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Protecting Insecure Programs 
 
Introduction 
 
In most computer systems used today, programs are run that come from a 
variety of sources: the computer vendor, third-party vendors, open-source 
projects, consultants, and employees.  In some cases, source code is available, 
but it is more often not.  These programs often implement services that are made 
available to the general public, or listen on networks where all the participants are 
not trusted.  Program flaws, such as buffer overflows, heap overflows, format 
bugs, and input validation bugs, enable attacks upon computing resources and a 
subversion of control.  It is difficult to see how data integrity or availability can be 
maintained in such an environment.  In order to mitigate the risks associated with 
the loss of control of computer programs, administrators of computer systems 
can apply defenses intended to limit damage and alert staff to trouble as early as 
possible.  This document will examine several strategies to protect programs 
from malicious input, so that they will, in the worst case, abort processing rather 
than cause malicious code to be executed.  Only host-based defenses are under 
consideration in this document.  Particular attention will be spent on defenses 
appropriate to the Sun Solaris, Linux, and OpenBSD operating systems. 
 
Background 
 
When a new computer program is written, a decision must be made about which 
language it will be written in.  Most programs running today have some sort of 
dependence on either the C or C++ computer languages- they are either written 
in one of these languages, or use libraries written in them.  The choice of C or 
C++ is usually based two considerations: performance, and compatibility with 
existing code libraries.  The C family of languages are structured in a way that is 
closely aligned with the design of most microprocessors, and they have been so 
widely ported to different architectures that it is difficult to find one in which they 
have not been ported. 
 
However, the machine-oriented character of C is one reason why security 
vulnerability programming mistakes are so common [SecProg].  C reveals as 
much of the power of the underlying microprocessor as possible, but in so doing, 
also creates a support burden with the programmer.  The standard C language 
has very few run-time checks that will trap and report common programming 
errors.  The price for C's performance is the tedious diligence that must be taken 
in order to make the programs written in it reliable. 
 
The pitfalls awaiting the C programmer are many.  The largest single category of 
programming error that results in an exploitable vulnerability is the buffer 
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overflow.  Year after year, roughly one-fifth [Icat] of all published vulnerabilities 
are buffer overflows.  A buffer is a region of allocated memory that is used to 
store a series of identically sized data items.  A buffer overflow, also known as a 
“stack smash” or “stack overrun”, is an error in which the length of external data 
is not checked to make sure it will fit into a buffer that has been placed on the 
run-time stack.  The C language does not enforce that the data written actually fit 
within the buffer space- the programmer must manually check this with code. As 
you might imagine, this check is usually omitted due to speed considerations or 
out of an ignorance of how damage could result from the flaw being exploited.  
This kind of vulnerability has been well understood for quite some time [Aleph1], 
yet additional examples of it are found weekly and then announced on mailing 
lists such as BugTraq [BugTraq].  Another kind of flaw, the heap overflow 
[w00w00], is similar to a buffer overflow but is less common and affects 
dynamically allocated data and pointers to data rather than the run-time stack; 
since heap overflows are less well known even experienced programmers 
neglect the checks that must be made to avoid creating this flaw in a program.  
Format bugs [Newsham] arise out of neglecting to carefully check external data 
given to the program, and treating it instead as printf(3) data; it is easy to forget 
about the %p and %n formats and what an attacker can do with them if they are 
allowed to supply the format string.   On any given computer, there are very likely 
one or more programs that are vulnerable to the exploits written to take 
advantage of the vulnerabilities left behind by these simple programming errors. 
 
Yet there are defenses that are effective.  Even if the source code is not 
available, protections can be applied to make an attacker’s job more difficult.  
These defenses can be divided into seven categories, with the first four 
applicable to all programs and the last three applicable to programs where the 
source code is available: 
 
• Altering program memory maps 
• Hardening system calls 
• Filtering system calls 
• Using a virtual machine 
• Checking the source 
• Compiler modifications 
• Using libraries or languages with security guarantees 
 
In the following discussion, each defense will be evaluated for effectiveness, 
ease of use, and portability.  Not all defenses are appropriate for every program 
or situation. 
 
If you don't have source code 
 
If you do not have source to the program you're trying to protect, there are still 
things that can be done to limit the damage that can be done by an attacker.  To 
exploit a vulnerable program, attackers make assumptions about the running 
environment of the program.  By altering the running environment so that the 
attacker's assumptions are no longer valid, a deployed defense stops the attack 
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from succeeding. 
 
Altering program memory maps 
 
Each page in a computer system's memory has a set of permission bits 
describing what may be done with the page; on POSIX-orientedi systems these 
are named PROT_EXEC, PROT_READ, and PROT_WRITE; they indicate 
execute, read, and write permission, respectively.  The memory management 
unit of the computer, in conjunction with the kernel, implements these 
protections. It is important to know that not all computer architectures implement 
the full set.  For example, on x86 architectures, the hardware does not fully 
implement PROT_EXEC- PROT_READ implies PROT_EXEC. 
 
The protection is implemented by modifying the default protection bits applied to 
a program's stack, and additionally other memory regions.  For example, it is also 
appropriate to grant only PROT_READ permissions on a program's static data 
area, in case there is data within the program that an attacker could use as 
executable code or data that would affect the flow of execution if overwritten.  
Removing PROT_EXEC permission from the heap data area of a program 
makes heap-based exploits much more difficult. 
 
This countermeasure requires no changes to the protected programs, and is a 
useful first line of defense.  If it is successful in thwarting an exploit, the 
vulnerable program will cause a protection fault and terminate.  It has no 
performance impact on the protected programs themselves, but may incur 
overhead within the operating system (this is system dependent).  It requires a 
modification to the operating system, so this protection is not portable.   
 
Solaris systems have a setting in /etc/system that removes execute permission 
on program stacks that has been available since version 2.6 [noexec].  It is 
enabled by adding a line in the file /etc/system that reads: 
 
set noexec_user_stack = 1 
 
Please note that this only protects the stack, not the heap or program data.  64-
bit versions of Solaris have this protection on for 64-bit programs by default, 
however another related setting (noexec_user_stack_log) that enables logging of 
the attempts to use executable code on a program stack is not enabled by 
default.  Both settings are recommended. 
 
 Linux systems can have their stack protected with the Openwall [Openwall] or 
grsecurity [grsecurity] patches.  With the current Linux kernel the grsecurity patch 
is recommended, as it also includes a workaround on architectures that do not 
support the PROT_EXEC privilege correctly; this includes nearly all x86-based 
chips. 
 
OpenBSD [OpenBSD] (version 3.3 and beyond) protects all of a program's 
memory regions appropriately, assuming that the architecture supports it, 
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completely automatically.  A workaround for x86-based chips has been promised 
for version 3.4. 
 
Most published exploits that rely on stack buffer overflows are stopped by this 
protection, but some exploits [Bypass] such as return-into-libc [Nergal] will still 
function. 
 
Hardening System Calls 
 
One type of protection for systems running untrusted or unreliable code is limiting 
the system calls that a program is able to invoke.  Since all programs must use 
system calls to transfer data, open files, or modify file system objects, focusing 
on this interface allows untrusted programs to execute while limiting the damage 
they can do.  The chroot(2)ii system call is an old example of this kind of 
protection; once a program is placed in a chroot “jail”, it does not have the ability 
to reference any file system objects outside of the jail.  Chroot, however, does not 
affect a program's ability to affect any resource not named by the file system, so 
it is limited in how well it can protect the system. 
 
On Linux systems, chroot can be augmented with restrictions on capabilities, 
using the compartment [Heuse] tool.  POSIX.1e capabilities [linuxcap] are an 
attempt to define work that a privileged process may do, and then limit each 
program so that it is capable of doing its assigned work but no other privileged 
system calls.  The compartment program builds on the protections of chroot to 
further restrict what a program running in the compartment may do. 
 
Kernel-loadable modules, on systems that support it, can be used to extend the 
protections surrounding untrusted programs.  These additional protections further 
limit the damage that can be done by a subverted program.  For example, on 
many systems the chroot call may be effectively canceled by a program with root 
privilege by using chroot twice more, once on a subdirectory of the chroot space, 
and lastly on the real system root.  A kernel-loadable module can prevent this 
from occurring by simply disallowing a successful chroot for any process that 
already has a chroot in effect.  Hardening the kernel has a minimal impact on 
most running programs, but is not portable.  The protection is applied to all 
programs running, regardless if they are trusted or not.  When this defense 
successfully stops an attack, the system calls invoked by the exploit fail.  If the 
exploit corrupts the running environment, it is likely that the vulnerable program 
will terminate. 
 
On Solaris-based systems, Papillon [Roqe] is a security-enhancing kernel 
module that protects against several well-known types of system exploits 
involving symbolic and hard file system links, limits what processes an 
unprivileged account may see, and further limits what a program under chroot(2) 
may do.    
 
On Linux systems, there are several packages that implement enhanced-security 
features in the kernel.  Among them is the Openwall patch [Openwall], the LIDS 
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project [LIDS], and the grsecurity [grsecurity] patch.  In particular, the grsecurity 
patch implements both this protection and also protects program memory regions 
by making the stack and data areas not executable. 
 
Filtering System Calls 
 
A more powerful approach is to run untrusted programs under the watch of a 
monitoring process, and require that system calls invoked by the untrusted 
program be inspected and approved by the monitor program before being 
allowed to continue.  This is more powerful in that the monitoring program may 
make decisions about the validity of system calls by knowing in advance what the 
untrusted program is supposed to do, where it is expected to manipulate files, 
whether it is expected to open or listen to network connections, and so on.  Valid 
behavior of the untrusted program is coded in a profile of some kind, which is 
referenced when the untrusted program executes.  An example of this form of 
defense is the Janus [Janus] project, which implements a simple version of a 
monitoring program which works on Solaris operating systems.  Later work in the 
project enabled the monitor to work on Linux systems with the addition of a 
loadable kernel module.  This defense will affect the performance of programs 
run under the watch of a monitor, but affect no other programs.  The performance 
impact can be substantial (up to 40% in some cases) however, as every system 
call made by the untrusted program is examined by another user program.  It is 
also a technology that is not widely portable, although commercial 
implementations of this idea exist for multiple platforms.  Some commercial 
implementations are WireX Communications’ SubDomain technology [WireX], 
which implements the monitor in the kernel, VXE [VXE], Entercept 
Communications’ Entercept [Entercept], and Argus Systems’ Pitbull LX [Argus]. 
 
Using a virtual machine 
 
It is possible to emulate an entire operating system or computer at reasonable 
speeds.  Therefore, it is now a practical defense to run the untrusted program 
from a virtual computer, as long as performance is not critical; this defense 
requires more compute resources than any other listed, even significantly more 
than filtering system calls.  A virtual computer has allocated to it certain 
resources (memory, hard drive space, virtual network interface, et cetera) that it 
can access, but no more- it is completely unable to affect the computer that the 
virtual machine emulator is run from, barring errors in the implementation of the 
virtual computer.  The entire set of system calls available to the untrusted 
program are emulated.  On Linux systems, a project named User Mode Linux 
[uml] can present a virtual environment for a program to run in.  It is important to 
note that while this is excellent protection for the real computer, the virtual one 
can still be compromised, with all of the data integrity issues that implies.  
However, since the entire running state of the virtual computer amounts to a 
single file on the physical computer, restoring the state of the virtual computer 
may amount to copying from a backup file and rebooting the virtual computer.  
One commercial product that implements a virtual machine is called VMWare 
[VMWare], which emulates the entire computer, including ROMs and boot 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

devices.  Isolation between the real and virtual systems is so complete that 
entirely different “client” operating systems can be run within the virtual computer, 
and multiple simultaneous virtual computers can be run on a computer with 
sufficient storage and memory. 
 
If you have source code 
 
The following protections are possible only if source code to the vulnerable 
program is available.  All of the previous protections are also applicable, of 
course. 
 
Checking the source 
 
If all source code were checked carefully for potential problems, then the need for 
the rest of these defenses would diminish greatly.  However, it is important to list 
this as a defense, as programming flaws that are corrected before the program is 
used do not become vulnerabilities to be exploited later.  There are many tools 
that programmers can use to help them do static source code analysis on their 
programs and find potential problems.  One such program, Splint [splint] is a 
program that checks source code for potential security problems and annotates 
the source code accordingly, so that the problem in the code can be addressed 
before the program is used.  A commercial product that supports multiple 
platforms is CleanScape Corporation’s Lintplus [lintplus], which is a more general 
source code-checking tool. 
 
Compiler modifications 
 
Many exploits succeed because there is no way to detect a maliciously modified 
stack or data area without help from the compiler.  A set of protections based in 
the compiler can make exploiting vulnerable programs in an undetectable way 
very difficult.  A simple form of this protection, the stack canary (named so after 
canaries used in the mining industry, who fall faint or die at the slightest sign of 
noxious gas, giving warning to miners), is put on the stack by the subroutine 
entry code and verified by the subroutine exit code generated by the compiler.  If 
the canary has been modified, then the exit code terminates the program with an 
error.  Two schemes for generating stack canary values exist.  The first uses a 
known value that will cause most string-handling functions to halt if encountered 
(the value is 0x000aff0d, developed by WireX).  This is useful to protect against 
accidental problems, but fails in the face of an attacker who knows the canary 
value.  Stack canaries are best generated by a source of true randomness, in 
order to make it difficult for an exploit writer to guess what the canary will be in 
advance; such a source of randomness may not be available. 
 
A further protection that can be implemented in a compiler is the randomization of 
variables and code positions in memory, particularly the randomization of the 
location of loaded libraries.  This defense may also require the help of the 
operating system; OpenBSD 3.3 does this by default.  On Linux systems, the 
grsecurity [grsecurity] patch implements Address Space Layout Randomization 
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(ASLR), which randomizes the load position of the various memory allocations 
within an ELF binary.  Both OpenBSD and the grsecurity patch further cause the 
addresses of the loaded libraries contain a NULL (zero) byte, so that attacks 
such as string format bugs are made even harder to exploit because these 
attacks cannot send a NULL byte through the vulnerable string functions. 
 
Compilers are available that generate code that is resistant to buffer overflow 
attacks, and at least one compiler that will additionally rearrange the positions of 
variables, code, and libraries such that no address within an executing program 
will be known by an attacker.  Examples of the former kind of compiler include 
StackGuard, StackShield [WireX], and the protection afforded by Microsoft .NET 
compilers if the /gs flag is used during compilation [Microsoft].  The SSP [SSP] 
compiler implements all of the mentioned protections. 
 
Stack canaries alone can detect and (with appropriate function termination code) 
block most of the attacks based on buffer overflows.  If the compiler further 
reorders stack variables and load locations of libraries, an exploit will be unable 
to construct a valid stack frame (with a high degree of probability, based on the 
size and randomness of the stack canary). 
 
Using libraries or languages with security guarantees 
 
There are libraries of code that aid in avoiding problems with buffers, pointers, 
and memory management; using them requires some porting effort but in high-
risk applications the time would be well spent.  One of these libraries, SafeStr 
[SafeStr], provides a consistent and safe interface to string-handling functions, 
the root of many security vulnerabilities.  Of course, effort is required to re-code 
any string handling that the program may do, converting it to use the new library. 
 
Another code library, libsafe [libsafe], can protect programs that have already 
been compiled if that program uses dynamically linked libraries.  No source code 
changes need to be made, however it can only protect against exploits directed 
at vulnerable functions in the C library, not all vulnerable functions.  This 
protection is fairly portable, as most operating systems today have some concept 
of a shared object library that is linked to programs at run time. 
 
If the program is put into a particularly high-risk situation (a machine without a 
firewall, processing sensitive data), it may be prudent to consider porting or 
implementing the program in a language that has some security guarantees.  For 
example, Java programs are guaranteed to never be susceptible to buffer 
overflows, barring an error in the implementation of the Java run-time library.  
This is by design, as string handling objects of two types are implemented in the 
language, one for static strings and another for string buffers, which perform 
bounds checking on every modification.  Pointers to arbitrary memory locations 
simply do not exist in Java as they do in C, which eliminates another class of 
errors and vulnerabilities.  Other languages, such as Scheme and CAML, also 
have security guarantees.  The security “stance” of a computer language may 
become an important consideration with future Windows programming, as 
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Microsoft appears to be developing a CAML-based language for .NET 
development [Fsharp]. 
 
Time and money constraints are often a barrier to creating secure programs, and 
adding security after the program is already written generally consumes too many 
resources to be a serious consideration, especially when someone suggests 
porting a program to a completely different language.  There are dialects of C 
that promote enhanced security that may be useful to pursue in this case.   
Ccured [ccured] is a source code translator that, given an input C language 
program with appropriate hint markup, creates a new version of the program that 
contains checks that prevent memory safety violations.  The resulting program 
runs more slowly, but will always catch attempts to exploit stack and heap 
overflows.  Another approach, a dialect of C called Cyclone [cyclone], 
approaches the problem of unsafe memory accesses by implementing built-in 
safe pointer types, exception handling, and a robust region-based memory-
management scheme that eliminates problems with dynamically allocated 
structures.  The disadvantage is that a good portion of the C code will have to be 
re-written in correct Cyclone to take advantage of the memory model and 
exceptions in order to be protected. 
 
Conclusion 
 
There are all kinds of production computing environments.  It is a rare facility that 
is able to run a program it truly trusts, and even rarer for a facility that does not 
have to run any untrusted programs.  Most businesses have a need to present an 
image to the Internet, which is of course the world’s largest untrusted computer 
network.  It is reassuring to know that there are ways to protect untrusted 
programs, even those programs without source code, such that any resulting 
damage from active attack will be extremely limited.  The available protections 
are such that the worst that an attacker may do is cause a denial of service, 
which cannot be completely protected against in any event.  If several of the 
methods detailed in this document could be used simultaneously, the resulting 
“defense in depth” environment would be very difficult to exploit. 
 
There are several avenues for further work that may be fruitful.  For example, the 
defense “filtering system calls” is possibly the most powerful if source code is not 
available, since it operates from an assumption that allowed behavior can be 
codified and all other program behavior should be denied.  However, it is also 
one of the more resource-intensive defenses.  Improving the performance of this 
defense would quite definitely make its use more widespread.  The virtual 
machine defense is also quite promising, if automated checking, backup & 
restoration of virtual machine state can be implemented. 
 
Solaris systems can be defended with the noexec_user_stack setting, without 
any other modifications but will still be vulnerable to large classes of attacks.  It 
would be helpful if Sun would implement the ASLR support available in 
OpenBSD and Linux with grsecurity, so that attacks not executing within the 
stack would be difficult to execute.  The Papillon [Roqe] module can be used so 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

that some attacks can be stopped without impacting performance.  Lastly, Solaris 
systems can also be protected by the defenses in the SSP [SSP] compiler if it 
can be used to compile programs from source. 
 
Linux users can apply the grsecurity patch and gain many of the defenses 
mentioned in this document- stack and data areas are made non-executable, 
programs are mapped into memory using ASLR, and system calls are hardened 
against potential exploits.  With the addition of a compiler that generates code 
with stack protection, Linux computers can be well defended against attack. 
 
Users of OpenBSD 3.3 appear to have the best set of defenses available, and 
further do not have to patch or modify the system to enjoy the benefits.  
OpenBSD uses several defenses (altering memory maps, modified compilers, 
hardened system calls, safe function libraries) in order to make an attackers task 
as difficult as possible.  While no other operating system does as well, at least a 
few of these defenses can used to help secure any program that needs to be 
used in the enterprise. 
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i   POSIX is a set of standards published by the IEEE at http://www.pasc.org/.  It stands for 
“Portable Operating System Interface”. 
 
ii  On many POSIX-compatible systems, it is customary for “man” (manual) pages to be separated 
into sections, identified by number.  Section 1 covers user commands, and section 2 details 
system calls.  The number in the parentheses indicates which section is relevant to the topic 
being discussed.  This disambiguates chroot(1), which is a command that may be typed into a 
shell prompt, from chroot(2) which details how this system call is invoked and what it does. 


