
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 1

CAUSES AND RECOMMENDATIONS TO
RESOLVE VULNERABILITIES THAT CAN ARISE

IN SECURITY CODE REVIEWS

GIAC GSEC Practical
Version 1.4

Option 1
April 15, 2003

By: Angela M. Goodwin

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

TABLE OF CONTENTS

ABSTRACT: ..3
1.0 SECURITY CODE REVIEW PROCESS ..3

1.1 WHAT IS A SECURITY CODE REVIEW? ...3
1.2 APPLICATION BACKGROUND REVIEW ..4
1.3 ANALYST REVIEW SHEET ..5
1.4 SOURCE FILE REVIEW ..6

2.0 GENERAL VULNERABILITIES AND RECOMMENDED ACTIONS FOR
RESOLVING SECURITY CODE REVIEW FINDINGS...6

2.1 Input Validation..7
2.2 Secure State and Session Management ..9
2.3 Sensitive Information in Non-Compiled Code ..9
2.4 Documentation / Comments ..10
2.5 User Authentication...10
2.6 Principle of Least Privilege...11
2.7 Test and Debug Code ..11
2.8 Malicious Code..12
2.9 Public Variables, Methods, Objects ..12
2.10 Buffer Overflow/Underflow ...12
2.11 Error Handling ...13

6.0 CONCLUSION ..13
APPENDIX A ... A-1
REFERENCES ...B-1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 3

CAUSES AND RECOMMENDATIONS TO RESOLVE VULNERABILITIES THAT CAN

ARISE IN SECURITY CODE REVIEWS

ABSTRACT:

There are many information technology systems developed without security in mind.
Security risks can exist in numerous forms and attack the information system in various
ways. Systems connected to the Internet are especially vulnerable because of the
global access to the Internet. For this reason, programmers for Web-enabled
applications should be especially sensitive to the specific issues that are associated
with this medium. Typically, a security code review consists of five major steps:
application background review, compiling an analyst review sheet, reviewing source
files, documenting the findings, and presenting the findings to the client. This document
gives a broad overview of the process used by security analysts when conducting a
security code review. This acts as background for the main focus of the document,
which is to provide explanations of vulnerabilities commonly found in an application’s
security code review report. The document will assist programmer(s) with
understanding of the findings, why they are considered vulnerabilities and
recommendations for the resolving these issues in the follow-up review.

This document presents an overview of major security vulnerabilities commonly
revealed through security code reviews. The vulnerabilities in this document are not
programming language specific and do not include all potential vulnerabilities; instead
this paper introduces a snapshot of the most common vulnerabilities associated with a
code review.

1.0 SECURITY CODE REVIEW PROCESS

When the programmer(s) receives a security code review report, it is important that the
programmer(s) understand the underlying process used by the security analyst
identifying vulnerabilities. This knowledge of the code review methodology will assist
programmer(s) with implementing the source code changes as outlines in the code
review findings summary. This section defines security code review is and provides a
general overview of a generic code review process.

1.1 WHAT IS A SECURITY CODE REVIEW?

A security code review is the process of analyzing an application’s code base to identify
security vulnerabilities that could lead to the loss of an application’s integrity,
confidentiality, or availability. Many methodologies vary within companies that provide
security code review services. There are three broad categories of code review
methodologies: manual source code analysis, semi-automated analyses, and fully
automated analyses.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

• Manual Source Code Analysis – This methodology consists of manually
scanning each source code file, line by line. Prior to a visual scan of the source
files, an analyst(s) uses sizing, metrics, and textual-search tools. The sizing tool
counts the lines of code in each file; the metrics tool determines the code
complexity; and the textual-search tool is a keyword search of high-risk malicious
words or phrases. The advantages to this methodology are a greater
understanding of the application’s logical flow and a professional perspective on
the exploitable vulnerabilities in the code. The disadvantages include eyestrain,
oversight of potential issues due to fatigue, time to review, and cost.

• Semi-Automated Analysis – This methodology uses software tools designed to

assist in the code inspection process. This software typically uses a combination
of target word lists, database, graphical user interface, and report generation
engine. The target word list uses a data repository to scan source code; and
when a target word is found, a visual inspection of the word and its context in the
application is reviewed by the analyst(s). The database tracks the target words
and associated source code in the files. The graphical user interface gives the
analyst(s) a means of searching, reviewing, and tagging the source files. The
report generation engine includes the sizing and metrics of the entire application.
The advantages of this approach are the efficiencies and traceability of the
manual process and can be combined with fully automatic programs to identify
threats. The only disadvantage is that it relies on manual review effort.

• Fully Automated Analysis – This methodology relies entirely on the program to

test and report known coding vulnerabilities and malicious code. The
advantages include the use of known, documented principles as their basis of
identifying vulnerabilities and the ability to discover new attacks or mechanisms
based on hostile characteristics. The disadvantage is the loss of human insights.

The scope of this document is limited to the manual source code analysis methodology.
The backbone of automated analysis is the review process of the manual source code
review. The tools used as part of both, semi-automated and fully automated review are
built with the manual source code review process in mind.

1.2 APPLICATION BACKGROUND REVIEW

Understanding the application that is under analytical scrutiny is one of the most
important elements of a security code review. This includes understanding the
application’s purpose, origin, and intended use. The analyst(s) must understand the
type of environment in which the application will be placed. The potential for
vulnerabilities is also closely related to the number of users and their level of
knowledge. Frequently, internal users input incorrect information, due to lack of
application knowledge, thus resulting in potential exploitable vulnerabilities. The client
should provide the analyst(s) with all applicable documentation including application
information from test plans and results, white papers, user interface diagrams, process
flow diagrams, UML class diagrams, system specifications, and user manuals.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

However, in many cases, the client does not have access to many of these documents.
Sometimes, the documents do not exist because of poor application development
methodology. After all system documentation is reviewed and the analyst(s) has a clear
understanding of the application, the analyst(s) review sheet is ready to be compiled.
The following is a description of each form of documentation, and its relevance to a
security code review:

• Test Plans and Results. These test plans and their results provide the analyst(s)
with information on testing procedures applied prior to the code review process.

• White Papers. These papers provide insight into the application’s intended use,
how it will fit into the end-user’s environment, and how its output will make
current processes more efficient, effective, and/or artificially intelligent.

• User Interface Diagrams. These diagrams demonstrate how end-users will
interact with the application. This is extremely important to the analyst(s)
because it shows where the application accepts user input. Filtering input is a
possible security vulnerability that programmer(s) must address while building
the application. These user interface diagrams point to the specific files that
need to address input validation and filtering.

• Process Flow Diagrams. These diagrams show how information flows through
the application. This is useful to the analyst(s) because it helps them get a better
understanding of the application and how data flows. Generally, the exposure of
the data is what makes an application insecure. Therefore, it is important to
know how the application handles the data.

• UML Class Diagrams. Using JAVA and C++, these diagrams depict a process
flow for individual classes used in the application. These diagrams can give the
analyst(s) insight into what classes are necessary and if there are any classes
that are not being used by the application. If classes exists that are not part of
the process flow, they should be discarded.

• System Specifications. These specifications provide a detailed description on
the tools used in application development. Also, they include a high-level
description of how the application operates.

• User Manuals. These manuals assist the analyst(s) in demonstrating how the
user will interface with the application, when user input is accepted, and when
application output is expected. These are important elements in determining
where it is necessary to include filtering and validation routines.

1.3 ANALYST REVIEW SHEET

The analyst review sheet is a compilation of security risks associated with the
programming language of the application. The review sheet is ultimately used to
compose a vulnerabilities/risk matrix for the client. The analyst review sheet offers a
consistent rating system for each security risk and is applied to each source file. An
analyst review sheet must be used when more than one analyst is involved in the
security code review. The rating system enables a common technique to be used for
evaluating various ways that the system could be compromised. The review sheet is a
means to document the findings of each source file. Notes from each source file are

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

recorded on the corresponding analyst review sheet. In addition, it is important that the
reviewer’s name is included. If questions arise concerning specific source files, the
analysts name and notes for each source file serve as a record in the future. An
example of an analyst review sheet can be found at Appendix A.

1.4 SOURCE FILE REVIEW

When the analyst(s) and reviewer(s) agree on the analyst review sheet, the files are
strategically divided into groups of related source files. This is important because many
source files rely on others, and requires the same analyst(s) review those related files.
Once the files are divided, the analyst(s) delve into the main concentration of code
review. There are general vulnerabilities on which the source files are evaluated.
These general vulnerabilities are the focus of this document.

2.0 GENERAL VULNERABILITIES AND RECOMMENDED ACTIONS FOR

RESOLVING SECURITY CODE REVIEW FINDINGS

The previous section defines the process of a generic security code review. This
section will describe potential vulnerabilities that could appear in the findings section of
the security code review report. In the report, ratings will be assigned to the
vulnerabilities and can act as a priority level for resolving the security issues. The
following is an example a ratings that could potentially be assigned in the finding
section:

a) Category I. Findings are vulnerabilities that provide an attacker immediate access into
a machine, gain superuser access, or bypass a firewall.

b) Category II. Findings are vulnerabilities that provide information that has a high potential
of giving access to an intruder.

c) Category III. Findings are vulnerabilities that provide information that potentially could
lead to compromise.

d) Category IV. Vulnerabilities, when resolved, will prevent the possibility of degraded
security.

These categories may change based on the threats that could potentially permeate the
specific network, application, or local computers where the application resides. Once
the programmer(s) defines a priority list for resolving the vulnerabilities, they must have
a general understanding of the vulnerabilities and why they are considered risks. The
subsequent subsections provide the description of the vulnerabilities and the reason it is
considered a security compromise. In addition, recommendations are included to give
the programmer(s) a reference for fixing the security vulnerability.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

2.1 Input Validation

Input validation is an important element in a security code review, because users may
not intentionally try to compromise a system. A mistake by a user can have the same
effect as a malicious user intending to corrupt a system. Therefore, validation routines
are used to assure data is “clean” before being committed to the database.
One should never trust user input. If input is accepted from users, either directly or
indirectly, it is imperative that it is validated before it is used. Input validation is
important because malicious users may attempt to make the application fail by tweaking
the input to represent invalid data. All input is bad until proven otherwise. Typically, the
moment this rule is overlooked, is the moment the system is attacked. It is imperative
that indirect and direct user input is validated before it is used. Cross-site scripting,
unbounded sizes, and injection attacks are different types of attacks that take
advantage of non-validated user input.

Recommendation: It is recommended that all places in the source code that accept
form data or end-user input, a routine should be called to verify that the data is in the
correct format and within the size guidelines. “A secure program should know what it
expects, and reject other input.” (Shostack, 5) Write the source code in the manner that
assumes the client is a hacker. This mindset will assist in writing secure source code.

The following are different types of attacks against user input:

• Cross-site Scripting: A cross-site scripting attack is a security vulnerability that
is caused by trusting user input. This attack only applies to Web application. An
attacker can send a link in an email to a user or otherwise points the user to a
link to a Web site, and a malicious payload is in the query string embedded in the
URL. This attack can be used against machines behind firewalls, if the firewall
allows the attacker to communicate with the service running on the system on
which the application is executed. Many corporate Local Area Networks (LANs)
are configured such that client machines trust servers on the LAN, but do not
trust servers on the outside Internet. If the attacker obtains the name of a Web
server inside the firewall that doesn’t check fields in forms for special characters,
the application could be compromised. The following is an example of cross-site
scripting:

Scripting via a malicious link
In this scenario, the attacker sends a specially crafted e-mail message to a victim containing
malicious link scripting such as one shown below:

<A HREF=http://legitimateSite.com/registration.cgi?clientprofile=<SCRIPT>malicious
code</SCRIPT>>Click here

When an unsuspecting user clicks on this link, the URL is sent to legitimateSite.com including the
malicious code. If the legitimate server sends a page back to the user including the value of client
profile, the malicious code will be executed on the client Web browser.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

Recommendation: The recommended action to combat this vulnerability is to
filter and validate the input received and properly encode output returned to the
end-user. Filtering input consists of checking for special characters that are
defined in the HTML specification.(Lee, 4) When a special character is found, it
will reject the input from the user and prevent the malicious code from being
presented to the client. Also, in some cases it is necessary to include additional
special characters in the filtering routine to take in account other characters that
the application will not properly handle. Although this approach will filter some
malicious code, it is important that all dynamic content is filtered just before the
data output is sent as a portion of the dynamic page.

An alternative to filtering special characters is encoding each character in the
input with its numeric entry value. “Server side encoding is a process where all
dynamic content will go through an encoding function where scripting tags will be
replaced with codes in the chosen character set.” (Lee, 4)

Generally, encoding is recommended because it does not require the analyst to
make a decision about what characters could legitimately be entered and need to
be passed through. Unfortunately, encoding all non-trusted data can be resource
intensive and may have a performance impact on some Web servers.

• Unbounded Sizes: If the size of the client data is unbounded and unchecked,

an attacker can send as much data as he/she wants. This could be a security
issue if a buffer overrun exists in the program code and is called when invoking
the SQL query. An attacker can easily bypass the maximum username and
password size restrictions imposed by the previous client HTML form code,
which restricts both fields to 32 characters, simply by not using the client code.
Instead, attackers can change the client code by saving it as a text file, editing
the file, and opening the revised file in a browser. This would allow the attacker
to exceed the limits that were originally placed on the input. The following is
such an example, which sends a valid HTML form to Logon.asp but sets the
password and username to be 32,000 letter "A"s. (Microsoft Press, 6)

Recommendation: A simple field validation rule is the only code necessary to
check for an unbounded size. It is good programming practice to check the size
of the input and assure that it does not exceed the maximum field size. This will
eliminate relying on the user to supply the correct field parameters.

 use HTTP::Request::Common qw(POST GET);
 use LWP::UserAgent;

 $ua = LWP::UserAgent->new();
 $req = POST 'http://www.northwindtraders.com/Logon.asp',
 [pwd => 'A' x 32000,
 name => 'A' x 32000,
];
 $res = $ua->request($req);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

• Injection Attacks: Injection attacks happen when user input is used directly in

SQL statements. When user input is trusted and has not been checked for
validity, an attacker could change the structure of an SQL statement. For
example, an attacker would have the ability to log into an application without a
password because he/she could “comment out” the intended SQL statement that
evaluates the password field. This common attack would allow the attacker to
bypass the password validation. The following is an example of making a
password field blank by injecting "Angela' --".

Recommendation: Common to all input validation issues, the first
recommended rule is to determine which input is trusted and to reject all other
input. There are many techniques to reduce the threat of user input. Some
additional recommendations for combating injection attacks are using regular
expressions, only display user input after it has been scrubbed, avoid using
passwords and instead use Server.URLEncode and
HttpServerUtility.URLEncode, don’t use the system administrator account to log
on to the database, and do not formulate SQL statements with direct user input.

2.2 Secure State and Session Management

Once a user has logged in, it is important to track the status and permissions of each
user on the server side. The most common methods of tracking the user’s session
state are cookies, HTTP-BASIC authentication, server side session value storage, URL
rewrite, and variables stored in hidden HTML form fields. The purpose of tracking the
session state is to prevent “backdoor” / “deep linked” access to parts of a site, and
ensures that only users with particular privilege levels are allowed access.

Recommendation: It is recommended to use server-side session variables to track the
state of users and restrict unauthenticated users from accesses restricted pages. It is
important that each protected page is authenticated by the application before the page
loads. It is not recommended to use cookie-based authentication because cookies can
be spoofed.

2.3 Sensitive Information in Non-Compiled Code

Sensitive information refers mainly to passwords, algorithms, cryptographic keys, and
any information a product uses that is not intended for an end user to view. It is
important that this type of information is not implemented into non-compiled code. The
public can view non-compiled code. Putting information in this form would defeat the
purpose of calling it sensitive. Programmers must keep in mind that information
included in comments is viewable to the public. Users can right-click the web page and

 SELECT count(*)
 FROM client
 WHERE name='Angela' --and pwd=''

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

select “View Source Code” to obtain view access to the code. Although server-side
code will not be in view, comments will be shown.

Recommendation: To secure passwords, algorithms, cryptographic keys, and any
information a product uses that is not intended for an end-user to view, it is
recommended to never hard-code this information or put it into permanent memory. An
alternative is to store the secret in your code in a way that is decryptable only by the
programmer. In this case, the secret simply lies in the algorithm used by your code.
Another option is to keep the sensitive data in a property file, and read from that file
whenever necessary. If the data is extremely sensitive, the application should use
some encryption/decryption techniques when accessing the property file.

2.4 Documentation / Comments

Inadvertent security issues can arise if new programmer(s) do not understand the code
logic. It is important that the code is well documented. The primary purpose of
comments and documentation is to allow for future maintainability to avoid security
vulnerabilities being introduced as a result of programmer(s) not understanding the
source code’s purpose or function in the application.

Recommendation: There are many guidelines that are recommended to follow when
documenting and commenting source code. “Each source file should start with an
appropriate header and copyright information.”(Sun Microsystems, 2) In addition,
before each function, routine, method, and class in the source code, a comment block
should be inserted to describe the functionality and purpose of the function block.
Variable names should be descriptive and straightforward. This naming convention
should be standard throughout the application. The function parameters that are used
for input and output should be properly commented. Complex functions, algorithms and
procedures should be properly documented to suffice as a guide for future
programmer(s) maintaining the application.

2.5 User Authentication

Unauthorized access to an application can present security vulnerabilities. It is
important that access is authenticated at a single entry point into the system. In
addition to unauthorized users, it is important that authorized users have the least
privileges necessary to conduct daily operations in the application.

Recommendation: It is recommended that a user authentication method be
implemented in some form to provide the best protection of the application’s data.
Assuring users have the rights and privileges to view information in the application are
the main reason authentication is so important. User authentication can be implemented
in various ways. The most common technique is a login page where users supply a
user name and password to gain entry to the application. Client and server certificates
with are passed to authenticate the user are another method of authentication. The

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

type of network architecture and sensitivity of the application’s data will contribute to the
authentication method chosen.

2.6 Principle of Least Privilege

The principal of least privilege dictates that the application only has the necessary set of
privileges to perform tasks for users. All applications should be executed with the least
amount of privileges required to get the job done. If a process runs as system
administrator or some other high-privilege account and the process impersonates the
user to “dumb down” the code’s capabilities, an attacker might still be able to gain
administrator’s rights by injecting code. For example, a buffer overrun, that calls
RevertToSelf, would stop impersonating and reverts to the process identity of system
administrator. Therefore, it is important that not even the system administrator be
granted system administrative privileges. Many privileges granted to an administrator
account are never used and not necessary to be granted.

Recommendation: When determining privileges for authentication, the following are
recommended actions to limit security vulnerabilities:

• Users should be granted the least privilege required to accomplish their tasks.
• Applications should be granted the least privilege to perform their functions.
• Systems should be granted the least privilege to fulfill their role in a larger network.

2.7 Test and Debug Code

Debug code is the code that is “commented out” or left over from the debug stages of
the software development process. After the completion of the testing phase, instead of
removing the code, programmer(s) sometimes “comment” those sections out.
Commented code could also represent future functionality that has not been included in
the current release. Therefore, some coders “comment out” this specific segment until
future product releases require that particular functionality. This code sometimes
exposes sensitive information such as user names, passwords, file names, memory
locations, etc.

Recommendation: An explanation should be given for any code that is “commented
out.” Code that has been tested and has no purpose in future development should be
removed. If the code is a temporary fix to a problem, it should be commented as such.
The programmer(s) should never assume that other programmer(s) would understand
why they have commented certain code. In addition, a comment should be included for
all codes not completely implemented. The comment should describe why the code is
not completed, and what needs to be done to implement the code into the application.
The programmer(s) should also include a marker next to incomplete code, so that it is
easy to find in the future.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 12

2.8 Malicious Code

Malicious code is software that causes unauthorized or malicious behavior on a
computer; such as, viruses, worms, and Trojan horse programs that threaten
technology and tools. Source code is commonly “commented-out.” These code
segments are either left from a previous implementation or purposely placed inside the
program for future releases. If this code is uncommented, it could expose severe
security holes. Moreover, malicious data can cause attacks that employ information
that appears to represent input for an application program; such as, a word processor or
spreadsheet. In reality, these inputs actually represent instructions that are carried out
by the computer without the knowledge or approval of the computer's operator. This
vulnerability comes from program flaws that allow data to act as instructions despite the
programmer(s) intentions. An inspection for this type of security risk is performed to
safeguard unauthorized access privileges to private data.

Recommendation: To help mitigate the malicious code risk, main() methods (except
the one that launches the application), unused methods, and dead code should be
removed from the source code. The programmer(s) should conduct a comprehensive
code review of sensitive applications before the software is shipped. Another
recommendation is to use "dummy" classes in place of the main() method for testing the
functionality of the application. (Sahu, 2)

2.9 Public Variables, Methods, Objects

Objects, classes, methods, variables need to be declared at the lowest scope.
Typically, private scope should be used whenever possible. Every class, method, and
variable that is not private provides a potential entry point for an attacker.

Recommendation: Generally, it is good programming practice to use private scope
whenever possible. Although this is a pain for the programmer(s) and requires more
coding, it makes the application more secure. The programmer(s) should use assessor
methods rather than public variables. On a case-by-case basis, compare coding
convenience and cost against security needs when deciding which variables are
material and should be declared private.

2.10 Buffer Overflow/Underflow

Buffer overruns occur when the data provided by the attacker is bigger than what the
application expects, and overflows into internal memory space. They are a menace, but
generally easy to fix. The key to fixing this vulnerability is assuring that the
programmer(s) has taken into account that externally provided data is larger than the
internal buffer. The overflow causes corruption of other data structures in memory, and
this corruption can often lead to the attacker running malicious code. There are also
buffer underflows and buffer overruns caused by array indexing mistake, but they are
less common.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 13

Recommendation: Generally, buffer overflows are easy to fix, but the programmer(s)
just need to change the way they develop applications. Anytime input is accepted, they
must check the input size against the buffer overflow before allocating the memory. The
following is a code snippet to check for a buffer overflow:

2.11 Error Handling

While the compiler will catch syntax errors, administering a visual inspection of code
can be quite difficult without the proper documentation source code. It is also difficult to
catch logical errors such as the mistaken use of the "+" sign instead of the "*" sign in the
code. Writing error routines are a great coding practice, but it is useless unless it is
properly tested.

Recommendation: To assure that error exceptions are handled properly, there should
be a call stack function that grabs the error and releases it in the correct error path.
It is always good programming practice to include error-handling routines throughout the
application, where a system, application, or user error is possible. “Errors should be
detected and handled if it affects the execution of the rest of a routine.” (Sun
Microsystems, 2) An error would be considered “handled” if it cleanly exits the
application or logs the error, depending on the possible actions that an application
reverts to when an internal error occurs.

6.0 CONCLUSION

Security code reviews are vital to the safe operational use of applications. Although this
document was written to assist the programmer(s) in fixing potential security holes,
optimally, these guidelines should be exposed during the planning stage of application
development. Application programmers must understand that “security” should be the
first and foremost driving factor in the development of an application. They are at the
cutting edge of the application development process and can influence the status quo
mindset of just “developing and making an application operational”. Implementing a
security plan, early in the design phase, can greatly reduce the amount of attacks on
Internet applications. After reading this document, the programmer(s) should have a
good understanding of why specific source code could potential be an open door for an
attacker. Although there are many ways to reduce potential vulnerabilities, above

Void CopyString(char *dest, char *source, int length){
 int i=0;
 while((*source) && (i < length)){
 *dest++ = *source++;
 i++;
 }
}
void Example (){
 char buffer[16];
 CopyString(buffer, "This string is too long!", 16);
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 14

referenced recommendations should provide a good foundation to identifying weak
security practices during the development of application code.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix A

A-1

APPENDIX A

Overall Security Level: Confident Concern Uncertain

FOLDER NAME:

FILE NAME:

Lines of Code:

Code Complexity: Low Medium High

Code Format/Variable Naming: Safe Concern

Documentation / Comments: None Lacking Sufficient Good

Session Management: N/A Safe Concern

Public Declarations: N/A Safe Concern

Protecting Sensitive Data: N/A Safe Concern

Principle of Least Privilege: N/A Safe Concern

Access and Authentication: N/A Safe Concern

Input Validation: None Safe Concern

Error Handling: N/A None Lacking Sufficient Good

Debug/Commented Code: None Safe Concern

Malicious Code: None Found Concern

Buffer Overflow: None Safe Concern

Additional Comments:

Reviewed By:

Review Date:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

B-1

REFERENCES

Howard, Michael. “Protect Your Sensitive Web Data from Hackers.” 2001. URL:
http://archive.devx.com/security/bestdefense/2001/mh0401-1/mh0401-1.asp .

Howard, Michael and LeBlanc, David. Writing Secure Code. Redmond, Washington:
Microsoft Press, 13 November 2001.

Lee, Paul. “Cross-site Scripting.” September 2002. URL: http://www-
106.ibm.com/developerworks/security/library/s-csscript/?dwzone=security .

Lussier, Stephane. “Part of Your Complete Breakfast: Code Review is a Source of
Essential Vitamins and Minerals.” 20 November 2002. URL:
http://macadamian.com/column/completeBreakfast.html .

Macadamian Technologies. “Code Review Checklist.” 2002. URL:
http://macadamian.com/codereview.htm.

McGraw, Gary and Felton, Edward. Securing JAVA: Getting Down to Business with
Mobile Code. Wiley, 1 March 1999.

McLaughlin, Connie. “Introduction to Buffer Overflows.” 2002. URL:
http://vulcan.ee.iastate.edu/~cise/instructors/downloads/InterBO/InterBO.pdf.

Microsoft Corporation. ”Web-Based Security in Commerce Server 2002.” July 2000.
URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/comm/c
omm2002/maintain/CS02WSec.asp.

Nitzberg, Sam. “Trusting Software: Malicious Code Analysis.” 1999. URL:
http://www.iamsam.com/papers/milcom_malicious_code_analyses/MCAart16.htm .

Sahu, Bijaya Nanda. “Is your Java code secure- or exposed?.” 2001. URL: http://www-
900.ibm.com/developerWorks/cn/java/j-staticsec/index_eng.shtml.

Shostack, Adam. “Security Code Review Guidelines.” 06 November 2001. URL:
http://www.homeport.org/~adam/review.html .

Sun Microsystems, Inc. “Security Code Guidelines.” 2 February 2000. URL:
http://java.sun.com/security/seccodeguide.html .

