
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 1/24

Intelligent Correlator for NIDS

GIAC Security Essentials Practical Assignment
Version 1.4b

Option 2
by

Marco Bove

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 2/24

¨

Abstract

In today NIDS the number of alerts may be huge and the delay in
between an alert is generated and the system administrator analyzes
it, can be too long and the situation can be changed, e.g. with dual
boot Unix-Windows machines. Therefore we would like to give a low
priority or to filter out not relevant alerts. We would like also to gather
more information about the target of the attack at the time the attack
has been performed. The goal of this work is the realization of a
prototype of a system that reduces the number of false positives of a
NIDS by triggering a real time collects for information upon alert
reception.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 3/24

Index

1 Introduction................................ .. 4
1.1 Security Note................................ ... 4

2 Basic Elements................................ 5
2.1 Alerts block.. 6
2.1.1 Snort 6
2.2 Knowledge block................................ 6
2.2.1 Nessus.. 7
2.2.2 Netmap 7

3 Implementation................................ 8
3.1 The CorE (Correlation Engine) 8
3.1.1 Implementation Details: Alerts Hunter.. 8
3.1.2 Implementation Details: Workflow Manager 9
3.1.3 Implementation Details: Analyzer 10
3.1.4 Implementation Details: Info Gatherer 11
3.1.5 Implementation Details: Correlator 12
3.1.6 Implementation Details: Reaction block 13
3.2 Info Repository 13
3.2.1 Nessus Configuration... 14
3.3 Databases.. 15
3.3.1 The Centralization (Snort) Database 16
3.3.2 The Repository Database.. 17
3.3.3 The CorE Database 18
3.4 The CorE GUI 18
3.5 Network Architecture .. 19

4 Conclusions and Results 21
4.1 Future works.. 21

Table of Figures 23

Table of references.. 23

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 4/24

1 Introduction

In today NIDS the number of alerts may be huge and the delay in between an alert
is generated and the system administrator analyzes it, can be too long and the
situation can be changed, e.g. with dual boot Unix-Windows machines. Therefore
we would like to give a low priority or to filter out not relevant alerts. We would like
also to gather more information about the target of the attack at the time the attack
has been performed.

The goal of this work is the realization of a prototype available for future
enhancement that reduces the number of false positives of a NIDS by triggering in
real time a collection for information upon alert reception. More technically the NIDS
is based on Snort: the generation of a Snort alert triggers a “real time” gathering of
information, such as a Nessus scan, to see if the target of the seen attack is
sensitive to the vulnerability as defined in the Snort alert. A correlation with other
recent event, concerning e.g. the same target or the same vulnerability, may also be
performed. Depending on the results of the scan and the correlation, the alert will be
given a certain priority, e.g. a red alert priority in case the machine is sensible to the
attack at the time of the attack itself or the same machine has been the target of
many kinds of attack in a reasonable short time. Optionally an action can be
triggered after a red alert has been detected.

The final result of this work, as previously said, is a prototype. That means that it
future enhancement and development are required to make it productive. It has the
only purpose to show how a system based on this kind of implementation may
improve intrusion detection eliminating false positives and gathering information on
the network at the time the attack has been performed

1.1 Security Note

For security purpose in the pictures as well as in the body text all real IP addresses
have been substituted by imaginary IP addresses e.g. 0.0.0.1; in order to distinguish
machines among imaginary IP addresses, e.g. 0.0.0.1 for machine A, 0.0.0.2 for
machine B etc. . Also the real names of the machines have been wiped.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 5/24

2 Basic Elements

In this section we will describe the elements used in the implementation of the
prototype. In Figure 1 we can see an overview of the whole architecture.

Figure 1. Architecture Overview

It is possible to distinguish four main blocks:

1. The Alerts block: this block deals with the intrusion detection. When a
suspicious event happens and is detected, then an alert is generated and sent
to the Centralization database (Snort database).

2. The Knowledge block: this block has the task to provide to the Correlation
Engine information on demand about the underlying network.

3. The Reaction block: this block has the task to put in place countermeasures
after a red alert has been generated and a reaction has been decided.

4. The CorE: this block as well as the Knowledge block is the real target of this
work. It analyzes incoming alerts, it asks the Info Repository for fresh
information, it evaluates the severity of the alerts and finally it decides for
eventual countermeasures. A GUI will show to the system administrator the
results.

The goal of this work is to build a prototype for the CorE and the Knowledge block
based on an existing Alerts block.

Now follows a description of the tools used in the development of the prototype. This
description aims to give a short introduction about the tools used for this work to
readers who are not familiar with them.

Basic network elements
(servers, routers, firewalls, etc)

Informations

Info. repositoryCentralisation

CorE

GUI

GUI

Info. Gatherer

Action
Agent

GUI GUI

Configuration

Intelligent
Engine

Knowledge

Alerts

Reactions

Legend

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 6/24

2.1 Alerts block

The alerts block has the task to log events in the network. In our system, alerts are
generated by many tools: Snort, Samhain, Syslog, Tripwire, but we will work only on
a subset of Snort alerts and more precisely alerts based on the CVE system.

2.1.1 Snort
Accordingly to [1] Snort “is an open source network intrusion detection system,
capable of performing real-time traffic analysis and packet logging on IP networks. It
can perform protocol analysis, content searching/matching and can be used to
detect a variety of attacks and probes, such as buffer overflows, stealth port scans,
CGI attacks, SMB probes, OS fingerprinting attempts, and much more. Snort uses a
flexible rules language to describe traffic that it should collect or pass, as well as a
detection engine that utilizes a modular plugin architecture.“

The vulnerabilities detected by Snort refer to well-known lists of vulnerabilities such
as CVE, ArachNIDS, Bugtraq that provide more additional information about a given
alert identified by a tag.

2.1.1.1 CVE, arachNIDS, Bugtraq

CVE, arachNIDS and Bugtraq have the common purpose to unify under a single
identification well know vulnerabilities.
CVE (Common Vulnerabilities & Exposures): accordingly to [2] CVE “is a list or
dictionary that provides common names for publicly known information security
vulnerabilities and exposures”. It is possible to find two different types of
classification in the CVE list of vulnerabilities: vulnerabilities identified by the CVE tag
and the vulnerabilities identified by the CAN tag. The CVE tag identifies entries in the
list that are effectively vulnerabilities, while CAN entries accordingly to [3] represents
“those vulnerabilities or exposures under consideration for acceptance into CVE”.

arachNIDS (advanced reference archive of current heuristics for network
intrusion detection systems): accordingly to [4] arachNIDS is a “comprehensive
database of network attack signature information that can dynamically create and
export signature strings compatible with IDS software such as Snort”. arachNIDS is
fully compatible with CVE.
Bugtraq: Bugtraq is a security mailing list. More precisely, accordingly to [5]
“BugTraq is a full disclosure moderated mailing list for the *detailed* discussion and
announcement of computer security vulnerabilities: what they are, how to exploit
them, and how to fix them”.

As already stated we are using only alerts that reference CVE vulnerabilities (both
CVE and CAN) because of ease of implementation of the prototype. CVE tags are
easy identified in the structure of an alert in the Snort database as well as in the
description of the plugin used to Nessus to collect fresh information.

2.2 Knowledge block

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 7/24

The Knoledge block relies on network discovery tools such as Nessus and Nmap.
Also if these are the only tools used by the prototype other tools such as NetMap
have been tested. Nmap is not used directly, but through Nessus (see 3.2.1).

2.2.1 Nessus
Nessus is the security scanner used to get fresh information about the target of a
hypothetical attack at the same time the attack has been performed. Accordingly to
[6] Nessus is “a security scanner, i.e. a software which will audit remotely a given
network and determine whether bad guys (aka 'crackers') may break into it, or
misuse it in some way”. Nessus uses different type of portscanner such as Nmap.
Nmap is also the portscanner that we will use configuring Nessus for an OS
fingerprint of the target.

2.2.1.1 Nmap

Accordingly to [7] Nmap “is a utility for network exploration or security auditing. It
supports ping scanning (determine which hosts are up), many port scanning
techniques (determine what services the hosts are offering), and TCP/IP
fingerprinting (remote host operating system identification)”.

2.2.2 Netmap
Accordingly to [8] Netmap “is a tool for discovering and analyzing computer
networks. NetMap includes a discovery tool, a network database and a viewer and
analyzer application. Network discovery is done by using existing tools, both
commercially available and in the freeware domain. Given a query, the set of tools
that best answers it is automatically chosen. The tools are runned, and the results
are fused together.”

Also if it has not been included in the prototype Netmap has been tested. It revealed
to be a powerful tool. It provides an SQL database to store information about the
network topology and a graphical front end GUI to the database. On the other hand it
also revealed to be quite slow and for this reason not adequate for this work.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 8/24

3 Implementation

This section describes the implementation of the prototype.

3.1 The CorE (Correlation Engine)

The functionalities of the Correlation Engine (CorE) are multiple:

• Check the existence of new alerts;

• Analyze the alerts in order to define the required information needed to
process the alert;

• Collect the information from the Info Repository;

• Compute the severity of the alerts and store it in the CorE database;

• Optionally take countermeasures against the attack referred by the alert.

The structure of the CorE is depicted in Figure 2.

Alerts Hunter

Analyzer

Workflow
Manager

CorrelatorInformation
Gatherer

Info Repository

Centralization

Action
Centralization

Reaction
Block

CorE DB

CorE

Figure 2. The Correlator Engine (CorE)

In this section we analyze in detail the tasks and the implementation details of each
block.

3.1.1 Implementation Details: Alerts Hunter

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 9/24

The Alerts Hunter has the task to check the existence of new alerts from the Snort
database.

Originally the prototype was thought to run on top of a Prelude Manager, using the
Prelude XML output as input for the CorE in order to process the alerts almost real
time. As the insertion of Prelude in our architecture caused many problems (i.e.
failure in the installation and configuration processes) the installation of Prelude itself
has been postponed. As a consequence also the concept of the Alerts Hunter has
been redesigned. At the moment the Alerts Hunter is searching the Snort database
each minute for new alerts. This has been considered a valid delay based on the
frequency alerts arrive in the Snort database at the time of the implementation, but
must be based on the network that is being analyzed. This is still a temporary
solution.

In this temporary implementation the Alerts Hunter searches the Snort database
each minute. It pulls out all the alerts that have been generated since the previous
pull operation and sends them one by one to the Workflow Manager starting from the
oldest one.

Till now the prototype has been tested only in the lab, not on a real network. A
problem rises in condition of overloading. When the Workflow manager is not fast
enough to treat all the alerts before the following pull operation made by the Alerts
Hunter. Since we are implementing a prototype, this problem can be postponed.
First, with the use of a Prelude Manager, alerts will not arrive anymore in burst and
secondly, the alerts may be treated in parallel by multiple Workflow Manager.

3.1.2 Implementation Details: Workflow Manager

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 10/24

The Workflow manager has the task to synchronize the modules of the CorE. Its
structure is represented in Figure 3 with a flow diagram that explains the sequence
of the tasks inside the CorE itself.

Workflow
Manager

call “Gatherer“

Alerts Hunter

A
lert

call “Analyzer“

call “Correlator“

Start

End

call “Reaction
Block“

Figure 3. The Workflow Manager

Upon receiving an alert, the Alerts Hunter passes it to the Workflow Manager that
begins the procedure of classification based on the following four steps:

1. Analysis of the alert: we need to retrieve from the alert the information we
need to investigate, i.e. IP address of the target, identification of the sensor
that generated the alert, type of alert, timestamp. (The Analyzer is described
in 3.1.3).

2. Gathering of information: this module has the task to search for fresh
information about the target of the attach, e.g. if the target is alive, if it is
vulnerable to the attack and some information about its status such as the OS
(for more details see 3.1.4 and 3.2).

3. After fresh information about the target has been collected we can re-evaluate
the severity of the alert depending on the status of the target (the Correlator
block is described in 3.1.5).

4. Once the severity has been evaluated a reaction may be triggered.

3.1.3 Implementation Details: Analyzer

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 11/24

As this work is a prototype, only some alerts are considered. These alerts are the
ones referenced in the CVE system (see 2.1.1.1). The Analyzer has a really simple
structure (as it appears in Figure 4).

Workflow Manager

A
lert

Analyzer
N

ee
de

d
In

fo
CVE?

YesNo

Return CVE,
destination

Address
Return null

Figure 4. The Analyzer

The Analyzer checks for a CVE tag in the alerts. In case a CVE is found, the CVE
number, the IP address of the target and the Snort sensor’s IP address are extracted
from the alert and returned the Workflow Manager.

In case a CVE tag is not found the alerts is discarded, a null value is returned to the
workflow manager that stops the treatment of the alert and wait for a new one.

3.1.4 Implementation Details: Info Gatherer

The Info Gatherer (whose architecture is in Figure 5) works as interface between the
CorE and the Info Repository. It receives the information from the Workflow manager
and decides which information is needed. In our simplified case it asks the Info
Repository to collect fresh information about the target IP address related with CVE
tag.

It is the task of the Info repository to find the required information and to decide how
to get it from the network underneath (see 3.2).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 12/24

Workflow Manager

C
VE, Target,

Sensor

Gatherer

R
ep

os
ito

ry
In

fo

C
VE

, Target
S

ensor

Info Repository
Fr

es
h

In
fo

Figure 5. The Info Gatherer

3.1.5 Implementation Details: Correlator

The structure of the Correlator is in Figure 6.

Workflow Manager

A
lert,

R
epository Info

Correlator

Se
ve

rit
y

Start

Search CorE DB
(address, CVE)

Compute
Severity

Store Correlation

End

CorE DB

High Severity?

Yes

No

Figure 6. The Correlator

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 13/24

The Correlator has the task to evaluate the severity of the alerts. In the current
version of the prototype this block only checks if the machine, which appears to be
the target, is sensitive to the type of attack reported by Snort, using the results
provided by the Gatherer (3.1.4). The flow diagram of this block in Figure 6 illustrates
the original idea to correlate the alert with other alerts concerning e.g. the same
target machine, the same CVE, etc. In the current simplified version, if the target
machine appears to be vulnerable, then a new entry is generated in the CorE
database. This entry simply links the original alert with the results of the Nessus scan
in the Info Repository.

3.1.6 Implementation Details: Reaction block

As previously stated the Reaction block is actually empty as no reaction has been
planned. The block exists only for future purposes and developments. Many kinds of
reactions may be planned depending on the severity of the alert, the criticality of the
target and may vary from an email or SMS to the system administrator up to the
isolation of the target machine or subnet. Particular attention has to been taken on
this point: if the planned countermeasure is to isolate a target machine, we must
avoid DoS in case of induced false positives.

3.2 Info Repository
The Info Repository has the task to provide network information on demand for the
Gatherer. For this purpose it relies on Nessus.
In this prototype the info repository receives the CVE tag of the Snort alert and the IP
address of the target machine and returns the results of a Nessus scan of the target
based on the CVE tag received. Its structure is depicted below in Figure 7.

Gatherer

C
VE,

Target,
S

ensor

Fr
es

h
In

fo

Repository DBStart

Check Repository
DB for recent data

End

Data
present?

Trigger
Nessus scan

Store Results in
Repository DB

CorE

Repository

Network DiscoveryNessus

Figure 7. The Info Repository

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 14/24

First, there is a check on the local database to check if fresh information is already
available in the local database. There will be the possibility to set the desired
freshness of the information. Currently it is hard coded to the default value of 5
minutes. This parameter is obviously linked to the network underneath: if the network
is very dynamic, e.g. users with dual boot machines often switching operative
system, then the smaller it is the most accuracy we can obtain. In the opposite case,
if the network contains static servers never changing OS configuration, a good
accuracy can be achieved even for high values of these parameters.

If fresh information is not available in the Repository Database then a Nessus scan
will be triggered.

The xml output that is generated by Nessus is parsed into the SQL Repository
database and is made available for the Correlator block.

3.2.1 Nessus Configuration

Before using Nessus to check if the machine target of the attack is sensitive to that
particular attack, we need to generate a specific configuration file. Nessus will
executes only the plugin that checks the vulnerability identified by the CVE tag
describing the attack. The generation of the configuration file is done using a shell
script in two steps.

First we have to find which plugin is required for the desidered CVE. This is done
using a cat operation on a file called plugins that contains a list of all the Nessus
plugins with a description of what they are used for.
ATTACKID=`cat /run_nessus/plugins | grep $CVE | awk -F ',' '{print
\$1}'`;
($CVE is the variable containing the desired CVE tag).

The second step is to generate a configuration file enabling the plugin just identified.
This operation is done by modifying a template file using a simple sed command:
sed -e "s/$ATTACKID = no/$ATTACKID = yes/" /run_nessus/template
>/run_nessus/.nessusrc;
The template file has been generated using the Nessus Graphical Interface disabling
all the plugins and enabling the following parameters (listed as they appear in the
.nessusrc configuration file):

PING section:
Ping the remote host[checkbox]:Do an ICMP ping = yes
Ping the remote host[checkbox]:Make the dead hosts appear in the
report = yes
Ping the remote host[entry]:Number of retries (ICMP) : = 3
NMAP section (The only port scanner that has been enabled is NMAP.):

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 15/24

Nmap[radio]:TCP scanning technique : = SYN scan
Nmap[checkbox]:Ping the remote host = yes
Nmap[checkbox]:Identify the remote OS = yes
Nmap[checkbox]:Use hidden option to identify the remote OS = yes
Nmap[radio]:Port range = Fast scan (nmap-services)
Knowledge Base:

only_test_hosts_whose_kb_we_dont_have = no

These settings allow a fast scan to check whether the machine is alive and the OS
fingerprint.

In the .template file the plugins are listed in the following way:

Plugin number = Boolean value e.g. 10370 = no
where no indicates that Nessus will not use the plugin 10370, yes otherwise. In the
.template file all the plugins are disabled, that means that the whole list of plugins is
set to no.

Now we are ready to trigger Nessus using the following command line:
nessus -c /run_nessus/.nessusrc -q 0.0.0.1 1241 nessus_user secret
/run_nessus/.targets /run_nessus/results/results.xml -T xml

Where 0.0.0.1 is the server host running nessusd listening on port 1241 (nessus
default) to which we connect as user nessus_user with password secret. The output
will be stored in the /run_nessus/results/results.xml file in the xml format because
among all the possible output formats the xml is the one that is most easy to parse
into an SQL database. Finally we define the path to the .nessusrc configuration file
and to the file containing the list of targets (.target file).

Encountered problems with Nessus: using the same configuration file (i.e. same
nessus parameters) and same target machine in the same conditions sometimes the
information about the OS running on the target machine does not appear in the
nessus results.

3.3 Databases

Three databases have been planned:

1. The Snort Database: it contains the alerts to feed the CorE. These alerts are
still to be analyzed in order to check if they can be potentially dangerous or
only false positives.

2. The Info Repository Database: this database contains the results of the
Nessus scans triggered by Snort alerts.

3. The CorE database: this database contains the links to the other two
databases in order to correlate the snort alert with the on demand Nessus
scan.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 16/24

In this first step of implementation the databases have been reduced to only one
database with different tables. More in details the tables containing the Nessus
results and the CorE correlation have been added to the pre existing Snort database.

The database is a MySQL database.

In the future we will continue to refer to three different databases because they are
logically different.

3.3.1 The Centralization (Snort) Database

The Snort database is the starting point of this work. This is a pre existing database
whose implementation is not part of this work. Here follows a short overview of the
tables of this database that have been at least partially used in this project.

The Sensor tables (Figure 8) contain data about the Snort sensor that generated the
alert. This is relevant related with 3.5. We need in fact the information about the
sensor to know which Nessus server we have to connect to in order to trigger the
Nessus scan.

Figure 8. The Sensor Tables

The Signature tables (Figure 9) contain the information required to classify the alert.
In our prototype we only need to check the existence of a CVE tag in the ref_tag
field.

Figure 9. The Signature Tables

The Event tables (Figure 10) contain the information about the event that triggered
the generation of the Snort alert. At the moment we need the ip_dst value, i.e. the IP
address of the target machine, the cid (i.e. an identifier of the event), and the sid (i.e.
the sensor identifier).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 17/24

Figure 10. The Event Tables

3.3.2 The Repository Database
The Repository database is a table containing the following values:

• ScanID: this is a unique value that idenfies the nessus scan and that will be
referenced in the CorE database.

• CVE: this field contains information about the vulnerability that has been
tested by Nessus.

• Target: this value contains the IP address of the target machine, i.e. the
machine that appears to be the target in the Snort alert and that has been
tested by Nessus against the vulnerability identified by the CVE tag.

• Timestamp: this field contains the information about when the Nessus scan
has been executed.

• Vulnerable: this boolean value indicates if the target is sensible or not to the
vulnerability identified by the specified CVE.

• Comments: this field contains text about additional information provided by
Nessus, e.g. OS fingerprint and whether the machine is alive or not.

• cid: this field is an identifier of the event.

An example of entries in this table is in the screenshot of Figure 11 (as previously
stated some information has been formatted).

Figure 11. The Repository Database

3.3.2.1 Nessus SQL

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 18/24

Alternative to the temporary solution described above, Nessus SQL is being tested.
Accordingly to [9] Nessus SQL will use an SQL database as backend database for
its output. This solution allows to solve two temporary hacks of the prototype:

• The temporary and extremely poor database used in the Repository Info;

• The hack used to parse the xml output into an SQL database.

Another solution is to use the hack proposed in [10]. In this case it is sufficient to
rebuild the Nessus with the modified nsr_output.c, but it strongly depends on Nessus
implementation and a change in the parameters of the Info Repository database
implies a recompilation of Nessus.

3.3.3 The CorE Database
The CorE Database contains only the link for the correlation between the Nessus
results and Snort alert in case the target resulted to be vulnerable to the attack after
the nessus scan. An entry in the CorE database has the following structure:

• LinkID: a unique identifier;

• ScanID: a link to the ScanID value of the Repository database;

• cid: idenfifier of the event;

• sid: identifier of the Snort sensor;

• Signature: used to retrieve information about the alert.

An example is in the screenshot of Figure 12.

Figure 12. The CorE Database

3.4 The CorE GUI
A simple GUI has been implemented for the CorE. This GUI shows only relevant
alerts to the system administrator, i.e. the alerts related to a vulnerable target
machine.

In the administrator GUI the information is organized in the following way:

• Timestamp of the alert;

• Snort sensor that generated the alert;

• Source of the attack;

• Target of the attack;

• Timestamp of the Nessus scan;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 19/24

• Vulnerability status of the target: this field is actually useless as only alerts
related to a vulnerable machine are linked in the CorE database In future
development of this prototype other network discovery tools may be used at
the same time of Nessus and could be usefull to distinguish the results, i.e.
which tool has found the vulnerability;

• OS Fingerprint detected by Nessus: in this way the administrator is able to
know which OS wa running on the target machine at the moment of the
attack.

• Status of the target: if the target is alive or not.

3.5 Network Architecture
An example of a network architecture using the prototype is in Figure 13.

Zone nZone 1 Zone 3Zone 2 …

Snort DB

CorE Zone

Info RepositoryAlerts

CorE DB

Administrator
GUI

Alerts path
Fresh Information Path

Snort Sensor

nessusd server

Figure 13. Architecture Implementation

It is relevant to note that each zone needs at least two elements:

• A Snort sensor capable of performing the network based intrusion detection,
that analyzes the traffic, generates the alerts and sends them to the
centralization database;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 20/24

• A Nessus server that can scan all the possible targets in that zone and that
must be reachable by the Nessus client in the Info Repository zone.

Of course the Snort sensor and the Nessus server may run on the same machine.

Note: as this work is dealing uniquely with the implementation of the prototype, the
intrinsic security of each zone (firewalls, rules, access lists), as well as where to
implement the databases in order to have them in high security zone, but at the
same time reachable by the sensors, has not been discussed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 21/24

4 Conclusions and Results

The results obtained by this prototype are definitely encouraging to continue its
development. Not only the administrator has a clear view of the really potentially
dangerous alerts, avoiding searching a huge number of false positive, but also
receives information about the status of the target at the time the attack has been
executed.

On the other hand this prototype is far from being useful as it takes into account only
alerts referring to the CVE list, therefore the administrator cannot avoid to look to the
whole Snort database.

Even if the results obtained are encouraging they are only coming from lab
simulations, as the prototype has not yet been tested on a real network.

4.1 Future works
This work is still a prototype, so it has many limits and needs to be enhanced.

• First of all it checks only alerts based on the reference of CVE. Future
development must also contain the other systems of reference such as
Bugtraq and arachNIDS in order to be able to evaluate the severity of the
other alerts received and screening false positives.

• The prototype is actually correlating the information of the on-demand Nessus
scans with the Snort alerts. A more intelligent correlation needs to be
implemented in order to link previous alerts concerning e.g. the same target or
the same source, the same vulnerability etc. A further correlation with Syslog,
Samhain, Tripwire events will also provide more information.

• The implementation of the parser that takes Nessus results and stores them
in the Info Repository database is currently a simple hack that uses grep
operations on the xml output and copy the results into the sql database. To
improve this point we are currently following the development of Nessus SQL
(see 3.3.2.1).

• Also related to Nessus SQL is the actual status of the databases. As said in
3.3, in the current implementation only the Snort database (not goal, but base
of this work) has a productive shape while the CorE and the Info Repository
databases are only tables temporarily included in it.

• The implementation of the Alerts Hunter is related to the Prelude status. In the
current state it searches the Snort database each X minutes for new alerts.
This is far from being an optimal solution. Built on top of a Prelude Manager
generating an XML output, the Alerts Hunter will have no need to search itself
the alerts, while receiving them in real time directly from the Prelude Manager.

• Automatic reactions to network attacks are still in the research phase. They
represent indeed a high potential for DoS in case of induced false positives.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 22/24

• The Network Discovery is based on Nessus only. Other tools, e.g. an
optimization of Netmap, etc., may be integrated in the Info Gatherer block in
order to check the status of the target at the same time an attack is detected.

• Except the simple GUI for the CorE no other GUIs have been implemented for
the other blocks. These GUIs may help in managing the databases e.g.
cleaning up old entries, archivieng old alerts etc.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 23/24

Table of Figures

Figure 1. Architecture Overview ... 5
Figure 2. The Correlator Engine (CorE) ... 8
Figure 3. The Workflow Manager ... 10
Figure 4. The Analyzer ... 11
Figure 5. The Info Gatherer.. 12
Figure 6. The Correlator ... 12
Figure 7. The Info Repository... 13
Figure 8. The Sensor Tables .. 16
Figure 9. The Signature Tables.. 16
Figure 10. The Event Tables .. 17
Figure 11. The Repository Database.. 17
Figure 12. The CorE Database .. 18
Figure 13. Architecture Implementation.. 19

Table of references

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 24/24

[1] Snort. “The Open Source Network Intrusion Detection System”. URL:
http://www.snort.org/about.html (16 April 2003).

[2] Mitre Corporation. “Common Vulnerabilities & Exposures”. URL:
http://www.cve.mitre.org/docs/docs2000/key_to_info_shar.pdf

[3] Mitre Corporation. “CVE Candidates Explained”. URL:
http://www.cve.mitre.org/about/candidates.html

[4] Whitehats, Inc. “arachNIDS center”. URL:
http://www.whitehats.com/ids/index.html

[5] Insecure.org. “Bugtraq mailing list”.URL:
http://lists.insecure.org/about/bugtraq.txt (16 December 2002)

[6] Renaud Deraison.”The Nessus Project”. URL:
http://www.nessus.org/intro.html (1998-2003)

[7] Insecure.org. “Nmap Free Stealth Network Port Scanner,
Linux/Windows/UNIX/Solaris Tools & Hacking”. URL: http://www.insecure.org/
(19 March 2003)

[8] The NetMap project. “Network Modeling, Discovery, and Analysis”. URL:
http://www.cs.ucsb.edu/~rsg/NetMap/

[9] Javier Fernandez-Sanguino. Nessus devel mailing list. “[Database devel]
Current status (README and schema)”. URL:
http://archives.neohapsis.com/archives/apps/nessus/2003-q1/0289.html
 (24 March 2003)

[10] Galitz, SecurePoint - Nessus Archive. “Nessus -> MySQL hack”. URL:
http://msgs.securepoint.com/cgi-bin/get/nessus-0101/53.html
(12 January 2001)

