
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Security Essentials Certification (GSEC) Practical Assignment
Version 1.4b (Option 2)

Implementing Vulnerability Scanning in a Large
Organisation

Richard Grime
June 2003

Abstract

This paper describes how the security group in our organisation uses
Vulnerability Scanning to demonstrably improve our security posture. This
covers the reasons and requirements for scanning, how this fits with our current
business structure and how we used a web interface to distribute the collected
data to our system custodians.

Also covered are our techniques for dealing with false-positives, an explanation
of the chosen solution and how the system was tailored to operate from an end-
user perspective. Finally, we discuss the impact that the system has had on our
organisation.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Introduction
Vulnerability scanning in itself is now very much a “point and click” affair. Scans are
available freely on the web [1] and the majority of tools are provided with a graphical
interface. However, implementing vulnerability scanning within a large organisation
is about much more that installing the software and running it.

This paper describes how our security group now uses vulnerability scanning to
demonstrably improve the security posture of our organisation.

The need for Vulnerability Scanning
We are a large academic institution where large chunks of our internal network can be
considered “untrusted” – as we allow students to use their own laptops in the library
and within halls of residence. Some departments are now also operating wireless
network access for their researchers. We also offer VPN and dial-up services to our
users from their homes. In addition, we offer internet access to academic visitors and
to those using our conference facilities.

Even without these other attack vectors, perimeter security is not enough. An
academic firewall must support the very varied activities of our researchers – video
conferencing, GRID programmes [2] and collaborative research all require firewall
exceptions. Hence, we must apply the principle of Defence in Depth and protect our
host systems.

Scanning in itself is not a policy enforcement tool, but it does provide us with the
necessary information to ensure that we can keep our hosts safe from known attacks.
Other security problems, like weak passwords or poorly coded web sites are a matter
for different tools – we do not attempt to address them using this system.

In a world of metrics and performance reports, vulnerability scanning is also a useful
way of tracking our internal security posture over time. We can use “percentage of
vulnerable systems” type statistics to compare departments, demonstrate need for
budget / staff and show management that the security group is achieving its mandate.

The lack of any internal security data meant we had no way of knowing the risks we
faced from internal attack. This is a problem faced by many companies – as
illustrated by Paul Simmons of ICI; “Our biggest problem is knowing what we do not
know.” [3]

As stated by CERT-CC in their best practices, a system administrator is required to do
the following:

"Whenever an update is released, you need to evaluate it, determine if it is
applicable to your organization's computers, and, if so, install it." [4]

We do not wish to rely solely on inexperienced administrators making this kind of
decision which could affect the entire organisation. Vulnerability scanning provides a
way of double-checking the decisions of our administrators.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

By scanning IP ranges, rather than known hosts, the scanning engine also provides an
asset discovery mechanism. This is a key part of managing risk, as this will identify
the risk for every system, not just the ones we know about.

Leveraging the existing business structure
As part of our organisational security policy, we already had in place a tiered structure
of personnel who had been made responsible for the security of their systems, known
as “custodians”. The custodians are, in the main, of basic technical competency.
They report to departmental security liaisons who are in themselves responsible for
annual departmental risk assessments.

There are also our central support teams, from first to third line. These teams interact
with the users and custodians on a regular basis.

Vulnerability scanning some 10,000 hosts on a regular basis generates a lot of data.
No central resource has the time or personnel to sift this information and then
distribute it out to each custodian.

To utilise this valuable resource, we needed a way of supplying vulnerability scan
data to the custodians in a simple and cross-platform fashion.

Only by demonstrating that the data collected can be of real benefit will our user
community accept the concept of vulnerability scanning.

Defence in Depth and Risk Assessments
As mentioned above, vulnerability scanning itself is an important part of any Defence
in Depth strategy. Our network perimeter is policed by firewalls and IDS systems and
key internal groups are protected by internal firewall solutions.

The next step in this chain is host security. Identifying vulnerable hosts through
scanning is an obvious benefit when attempting to secure them. So how does
vulnerability scanning fit with the SANS four step plan [5] to risk management?

Step 1: Identify Risks
A vulnerability report is an excellent way of identifying the risks and attack vectors
open on each host.

Step 2: Communicate your findings
This is the critical step: we must be able to pass the information down to the people
who can actually effect changes – i.e. our custodians.

Step 3: Update (create) policy as needed
Policy already exists granting our group permission to vulnerability scan systems
where the users have been properly notified beforehand. The policy covering the
requirements of each custodian (their “job description”) may need updating in
response to data collected – e.g. we may have to change the frequency with which the
custodian checks the machine if it turns out that patches are being released faster than
they are being applied.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Step 4: Develop metrics to measure compliance
Using vulnerability scanning, it is easy to tell whether the custodian is doing their job
properly. By scanning regularly, the overall security posture of the organisation can
be measured. We can also look for successful custodians and use their experience to
train others.

Getting Started
We can now summarise the requirements for our organisation

Requirements
1. A vulnerability scanning engine capable of scanning multiple OS platforms (our
organisation uses a mix of Windows, Linux, Unix, MacOS, etc.)
2. A low cost solution
3. Ability to disseminate data to the authorised parties
4. Ability to secure data from unauthorised parties (who may be authenticated)
5. Ability to track data over time
6. Ability to generate reports
7. Tie in to our existing databases – e.g. computer registration database
Table 1 - Requirements

Vulnerability scanners are very expensive – with the notable exception of Nessus. As
many parties consider Nessus to be amongst the best of the vulnerability scanners [6],
and fits very well with the “low cost” requirement, it is the obvious choice.

The storage, distribution and reporting of data requirements immediately suggests
“database”. We have a large Windows infrastructure within our organisation – hence
it was decided to use MS-SQL to backend the data collected during the scans.
MySQL may seem a more logical choice (as Nessus connects directly to MySQL), but
the Microsoft solution was chosen for two main reasons:

1) We already have existing MS-SQL database servers suitable for our use; these are
regularly backed up and maintained by our database team.

2) Our experience with MySQL is limited. We needed to make sure that security on
this database was absolute – the data contained within it is practically the keys to the
kingdom.

MS-SQL also offers data transformation services (DTS), which makes integration
with existing data sources much easier.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Setting up the scanner
Using the excellent documentation at the Nessus site [7], the daemon portion of
Nessus was setup on a dual processor Linux server. NessusWX [8] was installed on a
Windows server running MS-SQL.

NessusWX is used to initiate scans by department. We defined groups of subnets to
cover each organisational unit so that the scans can be broken down easily. Hence, if
we are asked to manually rescan a unit, we are not forced to cover the whole
department again.

A database was created to hold the Nessus data. NessusWX can be used to generate
SQL scripts containing all the data collected during a scan. Running these scripts in
the Microsoft SQL Query Analyser imports all the data into the database where it is
ready for distribution.

Both the Windows and Linux boxes are hardened using the tips provided in the SANS
material - which includes Centre for Internet Security (CIS) [9] guidelines for each
OS. In addition, the Windows machine runs BlackICE PC Protection by ISS [10].
The Linux machine runs IPTables as its host firewall.

Integration with existing da ta sources
Our computer registration database holds the IP, MAC address and location of each
computer we have registered on our network. More importantly for this case, it also
holds the registered owner and registered custodian for those systems. DTS is used to
pull this data on a regular basis, so that the user and custodian fields are kept in sync
between the two databases.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Building a user interface
We now had a database with some initial scan data in. Next, a user interface to that
data needed to be created.

Many security products use monolithic management interfaces that would be
unsuitable for our users. The interface needed to be quick and accessible for non
security trained personnel.

The obvious choice (bearing in mind the cross-platform nature of our organisation)
was a web based interface. As my background is in ASP web development, this was
the language chosen. Our organisation also operates an Active Directory
infrastructure, which means that authentication can be handled centrally.

We needed now to define the types of users who would be accessing the interface and
what level of access they would require – following the principle of least privilege.
All access to the data is, by design, read only

User Type Access Required
System Owner Systems who have the owner field set to

that person’s logon name*
System Custodian Systems who have the custodian field set

to that person’s logon name*
Departmental Support Staff Systems within that department, access to

departmental reports.
Central 3rd Tier Support Staff Access to all systems under their remit,

access to reports covering only those
systems

Security Group Access to all systems, access to database
directly, access to all reports

Table 2 - Access Control Types

*i.e. where the field from the computer registration database shows the currentl y logged on person as
an owner / custodian. See “Integration with existing data sources”.

The IIS server hosting the web interface is a separate machine, which means the ASP
ADO connection string must be set to connect through the SQL server’s host firewall
[11,12]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Making the user aware
The interface also needed to promote the role of custodian to owners who weren’t
aware of the custodian scheme. Some of our systems do not have custodians
assigned. However, the system owners would be able to see this and chase up getting
a custodian assigned. Hence, the interface was designed to break down into three
main sections as follows:

• A list of machines that the current user is the registered owner of. This
provided basic details, such as who the custodian was, the IP address and
name of the machine and the last recorded OS for that machine.

• A list of machines that the current user is the registered custodian for. The

same basic details were provided as above, including who the owner of each
system was.

• An “additional access” dialog. For the users who had access to additional

data (i.e. departmental support staff, etc.) a box was supplied into which either
an IP or hostname could be supplied. Provided the user had access to that
particular machine, its vulnerability scan data would be displayed.

Screen shots demonstrating this system are given in Appendix A.

The first two sections are lists for a very specific reason. It highlights to the user
exactly which systems they are responsible for - if our information regarding who the
owners / custodians of particular systems are wrong, the user will be able to tell
immediately. This helps us keep the databases current.

The additional access section caters for the support staff who are assigned access to
specific subnets, etc.

The interface also includes a “Traffic Light Report”. Systems with major
vulnerabilities are marked with a red light; those with no major holes are given a
green light. As the overall security posture improves over time, we can tune the
traffic lights to cover less serious vulnerabilities.

This helps the busy user see, at a glance, which systems need immediate attention
without having to check each system in detail.

The database is also used to log the actions of all the users accessing the web
interface. This helps us track abuse of the system, as well as troubleshoot problems.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

False Positives
It is an artefact of any scanning solution that “false positives” will be produced. An
obvious example is that of UNIX system administrators who run PortSentry (David
Sarmanian has a paper on what PortSentry is and how to deploy it [13]). In other
cases false positives may also be generated because of misleading banners.

Our Nessus scanner is configured to use safe tests* (Non-DoS plug-ins in Nessus
parlance). This means that in many cases, Nessus relies on the “banner” returned
when it connects to a specific port. For example, it may use a test similar to this telnet
connection:

[root@localhost root]# telnet localhost 22
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
SSH-2.0-3.2.2 SSH Secure Shell (non-commercial)
^]
telnet> qu
Connection closed.

In this case the banner would be “SSH-2.0-3.2.2 SSH Secure Shell (non-
commercial)”. The Nessus plug-in knows which versions of SSH are insecure, and so
can flag problematic versions. However, patches released by some vendors may not
modify this banner string.

Given the likelihood of false positives occurring, we had to implement a way that
users could report them to make sure they were filtered out of future scan reports. As
the system is based on a database this is fairly easy to do and is explained in the next
section – “Database Model”.

Why is handling false positives correctly so important? Any data we present to a user
must be as accurate as possible. Imagine a user faced with a long list of false
positives, which are showing up every time we scan their system. After a while, they
will begin to take only cursory glances at the information as they “know” that they are
all false. It would be very easy in this scenario to miss the one, new, true
vulnerability that has appeared in the list.

But also a word of caution – we cannot simply remove false positives on a whim.
Each false positive must be confirmed as such by someone with experience in
checking for vulnerabilities. Hence, our users must email us directly to get
vulnerabilities marked as false. We ask that they submit:

• The system(s) affected
• The ID of the plug-in causing the false positive
• Tests they have conducted to ensure the report is false

* Nessus can be configured to acti vely check for a vulnerability by attempting to exploit it rather than
just grab the banner, but, this checking may cause a Denial of Service condition on the machine being
tested. Although a more reliable method of detecting actual vulnerabil ities, this is a trade off we had to
make. Crashing our users’ machines in the name of better security would not be popular!

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

We will then manually check their machine to ensure that we never mark
vulnerabilities as false incorrectly.

Database Model
As mentioned above, the Nessus scan results are imported via an SQL script into an
MS-SQL database. Information from the computer registration database is imported
via DTS.

When a user brings up the web interface, SQL stored procedures are used to return the
information they have requested. The database checks permissions for the requested
IP address by converting the IP into a numeric form, e.g. given the IP address
192.168.10.12, we convert as;

() () () () 32322380922561225610256168256192 0123 =×+×+×+×

Unlike MySQL, MS-SQL has no built in IP address capability so this formula is
written into a User Defined Function for efficiency. SQL is much better at dealing
with numeric values – so having converted the IP address into a number we can check
whether the user has permission for the requested IP address using a simple SELECT
statement (using the keyword BETWEEN).

Looking carefully at the screenshots in Appendix A, we can see that this “encoded” IP
address is passed as a URL parameter. So can anyone manipulate this number to view
anyone else’s data? No, because the permissions are checked by the database – and
not just blindly followed by the ASP. So, in order, the user clicks to view a system’s
data and:

• IP Address is encoded by the ASP and passed to the database
• Database looks up the connected user, and checks whether this IP lies within a

range permitted to that user (this is the authorisation step; authentication is
taken care of by via trusted connections to the database).

• If so, the database checks the table of known positives for that system.
• The database prepares a record set of all discovered vulnerabilities, minus

those listed in the false positives table.

So why use a false positive lookup table, rather than just turning off the relevant plug-
ins in Nessus? After all, if we know a certain plug-in generates false positives, then
why bother enabling it?

The table is there to allow us more flexibility in controlling false positives. If a
certain system is not vulnerable to a certain version specific SSH vulnerability
(though vendor patching), does this mean that this version is safe across the rest of our
organisation? Definitely not. The false positives table ties plug-in ID numbers to IP,
or range of IP, addresses. So, if we know a cluster of machines is running a vendor
patched copy of an FTP server, we can mark those vulnerabilities as false for those
specific systems.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Supporting Initiatives
This project relies on several other initiatives within our group. We had already
established a precedent for scanning using our security policy (as mentioned above).
In addition, we have deployed Microsoft Software Update Services (SUS) [14] to
provide approved patches to our users (should they request it). SUS can be controlled
via Active Directory Group Policy, or using a registry patch. We used another web
page to generate the registry patch based on the users’ choices.

When answering users’ question regarding security issues, we also needed a
document repository containing patching advice, information on vulnerabilities, etc.
This repository is again made available via the web, so that we can quickly point users
to answer documents and relevant sections of the security policy.

Most queries are currently handled via email, but we are working with different
content management systems to hopefully provide a more intuitive web page that
users can locate their own information on.

Improved Security?
The critical question after investing the time and effort in developing any security
solution is “have I demonstrably improved the security of my organisation?”

Simply conducting a vulnerability scan will not fix anything. The scan itself is only a
means to an end – the massive amount of data it produces needs proper analysis to
improve the security posture of the organisation.

Although the vulnerability scanning in our organisation is a relatively young project it
has already had some tangible benefits to security:

Improved level of patching over the departments who have opted into the project
During its initial rollout, we chose departments who wished to take part in a trial run.
Since then, we have noticed a significant drop in the number of systems showing as
“red” in the traffic light reports. Using web site logs and our own custom database
reports, we can use the system to demonstrate that security of that particular
department has improved. These types of quantifiable results are invaluable in
management meetings.

Improved awareness of the Security Group and its role
The appearance of available vulnerability data made a lot of our more computer savvy
users write asking questions about the function of our security group. Many have
now started requesting advice and help with their security issues. Vulnerability
scanning has effectively been used to demonstrate our presence within the
organisation, which can only be a good thing.

Improved awareness and development of Security policy
We have used our security policy as an effective tool in shutting down unauthorised
web, ftp and mail servers. Using it in this way has led some users to ask questions
regarding other activities they are performing on their machines. As a result of these
questions and feedback, we have been able to produce policy guidance notes the
policy is more accessible to the end user.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Asset Management
The scan also performs a basic audit of hardware connected to our network. We have
met Paul Simmons’ challenge [3] by discovering those hosts which are not correctly
registered. We also know what people are using as various FTP servers, web servers,
etc. based on the banners supplied. This information is invaluable when we get news
of a new vulnerability – we can now send targeted emails to our users. In a similar
way to the false positive handling, this prevents “information overload” on our users.
As opposed to “yet another email” from the security group, the system administrators
can now receive only the relevant information. We can also catch people who have
neglected to sign up for our internal issue-specific security mailing lists.

Documentation and Mainte nance
The system we have implemented will need to grow and change with time. It is
essential that all the code is fully commented and that the system is documented,
otherwise the system will only last for the period of my employment.

Other members of staff may also wish to contribute code ideas or suggestions for
improvement. By employing a clear separation between data collection (Nessus),
data storage (MS-SQL) and presentation (ASP) it is simple for a specialist in any of
these fields to add their knowledge to the system.

This separation also allows us to change any of the technologies as required. If
development were to stop on Nessus, we could swap in any other scanning engine
capable of generating SQL output. We can also use other engines to perform sanity
checking against Nessus; because as noted in the Network Computing article [6],
none of the scanners tested detected 100% of vulnerabilities.

Storing the information in a database has another benefit. We are not tied to just
using a vulnerability scanner such as Nessus – we can add in custom scripts which
generate data, e.g. checking for open shares. We can then provide this extra
information to the user without having to change the interface significantly. The other
benefit of Nessus (and other scanners) is the ability to write your own plug-ins so we
can test for organisation specific issues.

Conclusion
This project has demonstrated to use that deployment of a vulnerability scanner,
especially in a large organisation, is about much more that just installing and running
the scanner. Collation and distribution of the very valuable data collected is essential
if the scan is to server its purpose.

We aimed to deliver a cost effective solution that would give our users the
information they needed to ensure the security of our organisation. In this, we have
delivered.

The project in itself does not mitigate the risk of an attack, but it does quantify the
risk. But by providing the gathered information quickly and easily to the people on
the ground, our generic “risk of successful attack” is greatly reduced.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix A - Screen shots

Figure 1 - Front page of the scanning results web interface

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 2 - Sample of a machine report

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References

1. ScannerX,LLC. “Online Vulnerability Scanner” URL:

http://www.vulnerabilities.org
2. UK Department of Trade and Industry. “e-Science Programme” URL:

http://www.escience-grid.org.uk
3. Ward, Mark. “Closing the holes on hackers” BBC News Online, URL:

http://news.bbc.co.uk/1/hi/technology/2989033.stm
4. CERT CC. “Keep operating systems and applications software up to date”,

30th April 2001. URL: http://www.cert.org/security -
improvement/practices/p067.html

5. Austin, Brice, Dinehard et al. “Basic Security Policy” 1.2 SANS Security
Essentials II: Network Security Overview. SANS 2003. pp2-20.

6. Shipley, Greg; Foristal, Jeff. “Vulnerability Assessment Scanners”.
Network Computing. URL: http://www.nwc.com/1201/1201f1b1.html

7. Anon. “Nessus Documentation”. URL:
http://www.nessus.org/documentation.html

8. victor@securityproject.org. “NessusWX”. URL:
http://nessuswx.nessus.org/

9. Various. “Centre for Internet Security”. URL: http://www.cisecurity.org
10. ISS. “BlackICE PC Protection”. URL:

http://blackice.iss.net/product_pc_protection.php
11. Microsoft Corp. “HOWTO: Use ADO to Connect to a SQL Server That Is

Behind a Firewall”. URL: http://support.microsoft.com/default.aspx?scid=kb;en-
us;269882

12. Microsoft Corp. “HOWTO: Set the SQL Server Network Library in an ADO
Connection String”. URL: http://support.microsoft.com/default.aspx?s cid=kb;EN-
US;238949

13. Sarmanian, David. “Deploying PortSentry – A Simple and Free Barrier From
Inside Hackers”. 5 th January 2001. URL:
http://www.giac.org/practical/gsec/David_Sa rmanian_GSEC.pdf

14. Microsoft Corp. “Software Update Services”. URL:
http://www.microsoft.com/windows2000/windowsupdate/sus/default.asp

