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IPSec Tunnel Creation 
 
Abstract 
 
There are many types of VPNs (Virtual Private Networks) available for use in today’s 
networks.  One of these types involves use of the IPSec standard.  Within IPSec, 
there are further options on ways to define your VPN.  The actual building or 
construction of the IPSec VPN is very involved.  The purpose of this paper is to 
detail, explain, and illustrate the specific processes that occur in creating an IPSec 
VPN tunnel.  Some of the concepts and theory will also be explained. 
 
Like other VPNs, an IPSec tunnel is secure.  It is encrypted using cryptographic 
techniques.  I will be using the example of what one vendor refers to as a site-to-site 
VPN (How 2).  These are not the same processes that occur with a host-to-host or 
host-to-gateway VPN, although they are similar.  There are many attacks that come 
with IPSec and many that are avoided.  I will cover a few of them, when relevant, but 
not all. 
 
Site-to-Site VPN Overview 
 
In this type of VPN, there are two separate “true” private networks that need to 
communicate with each other over a public link, the Internet.  Every host in each 
private network needs to communicate with every host in the other private network.  
To do this, a tunnel is created between the two gateways that border the private 
networks’ Internet connections.  These two gateways become the two endpoints that 
make up the VPN, and include equipment such  as firewalls or routers. 
 
The data conversation is actually taking place between any host behind one 
gateway and any host(s) behind the other gateway.  The gateways are only 
transiting traffic.  None of the traffic is actually destined for the gateway.  It is 
important to note that when the data first leaves the sender and reaches the first 
gateway, it is always in clear text, or unencrypted.  The gateway then encrypts it for 
Internet travel and then the second gateway decrypts it and sends it in clear text to 
the destination host.  This is important because if an adversary can get inside the 
company’s physical building, they can capture data in clear text and circumvent your 
VPN protection.  See Figure 1 for a visual example. 
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In this setup, the users transferring data through the tunnel, probably don’t even 
know they are going through a tunnel.  This is a configuration that is set up by the 
router or firewall administrator(s), not the user.  The user may know that they are 
connecting to the corporate office two thousand miles away, but not be aware of 
how. 
 
Basically, one system on a private network is trying to communicate with another 
system on another private network, but travelling through the public network to get 
there.  The gateways are actually doing the work, which is transparent to the user, to 
provide a secure tunnel between the two private networks. 
 
IPSec tunnel Overview 
 
The rules and processes by which an IPSec tunnel is constructed have been 
standardized by the IETF (Internet).  The current governing document for this is the 
IKE document (Braden et al. 24). 
 
In general, the process to create an IPSec tunnel is to first establish a preparatory 
tunnel, encrypted and secure, then from within that secure tunnel, negotiate the 
encryption keys and parameters for the IPSec tunnel.  This first tunnel, or this secure 
and authenticated channel (Carrel and Harkins 4) is commonly referred to as the 
ISAKMP tunnel.  IKE is actually the protocol and is used to negotiate and 
authenticate keying material for the tunnel.  It is important to note that IKE is a hybrid 
protocol made up of a combination of ISAKMP (Internet Security Association Key 
Management Protocol), Oakley, and SKEME (Secure Key Exchange Mechanism for 
Internet) protocols (Carrel and Harkins 1).  IKE does not implement the entire 
ISAKMP, Oakley, or SKEME protocols (Carrel and Harkins 2).  These protocols 
have specific rules for use within IKE. 
 
This ISAKMP tunnel, once created, continues in session until it expires.  Note that 
there is no expiration specified in any of the RFCs for this, it is vendor-dependent.  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

For example, on the Cisco PIX Firewall, it can be set from two minutes to twenty-four 
hours (Cisco 6-25).  It creates the IPSec tunnel for a specified interval of time 
(determined and pre-programmed by the administrator) and then will re-create a new 
tunnel every time this interval is close to expiring again.  See Figure 2 for a visual 
overview. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISAKMP Tunnel Creation 
 
IKE specifies a two phase method for tunnel creation (Carrel and Harkins 4).  A 
secure ISAKMP tunnel is created upon completion of Phase One.  This tunnel is not 
used until Phase Two begins.  Then, this new ISAKMP tunnel is used to create the 
secure IPSec tunnel, which is in place when Phase Two is complete. 
 
By creating this initial or preparatory tunnel, you are assured that your negotiation of 
security parameters for the IPSec tunnel is going through a secure channel.  So, you 
are safe there.  But this first tunnel was not negotiated from within a secure tunnel, 
so what about here?  You can create as many secure tunnels as you want, but 
what’s ultimately going to matter is how secure was that first tunnel that was created.  
If the first tunnel was not created securely, then it doesn’t matter how secure your 
IPSec tunnel is.  The reality is that your IPSec tunnel is really only as secure as the 
first tunnel that created it was.  Therefore, this really adds an importance to how this 
first tunnel is created and thus the reason for the interest in this paper.   
 
The security parameters involved in the first tunnel are actually much more secure 
than those in the IPSec tunnel, as should be.  So, here we have a secure tunnel 
(first tunnel).  But, if we have a secure tunnel, more secure than the IPSec tunnel, 
why should we create a second tunnel in the first place for our IPSec traffic?  Don’t 
we want the most secure tunnel we can get?  There are two reasons I have found.  
First, the first tunnel is so secure that it will slow down the traffic.  This is made under 
the assumption that you are choosing much longer key lengths for your ISAKMP 
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keys.  Secondly, having two tunnels allows the first one the ability to periodically 
“refresh” the keys (negotiate new keys) used in the second tunnel.  These features 
help the security of the IPSec tunnel.  If the keys are refreshed, a brute force attack 
would have to start over because a new key would have to be found.  The timing of 
the refreshes can be set so that a brute force attack on the keys would never have 
enough time to exhaust all possible keys (Schneier 152).  Also, the processor is 
freed up in the second tunnel because less computation is required and keys don’t 
need to be derived. 
 
ISAKMP Phase One 
 
In Phase One, there are six messages exchanged between the peers (Carrel and 
Harkins 7).  Note that there is an Aggressive Mode also using less messages which I 
will not be going over here.  Three messages are from the Initiator peer and three 
are from the Responder peer.  These are also thought of as three round trips of 
messages.  This round trip method of reference is helpful because there are three 
types of exchanges going on.  Let’s define the Initiator as the peer that wants to start 
an IPSec session with the other peer, whom will be the Responder.  In general, 
when Message One is sent, the two peers are communicating in clear text.  By the 
time the sixth message is sent, their communication is encrypted and both of their 
identities have been verified (authenticated).  At this point,  the ISAKMP tunnel is 
built and ready to use by the peers in the beginning of Phase Two. 
 
In Message One and Two (Round Trip One), the peers negotiate a security policy for 
their upcoming private session in Phase Two.  In Round Trip Two, the peers 
exchange some Diffie-Hellman values and some secondary values.  Finally, in round 
trip three, the data exchanged in Round Two is manipulated by formulas, then 
exchanged between the peers and used to authenticate the other peer.  Also, the 
keys are created that will be used to encrypt data in the new secure tunnel in Phase 
Two.  See Figure 3 for a graphic depiction of this.   
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This ‘tunnel’ and also the IPSec ‘tunnel’ are actually just a group of Security 
Associations agreed to between the peers.  These are more commonly referred to 
as ‘SA’s.  A tunnel has two SAs, one for each direction of data travel. (Atkinson and 
Kent, Security 7)  
 
It is important to note that up until the authentication round, either peer could be an 
imposter disguised as one of the peers.  The exchange that takes place in Round 
Three is designed to stop these kind of imposters who should not pass 
authentication.  This adds to the importance of this round trip.  
 
Round Two is arguably as important as Round Three.  Round Three is important 
because you don’t want to create a secure tunnel with the wrong person.  Round 
Two is important because you don’t want someone to break your encryption and be 
able to see all your data.  They are different concerns but equally important. 
 
Before Round One, policies to be negotiated need to be pre-programmed into the 
gateways.  Usually this is done upon installation of the device by the system 
administrator.  The four main negotiated policy parameters of the ISAKMP SAs are 
as follows:  Encryption algorithm, Authentication method, Hash algorithm, and Diffie-
Hellman Group (Carrel and Harkins 6).  Below, as I describe each round trip, I 
describe how and where these parameters are used.  The specific attributes 
available are dependent on the hardware being used.  There are some attributes 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

that are required on all hardware and the rest are optional (Carrel and Harkins 6).  
See Figure 4 for some common examples.  Note that all of these options are not 
available on all hardware.  The hi-lighted items will be used in the example that 
follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Phase One, Round One 
 
The purpose of this round is to agree on parameters for the upcoming ISAKMP 
tunnel.  In this round, the Initiator peer will send a suite of proposed security 
parameters and the Responder will choose one (if its on its acceptable list) and send 
its choice back.  Message One is the proposal and Message Two is the response.  
After this round is over, both peers have an agreed suite of parameters for the 
ISAKMP tunnel that will be protecting traffic in Phase Two. 
 
One of the important pieces of this round is the generation and use of the Initiator 
and Responder cookies.  Each peer generates a 64-bit cookie that is included in 
every subsequent message (Maughan et al. 20).  In Message One, the Initiator 
cookie is sent, and in Message Two, the Responder cookie is sent along with the 
Initiator cookie (Maughan et al. 17).  In subsequent messages, both cookies are sent 
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in the ISAKMP header.  These cookies are used throughout Phase One to prevent 
Denial of Service type attacks (Maughan et al. 11), and later in keying material 
generation (see Phase Two below).  For clarity, the symbolic representations 
throughout this paper will not necessarily correspond to the symbols used in the 
official documents of these protocols.  My symbolic representations for the cookies 
are as follows: 
 
CKYI  =  Initiator’s cookie 
CKYR  =  Responder’s cookie 
 
The payloads in the following diagrams (Figures 5a, 5b) are symbolic and are not 
perfectly representative of the actual complete IP packet.  All of the packets in 
Phase One are required to use UDP port 500 for transport (Piper 18).  For brevity, 
only the relevant items to this paper will be shown.  I have also used the data from 
Figure 4 above for one of the proposed security suites in Message One and the 
actual chosen one in Message Two.  The boxes represent encapsulation of 
payloads and are representative of actual packet construction. 
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Phase One, Round Two 
 
The purpose of this round is to come up with a shared secret value only known to 
the Initiator and Responder, while communicating in clear text.  This will later be 
used to create the keys for the ISAKMP SAs. 
 
This is done by exchanging four non-secret (public) values.  Each side will calculate 
four values.  First, each side generates a private value from scratch that doesn’t get 
sent across the channel.  Based on this value, the first public value is generated.  A 
second public value is generated from scratch.  Then, these two public values are 
exchanged with the other peer’s public values.  Then, the two received values from 
the opposite peer, together with the first private value, are used to generate a fourth 
value which becomes the shared secret.   
 
Note that this new shared secret has never gone across the wire.  Also note that the 
two peers amazingly come up with the same value for the shared secret.  This is 
amazing because their private inputs are different! 
 
A value has been created here using three variables.  Two out of three of these 
variables are available to an attacker/eavesdropper.  Without this third variable, he 
cannot calculate this shared value.   Note that there are two different values for this 
third variable.  The Initiator uses one and the Responder uses another.  Therefore 
an attacker has two values that he can attempt to obtain instead of just one.  This 
third missing variable is the Diffie-Hellman private value described later and is 
pseudo-randomly generated and very tough to obtain. 
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Round Two Pre-exchange Calculations 
 
First, each side computes two pseudo-random values.  These will be called the 
nonce (Orman 3) and the Diffie-Hellman private value (Van Oorschot and Wiener 1).  
The nonce is sent across the channel in clear text and the Diffie-Hellman private 
value is kept secret.  The Diffie-Helman private value is used to calculate the Diffie-
Hellman public value, and then this public value is sent across the channel in clear 
text.  These are described in detail below. 
 
Pseudo-Random Numbers 
 
Pseudo-random numbers are used here versus true random numbers.  A 
mathematician would say that true random numbers only occur in nature (Schneier 
44).  The next best numbers come from hardware that is designed and dedicated to 
creating random numbers (Schneier 44).  The next best numbers after that come 
from software-based Pseudo-Random Number Generators (PNG) based on 
Pseudo-Random Functions (PRF).  The best of these work by obtaining random 
input from various uncorrelated sources and mixing them together with strong mixing 
functions (Crocker, Eastlake, and Schiller 13).  This method is employed here. 
 
This PRF is negotiated and agreed to as with the other items above in Figure 4.  But, 
this is an optional negotiation item (Carrel and Harkins 6) and is often not specified 
by the system administrator.  When this occurs, IKE requires the peers to use the 
chosen hash algorithm as the Pseudo-Random Function (Carrel and Harkins 6). 
 
Pseudo-Random Function (PRF) 
 
In order for a hash algorithm to be used as a PRF, it has to be ran in HMAC (Hashed 
Message Authentication Codes) mode.  The negotiated hash algorithm can be ran in 
two modes:  native and HMAC (Carrel and Harkins 6).  In this paper, MD5 (Message 
Digest 5) is the chosen algorithm as shown in Figure 4.   
 
In normal mode, MD5 is a function that accepts one arbitrary length input, which is 
converted to a multiple of 512 bits, and outputs a fixed-length output of 128 bits 
(Rivest 1).  It cannot be reverse-engineered because of the mathematical properties 
of the algorithm.  It is these mathematical properties that make it such a good choice 
to use for encryption or confidentiality.  This function is also referred to as a one-way 
hash function and a compression function.  Normal mode is represented 
symbolically as follows: 
 
MD5 ( message) 
 
The simplest way to key a function would be to simply add a key to the front of the 
standard input message and concatenate it together and then run it through the 
formula as if it were one input, see below.  The comma represents concatenation. 
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Simple-Keyed-MD5  =  MD5 ( key, message ) 
 
Bellare, Canetti, and Krawczyk explain in their paper (1), this method is not secure 
or random enough for pseudo-random number generation.  So, they created the 
HMAC method.  The HMAC mode is an adaptation of the normal MD5 function.  
There are two separate, but dependent, iterations of MD5 for each one iteration of 
HMAC-MD5.  The core algorithm used is not changed, it is just re-used, if you will, 
using the output of the first one.  HMAC acts as a front-end to MD5.  The formula for 
HMAC-MD5 follows (Bellare, Canetti, and Krawczyk 14): 
 

HMAC-MD5 =  MD5 ( [ K xor OPAD] , [ MD5 ( K xor IPAD, X) ] ) 
 
This function is parsed and computed like a mathematical function.  The internal 
brackets are computed first and become the equivalent of the key and message 
above.  Then, like above, these are concatenated together and ran through the MD5 
function.  This mixing function combines logical operations using XOR, more 
concatenation, bit padding (extending), and iterated function operations to create 
this random number transformation.  Note that the last function that occurs is MD5, 
which makes the final output 128 bits.  See Bellare, Canetti, and Krawczyk’s paper 
for more details on this process. 
 
Basically, the mixing details ensure the pseudo-randomness of the result.  The 
padding ensures the length of all the inputs are fixed  (Rivest 2).  The XOR is the 
logical bit-wise exclusive-OR operator.  Concatenation hides the beginning and 
ending of the data from each variable.  Iterated operations ensure the function 
against collision attacks.  Because of the complex mixing techniques, the collision 
attacks used on the normal MD5 algorithm are infeasible on the HMAC version 
(Bellare, Canetti, and Krawczyk 15). 
 
Nonce 
 
The nonce is a Pseudo-Random number generated locally by the designated PRF 
(Orman  3), in this case, HMAC-MD5.  The purpose of the nonce is to guarantee 
liveness and protect against replay attacks (Maughan et al. 36).  It will also be used 
to derive the Diffie-Hellman Shared Secret (see below).   
 
The interesting thing about the nonce is that if you think about the fact that it will be 
sent over the open wire, in clear text, then why the worry about security.  Actually, 
there is no security in the nonce.  The important thing about the nonce is that it is as 
random as possible for its use in the upcoming equations. 
 
The nonce is required to have a minimal amount of randomness (Orman 8).  Entropy 
describes the level of randomness.  The nonce’s entropy level must be equivalent to 
the strength of the negotiated Diffie-Hellman group (Orman 8).  In this case, Group 
Two is based on a 1024 bit prime number, but its strength, instead, depends on a 
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few factors (Carrel and Harkins 28).  This makes its entropy somewhere between 60 
and 180 bits.  Below are symbolic representations of the nonces. 
 
NI   = Pseudo-random number from Initiator (from HMAC-MD5 algorithm) 
NR  = Pseudo-random number from Responder (from HMAC-MD5 algorithm) 
 
Diffie-Hellman Values 
 
The Diffie-Hellman  (DH) private value is another pseudo-random value generated 
by the PRF, HMAC-MD5, but will never get sent across the channel.  This is the only 
value that is kept secret during this round.  This is probably the most important value 
to keep secret in all of IKE, and therefore IPSec.  Each peer generates one of these 
values.  If these values become known by an attacker, its all over.  Everything else is 
already in the open, now this.  An attacker would easily be able to create the same 
keys that you’re about to create and any IPSec keys that you create from within your 
ISAKMP tunnel. 
  
After the private DH value is generated, the DH public value can be generated.  
These must be generated in sequence, first the private value, then the public value.  
This is because the private value is a required variable in the formula to calculate the 
public value.  Mathematically speaking, the public value is a function of the private 
value.  This public value is then sent across the channel with the nonce above.  
Once again, just as it is important to keep the DH private value secret, it is also 
important that the algorithm used to create the public value from the private value 
not be reversible. 
 
Private DH value generation 
 
The private value is a pseudo-random number and is just created as stated above 
using the current PRF.  Below are symbolic representations of the DH private 
values: 
 
XI = Private DH value for Initiator 
XR = Private DH value for Responder 
 
Diffie-Hellman Groups 
 
When speaking of Diffie-Hellman groups, one is referring to Diffie-Hellman public 
values.  These groups are also called Oakley groups because they originated with 
the Oakley protocol (Carrel and Harkins 20).  But do not confuse the group numbers.  
The original Oakley groups were different for groups three, four, and others.  The 
group numbers now are defined by IKE standards.  
 
The two main types of groups used today are Modular Exponentiation Groups 
(MODP) and Elliptic Curve Groups (EC2N).  Both of these have a connection with 
prime numbers.  The whole security of these groups is based on solving some 
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intractable math problem.  An intractable math problem is a problem that is believed 
to not be solvable in polynomial time (SANS 2-5).  This is agreed to by the worldwide 
mathematical community that is active in researching issues in the field of 
computation complexity (SANS 2-5).  Polynomial time is approximately equivalent to 
your lifetime.  It is important to note that there is no mathematical proof that these 
problems can’t be solved easily, we only have the years of public scrutiny that 
suggests that (SANS 2-5).  For the MODP groups, the intractable problem is solving 
the Discrete Logarithm Problem over finite fields (SANS 2-7).  For the EC2N groups, 
its also solving the Discrete Logarithm Problem but as applied to elliptic curves 
(SANS 2-8). 
 
Public DH value generation 
 
The public DH value is derived from a formula (Orman 36):   2

X
 (mod P).  The X is 

the DH private value derived above and the P is a special prime number.  The 2 and 
the P are both hard-coded constants, with the only variable being X (Carrel and 
Harkins 21).  The P is different depending on the DH group that is being used.  In 
our case, Group 2 uses a 1024-bit prime number (Carrel and Harkins 21).  Recall 
that X is only 128 bits long because its an output from HMAC-MD5.  The X is also 
referred to as the Diffie-Hellman exponent. 
 
The basic function employed here is exponentiation but using modular arithmetic.  
First, 2 is raised to the Xth power, then modulus is ran on the result.  Modulus is 
division, but instead of looking for the quotient, you look for the remainder.  For 
example, (8 / 4 = 2), but (8 mod 4 = 0).  Note that when you raise 2 to the Xth power, 
you are not raising it to the 128th power, but to the decimal equivalent of the 128-bit 
number.  This ensures that 2

X 
is always larger than P and that there is a remainder.  

The following are symbolic representations of the public DH value.  Note that ‘g’ is 
always 2 in our example. 
 
gXI   short for [ gXI (mod P)] = Public DH value for Initiator 

gXR  short for [ gXR (mod P)] = Public DH value for Responder 
 
Round Two Exchanges 
 
At this point, each side has generated a Diffie-Hellman public value, or half-key 
(Orman 12), and a unique nonce.  These are now passed across the wire first from 
the Initiator in Message Three and second from the Responder in Message Four.  
See Figure 6a and 6b for visual depictions. 
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Round Three Pre-Calculations 
 
After the two messages are exchanged, a number of things are calculated.  Each 
side will calculate keying material called the Diffie-Hellman Shared Secret.  This will 
be used to create the keys.  If a pre-shared key is used, as in our case, it is also 
used here. 
 
Diffie-Hellman Shared Secret 
 
The Diffie-Hellman Shared Secret must be computed first as one of the other 
formulas depend on its value.  Note in the formulas below that the first formula after 
the equal sign is shown how it is commonly written.  To the right, I’ve included the 
complete mathematical operations for a clear idea of how they are derived (Van 
Oorschot and Wiener 1). 
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DHSS  =  (other peer’s public value)
your own private value

 
 
DHSSI  =  gXRXI  =  (gXR )XI   short for  [ (gXR) XI  mod P ] 
 
DHSSR  =  gXIXR  =  (gXI )XR   short for  [ (gXI) XR  mod P ] 
 
DHSS  =  DHSSI  =  DHSSR  
 
This fourth equation states that the previous two are equal to each other.  They are 
equal because of the mathematical properties of exponents. 
 
Pre-Shared Key 
 
For pre-shared key authentication, the other shared secret is the pre-shared key.  
Remember, this key is pre-determined and manually programmed into each peer 
and is never passed across the line. 
 
Keying Material Derivation 
 
Four pieces of keying material must be calculated and all must be calculated in 
order.  SKEYID is the first of these, and its formula follows (Carrel and  
Harkins 9): 
 
SKEYID = HMAC-MD5[(pre_shared_key), ( NI | NR)]  
 
Recall that HMAC-MD5 is used as a keyed MD5 function.  The “|” also symbolizes 
concatenation of values.  If you recall the definition of HMAC-MD5, the left is the key 
side, represented here by the pre_shared_key.  The right is the message side, 
represented here by the concatenation of nonces.  Note that the order of the nonces 
is the same for both peers, NI is always first.  This is true because there is only one 
formula for SKEYID.  The comma would normally symbolize concatenation, but don’t 
confuse simple-keyed-MD5 with HMAC-MD5.  The comma separates the two sides 
which are plugged into the HMAC-MD5 function defined earlier. 
 
It is important to note that the formula for SKEYID changes depending on the 
authentication method.  If digital signatures or public keys are used, there is a 
different formula to derive SKEYID.  There would also be a difference in Phase One 
messages Three and Four (Carrel and Harkins).  
 
Note that this value is secret only because the pre-shared key is secret.  Both 
nonces were sent across the channel in the clear.  Also, note that SKEYID is never 
sent across the channel.  This is why it is important to choose a strong value for your 
pre-shared key. 
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At this point, the following keying material is generated from the SKEYID (Carrel and 
Harkins 9).  Like SKEYID, these are all 128-bit values (because of HMAC-MD5).  
Unlike SKEYID above, these formulas are the same for all types of authentication.  
This is true because they are all generated after SKEYID. 
 
SKEYID_D = HMAC-MD5[( SKEYID ) , ( DHSS | CKYI | CKYR | 0 )] 
 
SKEYID_A = HMAC-MD5[( SKEYID ) , ( SKEYID_D | DHSS | CKYI | CKYR | 1 )] 
 
SKEYID_E = HMAC-MD5[( SKEYID ) , ( SKEYID_A | DHSS | CKYI | CKYR | 2 )] 
 
The process for processing these formulas is just like SKEYID above.  Everything in 
parenthesis is concatenated first, then the right and left sides are processed through 
the HMAC-MD5 mixing process.  The numbers at the end are just hard-coded 
constants(Carrel and Harkins 9). 
  
If you examine these formulas, you will notice that they have to be generated in the 
sequence listed above.  This is because part of the formula for one is dependent on 
the previous one.  You will also notice that by the time you get to SKEYID_E, the 
numbers have been through many iterations, adding to the security of the 
SKEYID_E keying material.   
 
Although these keying materials must be generated in order, they don’t have to be 
used in any particular order, but rather for different purposes.  The different letters 
represent the different purposes of these keying materials (Carrel and Harkins 3).  
The ‘D’ stands for derive because it is used to derive the keys for the IPSec Security 
Associations.  The ‘A’ stands for authenticate because it is used to authenticate 
ISAKMP messages.  The ‘E’ stands for encryption because it is used to encrypt 
ISAKMP messages. 
 
At this point, everything is in place for creating the keys for Phase Two and 
encrypting the channel, except the peers need to be authenticated. 
 
Phase One, Round Three 
 
This round provides the authentication of the peers, so that the first secure tunnel 
(ISAKMP SA) can be created.  All the material is now in place to create a secure 
tunnel and it can be created right now, but you would have no guarantee that the 
tunnel is going to where you think its going.  To have this guarantee, authentication 
is performed.  To authenticate each other using pre-shared keys, a Hash Payload 
and an Identification Payload are exchanged (Carrel and Harkins 15).  Also, the 
Hash Payload along with the Identification Payload are each encrypted (Carrel and 
Harkins 2).  The algorithm used is 3DES-CBC, from Figure 4, and the key is 
SKEYID_E from above (Carrel and Harkins 3). 
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Hash Payload 
 
The hash consists of some secret values and some public values.  The hash 
formulas differ for each peer.  In the hash formulas shown below, the SKEYID 
derived earlier is used to key the function.  The message data (on the right) is mostly 
public information and has been sent across the wire before.  The exception is the 
IDI and IDR, which are being sent across the wire now in the ID Payload and in 
Message Six.  The SAI is the entire SA payload offered in Message One by the 
Initiator excluding the ISAKMP header (Carrel and Harkins 2).  The IDI is the entire 
Identification Payload without the generic ID Payload header (Carrel and Harkins 3). 
 
Identification Payload 
 
The ID payload includes information about the Initiator of this tunnel request.  It 
includes information such as the IP address or range of IP addresses to apply tunnel 
parameters to, the protocol being used, and port being used (Piper 18). 
 
Following are the formulas for the two hashes (Carrel and Harkins 9). 
 
HASH_I = HMAC-MD5 [( SKEYID ) , ( gXI | gXR | CKYI | CKYR | SA I | IDI )] 
HASH_R = HMAC-MD5 [( SKEYID ) , ( gXR | gXI | CKYR | CKYI | SAI | IDR )] 
 
The following Figures (7a, 7b) show a visual depiction of Round Three. 
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Round Three Post-Calculations 
 
As of now, both sides have exchanged a hash and an ID payload.  Authentication is 
accomplished by the fact that the other peer can reproduce the hash that you sent to 
it (Carrel and Harkins 9).  This should not be possible unless the other peer knows 
the value of SKEYID, which was never sent over the wire.  The other peer does 
know this value because it also calculated it between Rounds Two and Three.  Note 
that the last of the inputs to be sent across the open wire, ID I and IDR , have just 
been sent across in this round.  Therefore, each peer now reproduces the hash and 
compares it to the one sent to it.  If it matches, then it will consider the other’s 
identity true.  
 
ISAKMP Phase Two 
 
The purpose of Phase Two is to negotiate the parameters for an IPSec SA (Carrel 
and Harkins 4).  These are also known as “Non-ISAKMP SAs” (Carrel and Harkins 
7).  These SAs will be the channel that the actual data will be travelling through for 
the two gateways.  There are three messages involved in Phase Two (Carrel and 
Harkins 17).  All three messages are secure and use keys derived in Phase One 
(Carrel and Harkins 9).  By the end of Message Three, the keys will be created for 
the IPSec SAs.  Nonces are also exchanged here for replay protection (Carrel and 
Harkins 16).  See Figure 8 for a visual overview of this. 
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Keep in mind that at this point, we are communicating through a secure (encrypted) 
tunnel.  There will be more independent keys generated during this phase, but keep 
in mind that someone would first have to break into the ISAKMP tunnel that you are 
now communicating in. 
 
Phase Two, Message One 
 
In Message One, a proposal is made for a protection suite.  For our example, we will 
pick two protection suites:  ESP-DES-MD5 and AH-MD5.  Five things are sent 
across from the Initiator to the Responder:  ISAKMP header, a Hash Payload, an SA 
Payload, a Nonce Payload, and a Key Exchange Payload (Carrel and Harkins 17).  
The Key Exchange is optional, but required if you want PFS (Perfect Forward 
Secrecy) (Carrel and Harkins 16).  The reason why its not mandatory is that this 
mode (Quick Mode) is also used for refreshing keys.  When refreshing keys, its 
much faster to skip the Key Exchange.  All of these payloads are encrypted except 
for the ISAKMP header (Carrel and Harkins 15) using the same method described in 
Phase One, Round Three.  See Figure 9 for a visual explanation. 
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Hash Payload 
 
The purpose of this Hash is to authenticate the message and provide proof to the 
other peer that it is alive (Carrel and Harkins 15).  The authentication is done in the 
same manner as in Phase One, Round Three.  The Hash Payload uses the 
negotiated PRF from Phase One to perform the mixing of its inputs.   
 
Here, the SA, Nonce, and Key Exchange payloads, along with the Message ID 
(found in the ISAKMP header) are mixed using the SKEYID_A key derived 
previously in Phase One.  Notice that all payloads in this packet are included in the 
input of this hash including only part of the ISAKMP header, the Message ID.  The 
following is the formula for the hash (Carrel and Harkins 18): 
 
HASH(1) = HMAC-MD5 [( SKEYID_A ) , ( M-ID | SA | NI | KE )] 
 
Note that this hash does not include the variables that were input into it, but only a 
hash of them.  The actual variables are transported in their separate, respective 
payloads below.  Also note that the hash must be constructed last because it 
depends on those other variables. 
 
SA Payload 
 
The SA Payload includes the Proposal Payload.  More than one Proposal Payload 
can be included, but only for negotiating multiple non-ISAKMP SAs, which we are 
not doing here (Carrel and Harkins 8).  The Proposal Payload includes the 
Transform Payloads.  These are similar to the ones offered in Phase One, Message 
One, except these are destined for the final IPSec tunnel.  The general options being 
offered here are the AH (Authentication Header) protocol and the ESP 
(Encapsulating Security Payload) protocol.  The specific options offered here for AH 
are to use the HMAC-MD5-96 protection suite.  The specific options here for ESP 
are to use the 3DES protection suite and use HMAC-MD5 for authentication. 
 
The main difference between AH and ESP here is that ESP offers confidentiality 
through encryption.  For more detailed information on these specific protocols see 
(Atkinson and Kent, IP Authentication 1) and (Atkinson and Kent, IP Encapsulating 
2).  Each transform also includes a unique pseudo-randomly generated value called 
the SPI (Security Parameter Index) (Maughan et al. 62). Note that this is a 32-bit 
value.  The Protocol ID for each proposed protocol (ESP-DES, AH-MD5) is also 
included in the payload. 
 
Nonce Payload 
 
The Nonce Payload includes a pseudo-random number generated by the agreed 
upon PRF in Phase One (HMAC-MD5).  The purpose of this nonce is to provide 
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Replay Protection (Carrel and Harkins 17).  The nonce provides a freshly generated 
value to combat imposters that try use previous packets to create fake SAs. 
 
Key Exchange Payload 
 
The Key Exchange Payload is an optional payload, but should be included for PFS 
(Carrel and Harkins 16).  Perfect Forward Secrecy is the idea that if a single key is 
compromised, only data protected by that key is also compromised.  If that single 
key is used to derive new keys, or the key which derived that single key is re-used to 
derive new keys, the new keys could be compromised if you knew the first single key 
(Carrel and Harkins 4).  With PFS, the keys are independently derived and can’t be 
compromised.  By performing a key exchange, we are duplicating what was done in 
Phase One, Round Two and basically deriving a key from scratch.   
 
The contents of the Key Exchange Payload are the same as in Phase One.  The 
values passed are the Diffie-Hellman public values and the Diffie-Hellman group 
number.  As in Phase One, this Diffie-Hellman public value must be computed and is 
based on a random Diffie-Hellman private value. 
 
After each payload above is generated, each is individually encrypted using the 
agreed encryption algorithm from Phase One, 3DES-CBC, including the hash.  The 
payloads are put together and then sent as Message One. 
 
Phase Two, Message Two 
 
Message Two is a response to the proposal in Message One.  A proposal is chosen 
and sent back to the Initiator.  Message Two is just like Message One in that a Hash, 
SA, Nonce, and Key Exchange Payload are sent (Carrel and Harkins 17). The 
difference is that the SA payload will contain the choice of transforms from the 
proposal in Message One.  The nonce will be the Responder’s nonce and the Key 
Exchange Payload will contain the Responder’s Diffie-Hellman public value. See 
Figure 10 for a visual explanation. 
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Hash Payload 
 
In this hash, an additional nonce is added to the concatenation on the message side 
of the hash input.  The “NIB” is the additional value put in for liveliness proof (Carrel 
and Harkins 17).  This is actually the Initiator’s bare nonce;  the nonce payload 
without the payload header.  The formula for this hash is as follows (Carrel and 
Harkins 17): 
 
HASH(2) = HMAC-MD5 [( SKEYID_A ) , ( M-ID | NIB | SA | NR | KE )] 
 
SA Payload 
 
The SA payload is a response to the SA payload received in Message One.  Here, 
the Responder chooses a transform and sends the choice back to the Initiator.  Our 
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choice will be ESP with 3DES encryption and HMAC-MD5 authentication.  The 
Responder also generates its own pseudo-random SPI and includes it in the 
payload) (Maughan et al. 62).  The protocol ID for the chosen protocol is also 
included in the payload (Carrel and Harkins 17). 
 
Nonce payload 
 
This is the Responder’s pseudo-random number generated by the agreed upon 
PRF, HMAC-MD5. 
 
Key Exchange payload 
 
This is the Responder’s Diffie-Hellman Public Value and group number.  Just as in 
Message One, first a pseudo-random value is generated and called the Diffie-
Hellman private value.  Then, this value uses the formula from the agreed upon DH 
Group number and derives the DH public value. 
 
Like Message One, all the above payloads including the hash payload are 
individually encrypted and then brought together to form Message Two.  Message 
Two is then sent. 
 
Message Three Pre-Calculations 
 
At this point, both peers have received and authenticated each other by using 
Hash(1) and Hash(2).  Also, Diffie-Hellman public values and nonces have been 
exchanged.  These values are now used to derive keying material for the non-
ISAKMP SAs.  First, the new Diffie-Hellman Shared Secret is derived (DHSSq), then 
the keying material (KEYMAT).  The “q”s denote that these are Quick Mode 
variables.  The Diffie-Hellman Shared Secret will be the same for both peers.  The 
keying material will not be the same for both peers.  There will be two sets of keying 
material, one for each direction of traffic.  One will be for traffic going from Initiator to 
Responder (KEYMATIR) and one will be from Responder to Initiator (KEYMATRI).  
The formulas for these are as follows (Carrel and Harkins 17): 
 
DHSSQI  =  gq

XRXI  =  (gq
XR )XI   short for  [ (gq

XR) XI  mod P ] 
 
DHSSQR  =  gq

XIXR  =  (gq
XI )XR   short for  [ (gq

XI) XR  mod P ] 
 
DHSSQ  =  DHSSQI  =  DHSSQR  
 
KEYMATIR = HMAC-MD5 [( SKEYID_D ) , ( DHSSQ | protocol | SPII | NI | NR )] 
 
KEYMATRI = HMAC-MD5 [( SKEYID_D ) , ( DHSSQ | protocol | SPIR | NI | NR )] 
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The SKEYID_D is one of the resulting key materials from Phase One.  The protocol 
and SPIs are from the proposal payloads.  The SPIs will be used to identify each SA, 
one for each direction.  Note that even though the differences are slight in the inputs 
of the two KEYMAT formulas, their results will be quite different.  The nonces are 
from Message One and Message Two above. 
 
Note that the KEYMAT formulas change if PFS is not needed (Carrel and Harkins 
17).  There would not be a Key Exchange element (DHSSQ ). 
 
Phase Two, Message Three 
 
The purpose of Message Three is for the Initiator to prove its liveliness to the 
Responder (Carrel and Harkins 17).  It does this by sending a hash only, HASH(3).  
The hash is keyed with the same key as HASH(1) and (2), but on the message side 
is an 8-bit zero value, the Message-ID (from the ISAKMP header), and both of the 
bare nonces from messages One and Two (Carrel and Harkins 17).  Note that only 
this hash is sent and not the additional payloads as in Messages One and Two.  The 
Responder peer receives this message and verifies it by reproducing the same hash 
independently, then negotiations are over and peers can start using the SAs.  See 
Figure 11 for a visual representation.  The formula for HASH(3) follows: 
 
HASH(3) = HMAC-MD5 [( SKEYID_A ) , ( 0 | M-ID | NIB | NRB )] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After Message Three 
 
The IPSec tunnel is now complete.  The security protocol is now put into action.  In 
this case, the derived keying material  KEYMATIR  and  KEYMATRI  will be used to 
create the keys needed in the IPSec tunnel (Carrel and Harkins 18).  User data will 
now pass through and be transformed by these keys using the ESP protocol.  This 
continues until the SAs expire or are renewed. 
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Conclusion 
 
IPSec is a very secure way to create a VPN.  The technology behind the creation of 
secret keys and encryption is very complex, as you can see from this paper, but on 
the surface, the average person doesn’t see this, nor do they need to.   ISAKMP and 
IKE are mature, industry proven standards that have made it through the real-world 
challenges facing security protocols.  Today’s IPSec construction standards have 
taken into account all of the various attacks that have surfaced since the time of its 
inception.  The complexity of these protocols demonstrate the time and thought that 
has gone into their development.  After studying this, I have a deeper respect for the 
ingenuity that goes into these processes and the theories behind them.  One thing 
that stands out here is the modular construction of the protocols.  The ability for a 
user to choose their own algorithms, etc. is an example of a well-designed and well-
thought-out framework with the future in mind.  The structure is set for integration 
with future algorithms, key generation, and key transport methods. 
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