either in a ram
disk or a write-protected disk, preventing an intruder from modifying it.

• These boxes usually perform a network task, as firewall or router,
usually based on Linux Router Project (LRP).

Although they can be useful in certain cases, these distributions lack the
necessary flexibility to execute the majority of modern applications. Due to its
simplicity, it is difficult to administer its configuration and to carry out
diagnoses on them. Some examples of these distributions are Frazierwall
Linux[8], Fli4L[20], Floppyfw[35] or Devil-Linux[36].

Secure corporate Internet services
These distributions are designed for small offices in which a product is
needed to enable quickly a series of basic Internet services to support
business processes. Staff, which is usually not security-aware, implements
normally these services. They share several of the following features

• Secured operating systems with a specific security policy applied.

• Internet services installation using secure configurations by default with
simple administration environments for every service, avoiding typical
misconfigurations in plain text files.

• Host based firewalls and built-in intrusion detectors.

• Remote access products with encryption capabilities.

• Graphical tools to custom easily security policies.
Frequently, this kind of distributions shares some features with the following
group. However, I still put them in this category if their main objective is not
security but to provide enterprise services. Astaro Security Linux[2], EnGarde
Secure Linux[9], Firegate Server[30] and Immunix OS[33] are distributions to
classify in this category.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 5

 SANS Institute 2003. As part of GIAC practical repository. Author retains full rights.

Secure out-of-the-box
These distributions are built on top of a Linux kernel and have been added
security extensions. Normally, they come from the factory with a modified
kernel and a default configuration with advanced security settings. An
example of those basic security settings is the least privilege principle. These
distributions usually include the following features,

• Limited access to system data and resources. Controls may be set on
all potential interactions with programs, file access, and utilities on a
user-by-user basis.

• Eliminate super user. Dividing super-user functions into multiple roles
makes penetration far more difficult.

• Improved security auditing. Actions that may affect security or sensitive
files can be monitored. To detect suspicious actions, administrators
may generate usage reports by user, group, file, data, or time.

• Provide a "trusted" path that protects entered data. This is particularly
important for passwords, which may also be protected by using and
enhanced encryption algorithm.

• Use of sophisticated authentication methods or a modified PAM, not
only for system access but also for subject-to-object general access.

The fundamental advantage of this type of distributions over the rest is that
they have been designed with security in mind. Some of these distributions
are so focused on security that neglect the rest of operating system aspects.
Others are research prototypes developed by universities without any
commercial aim. These facts make them neither attractive nor widely used for
business purposes. Some distributions of this type are Kaladix Linux[18], SE
Linux[21], Trustix AS[28] or CAEN Linux[29].

Building a Bastion Host
Where possible, installing a security-featured distribution should be sought. If
any requirement, like support for the software of a third party vendor, leads us
to the installation of a general purpose distribution, we still we can endow this
distribution with a certain security level. To this aim, we will customize the
distribution for our application by applying a hardening process. This process
can also be applied if we install a security-featured distribution since probably
this one does not fulfill all the needed requirements.

Basic philosophy …
There are two basic principles for securing a host:

Keep it simple
The simpler your host is, the easier it is to secure. Any service the host
offers could have software bugs or configuration errors on it, and any
bugs or errors may lead to security problems. Therefore, you want the
host to do as little as possible. It should provide the smallest set of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 6

 SANS Institute 2003. As part of GIAC practical repository. Author retains full rights.

services with the least privileges it possibly can, while still fulfilling its
role.

Be prepared for the bastion host to be compromised
Despite your best efforts to ensure the security of the host, break-ins can
occur. Don't be naive about it. Only by anticipating the worst case, and
planning for it, will you be most likely to avert it. Always keep the
question, "What if the host is compromised?" in the back of your mind as
you go through the steps of securing the machine and the rest of the
network [5].

… but multiple tools
Now that you have figured out what you want your bastion host to do, you
need to actually build the host. In order to do that, follow any of the useful
guides or tools available in the Internet. Basically, these references[4][15][16]
recommend following these steps:

• Install the minimum software needed.
• Secure the machine.
• Disable all non-required services.
• Install the business-logic applications host must provide.
• Install patches that match your platform.
• Run a security audit to establish a baseline.
• Connect the machine to the network it will be used on.

You should be very careful to make sure the machine is not accessible from
the Internet until each of the previous steps has been followed. If the bastion
host is vulnerable to the Internet while it is being built, it may become an
attack enabler instead of a defense mechanism. An intruder who gets in
before you have run the baseline audit will be difficult to detect and will be
well-positioned to read all of your traffic to and from the Internet. Cases have
been reported where machines have been broken into within minutes of first
being connected to the Internet; while rare, they may happen.

Secure system libraries
The weaker link in the process previously described is the business-logic
applications. It is well known that developer teams are more worried about
fulfilling customer expectations and time-to-target objectives than about
designing a secure application. To avoid this problem system administrators
should, whenever possible, enforce the use of secured system libraries. This
product is highly recommended to prevent, detect and handle buffer overflow
attacks.
Currently, there are two kinds of secure system libraries. The simplest one is
a compiler extension that generates auto-checking stack bound code. Positive
of this approach is its ease of use but negative is that the source code of the
application must be available to be recompiled. A well-known implementation
of this technology is Stackguard[34]. The checking mechanism it uses is based
on the generation of an additional field that is placed next to the return

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 7

 SANS Institute 2003. As part of GIAC practical repository. Author retains full rights.

address every time a function is called. When function returns this field is
checked and if it has been modified a stack smashing attack has been
attempted. In this case the application write an alert into syslog, and then
halts. The fact that checked fields are usually generated randomly and the
fact that this process is performed every time a function is called could affect
application performance seriously so it should be carefully studied before its
using in production environments.
On the other hand, there are other solutions that do not need the source code
to be available[3]. These libraries try to avoid buffer overflows for well-known
vulnerable C library functions that handle buffers as strcpy, gets, fscanf,
sprintf, … These solutions are implemented as dynamic loaded system
libraries that contain a alternative version of each vulnerable function that
perform its traditional work in a more secure way using techniques to detect
buffer overflows. Environments variables should be setup to intercept calls to
these well-known vulnerable library functions so they are performed by
dynamically linked applications instead of by the traditional ones. This
alternative has smaller performance impact because security checks are only
performed when a modified function is called. On the other hand it only offers
protection if the application is written using these functions.

Kernel hardening
Nobody can assure a bastion host will never be the target of a security
incident. Every day, new vulnerabilities are discovered and used against
hundreds of production systems before the information about its existence
becomes public, much before a workaround or patch to avoid this threat is
developed and this solution is implemented in a production system. That is
why we should be prepared against this threat, above all, if it is a must for our
business to be accessible from Internet. If the latter is the case, it would be
desirable a greater control level on the security mechanisms that are
established in our host.
To this aim, several security kernel modifications have been developed along
the time and I will describe in the following sections. First, I will explore
several compilation options that the Linux kernel offers to enhance system
security. Secondly, I will review the most important kernel modifications sorted
according to three trends.

Secure kernel compilation
The Linux kernel is a piece of software highly customizable. Therefore, it
seems to be a good starting point to use the most secure possible kernel
setup before enforcing any additional security mechanism. There are many
tutorials and HOWTO’s across the Internet that analyze significant kernel
parameters and suggest values they should take to avoid security risks.
These parameters usually are about customizing the TCP/IP stack and some
kernel devices[17].
At this point, I would like to remind that the philosophy used for building a
bastion host could also be applied to kernel hardening. In order to follow the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 8

 SANS Institute 2003. As part of GIAC practical repository. Author retains full rights.

principle of “Keep it simple” system administrators should remove from the
kernel all pieces of software that are not necessary to the normal running of
the system. That includes ATM drivers if only Ethernet networking is used or
infrared and sound drivers for hosts that are physically located in a
datacenter.
Several actions could be taken at this stage to enforce the second principle
“Be prepared for the bastion host to be compromised”. It is always a good
idea to enable system auditing because it might be useful both to detect
suspicious user behavior and to keep track of potential intruder activities. In
addition, system administrators should compile all necessary drivers within
the kernel and disable the dynamic module loader whenever possible. An
intruder will be unable to load most of rootkit kernel modules, as Knark[6] or
heroin.c[25], to hide his presence on systems using a kernel configured in this
manner.

Security feature-addendum modifications
This category of modifications offers the possibility of adding several new
possibilities to the standard Linux kernel. The simplest example is the
Openwall patch[23]. This patch offers additional security features to the
standard Linux kernel. Using this patch, system administrators can decide to
mark processes’ stack area as non-executable in order to to prevent most
buffer overflows application bugs, restrict hard links at tmp directory in order
to make unauthorized file access in this directory harder, or limit the use of
FIFO’s at tmp directory to avoid FIFO write spoof attacks. This patch does not
use any configuration file because it is fully configured at kernel compiling
time. After installing and configuring this patch any further additional setup is
needed when new software is installed. However, system administrators
should make sure that security features that have been enabled do not break
existing or potential applications.
There are several Linux distributions based on this patch. OpenWall Linux[22],
Owl, is the most important of them and makes use of this patch by default. In
addition, the source code of several components has been improved to match
basic security standards. These components include SUID or SGID binaries,
relevant code in system libraries, daemons and net services. As last
improvement, this distribution brings into play a basic Trusted Computer
Base, TCB, as alternative to classic UNIX password storage.
Linux Intrusion Detection System, LIDS is another patch that not only provides
a larger amount of enhancements to standard Linux kernel but also offers
mechanisms to impose some additional restrictions to subject-to-object
relationships like Mandatory Access Control, MAC, and capabilities.
MAC is an access control mechanism additional to classic UNIX permissions,
also known as DAC or Discretionary Access Control. Using MAC, system
administrators can protect critical files against any kind of access. Moreover,
they could even simulate the inexistence of those files. Unfortunately, this
smart feature cannot be applied to the whole system because surely some
applications need some access to these protected files. So, system

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 9

 SANS Institute 2003. As part of GIAC practical repository. Author retains full rights.

administrators should identify these applications and configure LIDS to grant
them appropriate access permission[11].
Unlike classical UNIX systems where root user has all the privileges, LIDS
provides a fine-grained privilege separation called capabilities[12]. System
administrators can assign certain capabilities to applications in order to enable
them to perform limited privileged tasks that normally only the root user is
allowed to accomplish. For example, the CAP_BIND_NET_SERVICE
capability, when granted to a process, will allow it to be bound to a privileged
socket (<1024). In this manner web servers, which need to be bound to port
80, could be executed by regular users without requiring any further privilege.
Additionally, LIDS provides a very useful feature called “kernel sealing”[10].
System administrators can configure LIDS to avoid any additional kernel
module from being loaded after the kernel is initialized. Using this feature, the
use of rootkit modules is highly prevented.
Using different patches at the same system is not incompatible as long as
they affect separate areas of the kernel. In fact, there is a Linux distribution,
EnGarde Secure Linux[9], which implements both the Openwall patch and
LIDS.

Compartment modifications
Even if all the good-practices have been taken into account, it is possible that
a host be compromised because, as we stated in previous sections,
applications are not guarantied to be free from security flaws. So, system
administrators must not forget the second principle of building a bastion host
and should be ready for these situations.
A methodology commonly used to enforce this principle is “Compartment”. It
follows a simple philosophy that comes from comparing a host to a
submarine. If one of the compartments of a submarine has a leak it is yet
possible to seal it before the entire craft is compromised. In the same way, if a
software subsystem suffers an attack, it would be desirable that intruders are
lock up in a compartment designed for that subsystem to avoid they get full
control of the host. Classic UNIX’s do not follow this philosophy, e.g. if an
intruder exploits a bug in a SIUD application and gets root access then the
entire host is under his control.
A kernel extension designed to provide compartment is SubDomain. Using
SubDomain[7] we can define a box, known as domain, for every non-trusted
application we wish to jail. For every domain there is a configuration file where
files and type of access are defined not only for the process itself but also for
its child processes in a very easy way. SubDomain modifies the relevant
system calls to perform further inspection before access is granted. This
additional checking is always additional to the kernel native access control, so
both access controls must be passed before a process is allow access to a
resource. SubDomain is really light compared with other compartment
products so it both follows the principle of “keep it simple” and does not have
a severe impact in performance. There is a Linux distribution, Immunix OS[32],
which includes the SubDomain patch preinstalled in the kernel.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 10

 SANS Institute 2003. As part of GIAC practical repository. Author retains full rights.

Argus PitBull LX[1] is a commercial product for Linux. It includes a modified
kernel that can be customized to fit your requirements and a set of utilities to
configure several security options. Besides implementing a MAC access type,
the system administrator can define several compartments or virtual machines
named, as in SubDomain, “domains”. Within a domain, system administrators
can confine, files, users, but also network resources and interfaces that can
be completely isolated from other compartments. This is the main difference
with previous products. Using PitBull, it is possible to group all files needed to
run bind, port 53 and NIC 0 in a domain. In that way, if bind is violated, the
intruder will be unable to access any other information like /etc/passwd file. It
is also possible to set controls based on Interprocess Communications, IPC,
allowing only authorized communications between process using pipes,
messages queues, … These features offer an additional flexibility to contain
potential intruders, however, they are difficult to configure and implement.

General frameworks
The security enhanced access mechanisms previously described have been
created and developed independently, following different philosophies and
focusing on particular problems. However, Linux, as general-purpose
operating system, must satisfy a wide rage of user requirements and should
be able to permit several access control models. Any of the previous kernel
modifications addressed the requirement of creating a standard framework in
which all the existing security improvements and the coming ones could be
integrated. Maybe, that is the reason for which any of them have achieved
acceptance within the security community.
In 2001, the National Security Agency presented a research prototype called
SE Linux[21]. SE Linux is a group of kernel patches and modified utilities that
can be used to control an extremely granular set of security rules. In this way,
SE Linux provides role-based MAC, type enforcement and compartment, also
know as multilevel security. This kernel prototype was based in the Flask
architecture, the result of several OS security research projects undertaken by
the NSA, Secure Computing Corporation and the University of Utah. They
developed SE Linux in an attempt to transfer this technology to a larger
developer and user community. But, although the philosophy established by
SE Linux was very flexible, this first attempt, as previous works, was centered
in the mere modification of the kernel to obtain some specific results. This first
prototype was not designed as a proposal to modify Linux kernel in a way that
any person that develops new improvements or security models could
integrate them without interfering with other models developed by others
together and in a simple way.
With this objective in mind, Linus Torvalds after SE Linux presentation,
proposed several modifications to the Linux kernel structures in order to allow
the implementation of SE Linux-like security models in the kernel
development mainstream. That was the origin of the Linux Security Modules
project, LSM. The main objective of this project is to develop a general-
purpose security access control framework for Linux kernels, which would
allow system administrators to load and execute several control models. The

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 11

 SANS Institute 2003. As part of GIAC practical repository. Author retains full rights.

solution proposed is really general and its performance impact is minimum.
The following were the desirable features defined for this framework

• This framework should be generic enough to support several security
models.

• It should be light in terms of performance.

• It must support access control models.

• It is necessary to support previous functionalities.
These modifications consisted of adding a set of fields to the structures of
main kernel objects, as process, file systems, pipes, files, sockets and IPC
mechanisms, in order to store their security attributes. In addition, a new
function pointer array was added to the kernel both to enable read-write
accesses over these new attributes and to control actions that different
system subjects are authorized to carry out. This array, by default, contains
traditional functions utilized in the operating system, so the default behavior is
identical to the classical Unix. When a kernel security module is loaded a new
kernel function is in charge of modifying this function array so that its entries
point now to the new loaded code.
The first loaded module in a system is called primary security module. This
module is in charge of managing basic security functions but, in the
framework proposed by Torvalds, should also implement the necessary logic
so that additional security modules, that potentially might be loaded, are
capable of cooperating among them. In this way, if the primary security
module allows it, it is possible to load a second module that implements an
advanced policy on process management and even a third one that runs a
different model to access IPC mechanism. At present, several kernel
modifications that we have mentioned previously, as SE Linux, LIDS or
Openwall, have already been ported to security modules following the rules
defined by the LSM project[31]. As a result, system administrators have already
available several security models to choose from.
Using LSM, anything a system administrator could imagine is possible. He
can restrict network access, limit file access, allow root user to only perform
certain restricted tasks… On the other hand, this software is neither trivial nor
easy to use. Deep knowledge about security matters and application internals
is a must in order to make a careful system security planning. Besides, this
general framework only focuses on control access issues. A security policy
must include many other technical subjects, as auditing, that are no covered
yet by the LSM.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 12

 SANS Institute 2003. As part of GIAC practical repository. Author retains full rights.

Conclusions
Through this paper we have reviewed several tools and resources that system
administrators could use to improve standard security access in Linux. But
even if you enable most of the previously described security mechanisms it
does not mean that your host is highly secure. Most of the times quality is
more important than quantity. It is completely worthless to install all previous
enhancements if they are not correctly configured to address your security
policy or even worse if that security policy does not exist. The right approach
is, first, to define your security policy and then to choose the most suitable
mechanism to implement it.
As a last recommendation, keep in mind that the target of every hardening
process is to get a suitable balance between a certain security level and
administration facilities. Therefore, system administrators must decide, at
each step of any hardening process, how far they are willing to go. Everybody
seems to agree that security is important, but even more important is that our
business application keeps its functionality. If you do not know how to reach
this balance, it is advised to go step by step. After complexion of each step,
you should verify that all the required business functionalities of your
application are still available before moving on to the next stage.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 13

 SANS Institute 2003. As part of GIAC practical repository. Author retains full rights.

References

1. Argus Systems Group. “Products White Papers PitBull LX”. May 9, 2003. URL:
http://www.argus-systems.com/product/white_paper/lx (Jan 15, 2003)

2. Astaro AG. “Astaro Security Linux”. URL:
http://www.astaro.com/php/statics.php?action=asl&lang=gb (Feb 18, 2003)

3. Baratloo, Arash; and others. “Libsafe: Protecting Critical Elements of Stacks”. URL:
http://www.research.avayalabs.com/project/libsafe/doc/libsafe.pdf (Mar 7, 2003)

4. Center for Internet Security, The. Linux Benchmark v1.0.0. Security Essentials Day 6
– SANS Track One. The SANS Institute. 2002

5. Chapman, Brent and Zwicky, Elizabeth. Building Internet Firewalls. O’Really
Associates. First Edition, November 1995

6. Clemens, Jonathan. “Knark: Linux Kernel Subversion”. URL:
http://www.sans.org/resources/idfaq/knark.php (Mar 5, 2003)

7. Cowan, Crispin; and others. “SubDomain: Parsimonious Server Security”. URL:
http://www.immunix.org/subdomain.pdf (Jan 19, 2003)

8. Frazier, Frank. “Frazierwall Linux 3.5a”. URL: http://www.frazierwall.com (Jan 18,
2003)

9. Guardian Digital, Inc. “EnGarde Secure Linux: Features and Benefits”. URL:
http://store.guardiandigital.com/html/eng/products/software/esp_features.shtml (Feb
18, 2003)

10. Hatch, Brian. “An Overview of LIDS, Part One”. Oct 17, 2001. URL:
http://www.securityfocus.com/infocus/1496 (Mar 5, 2003)

11. Hatch, Brian. “An Overview of LIDS, Part Two”. Oct 31, 2001. URL:
http://www.securityfocus.com/infocus/1502 (Mar 5, 2003)

12. Hatch, Brian. “An Overview of LIDS, Part Three”. Nov 12, 2001. URL:
http://www.securityfocus.com/infocus/1510 (Mar 5, 2003)

13. Hatch, Brian. “An Overview of LIDS, Part Four”. Nov 29, 2001. URL:
http://www.securityfocus.com/infocus/1517 (Mar 5, 2003)

14. Huagang, Xie. “Build a Secure System with LIDS”. Oct 4, 2000. URL:
http://www.lids.org/document/build_lids-0.2.html (Mar 1, 2003)

15. Lasser, Jon. “Bastille Linux”. URL: http://www.bastille-linux.org .(Dec 17, 2002)

16. Linux-Consulting. “Hardening and Tightening Security on Your Server/Network”. URL:
http://www.linux-sec.net/Harden/harden.gwif.html (Dec 17, 2002)

17. Linux Documentation Project. “Kernel Security”. Linux Security HOWTO. URL:
http://www.linux.org/docs/ldp/howto/Security-HOWTO/kernel-security.html (Feb 20,
2003)

18. Lübbert, Jörg. “Information about Kaladix Linux”. URL:
http://www.kaladix.org/docs/information.shtml (Feb 10,2003)

19. Mandrake Soft. "Mandrake Linux - Friendly Linux operating system for both servers
and desktop". URL: http://www.mandrakelinux.com (Mar 30, 2003)

20. Meyer, Frank. “What is Fli4L”. URL: http://www.fli4l.de/english/e_fli4l.htm (30 Jan,
2003)

21. National Security Agency, The. “Security-Enhanced Linux”. URL:
http://www.nsa.gov/selinux/index.html (Jan 20, 2003)

22. Openwall Project. “Owl, -- a security-enhanced server platform”. URL:
http://www.openwall.com/Owl/CONCEPTS.shtml (Feb 27, 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 14

 SANS Institute 2003. As part of GIAC practical repository. Author retains full rights.

23. Openwall Project. “Openwall GNU/*/Linux presentation slides” URL:
http://www.openwall.com/presentations/Owl/ (Feb 27, 2003)

24. Red Hat, Inc. "Red Hat -- Linux, Embedded Linux and Open Source Solutions". URL:
http://www.redhat.com (Mar 30, 2003)

25. Samhain Labs. “Loadable Kernel Module (LKM) Rootkits”. URL: http://la-
samhna.de/library/lkm.html (Mar 1, 2003)

26. Smalley, Stephen; and others. “Linux Security Modules: General Security Hooks for
Linux”. URL: http://lsm.immunix.org/docs/overview/linuxsecuritymodule.html (Jan 20,
2003)

27. SuSE Inc. "SuSE, The Linux Experts". URL: http://www.suse.com/ (Mar 30, 2003)

28. Trustix AS. “Trustix Secure Linux 1.5 Users Guide”. URL:
http://www.trustix.net/pub/Trustix/current/i586/doc/html/tsl-doc/tsl-doc.html (Feb 15,
2003)

29. Wing, Chris. “New features in CAEN Linux 6.1”. URL:
http://www.engin.umich.edu/caen/systems/Linux/caenlinux/6.1/features.html (Feb 10,
2003)

30. Wiresoft. “Firegate Server SMB Edition”. URL:
http://www.wiresoft.net/Firegate_White_Paper.PDF (Feb 15, 2003)

31. WireX Communications Inc. “Current List of Modules Ported to LSM”. Linux Security
Modules URL: http://lsm.immunix.org/lsm_modules.html (Jan 20, 2003)

32. WireX Communications Inc. “Immunix Secured Linux 7+” URL:
http://www.immunix.org/immunix7+.html (Apr 5,2003)

33. WireX Communications Inc. “Immunix Security Technology”. URL:
http://www.wirex.com/Immunix/index.html (Feb 18, 2003)

34. WireX Communications Inc. “StackGuard Mechanism: Stack Integrity Checking”.
URL: http://www.immunix.org/StackGuard/mechanism.html (Mar 5, 2003)

35. Zelow Consulting. “floppyfw”. Feb 26, 2003. URL: http://www.zelow.no/floppyfw (Feb
10, 2003)

36. Zuerker, Heiko; and others. “Devil-Linux Documentation”. Aug 30, 2002. URL:
http://www.devil-linux.org/ADMIN.html (Feb 3, 2003)

