
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SANS GSEC Practical version 1.4b option 1
Chris Gutridge
March 1, 2003

IPSec Tunnel Creation

Abstract

There are many types of VPNs (Virtual Private Networks) available for use in today’s
networks. One of these types involves use of the IPSec standard. Within IPSec,
there are further options on ways to define your VPN. The actual building or
construction of the IPSec VPN is very involved. The purpose of this paper is to
detail, explain, and illustrate the specific processes that occur in creating an IPSec
VPN tunnel. Some of the concepts and theory will also be explained.

Like other VPNs, an IPSec tunnel is secure. It is encrypted using cryptographic
techniques. I will be using the example of what one vendor refers to as a site-to-site
VPN (How 2). These are not the same processes that occur with a host-to-host or
host-to-gateway VPN, although they are similar. There are many attacks that come
with IPSec and many that are avoided. I will cover a few of them, when relevant, but
not all.

Site-to-Site VPN Overview

In this type of VPN, there are two separate “true” private networks that need to
communicate with each other over a public link, the Internet. Every host in each
private network needs to communicate with every host in the other private network.
To do this, a tunnel is created between the two gateways that border the private
networks’ Internet connections. These two gateways become the two endpoints that
make up the VPN, and include equipment such as firewalls or routers.

The data conversation is actually taking place between any host behind one
gateway and any host(s) behind the other gateway. The gateways are only
transiting traffic. None of the traffic is actually destined for the gateway. It is
important to note that when the data first leaves the sender and reaches the first
gateway, it is always in clear text, or unencrypted. The gateway then encrypts it for
Internet travel and then the second gateway decrypts it and sends it in clear text to
the destination host. This is important because if an adversary can get inside the
company’s physical building, they can capture data in clear text and circumvent your
VPN protection. See Figure 1 for a visual example.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

In this setup, the users transferring data through the tunnel, probably don’t even
know they are going through a tunnel. This is a configuration that is set up by the
router or firewall administrator(s), not the user. The user may know that they are
connecting to the corporate office two thousand miles away, but not be aware of
how.

Basically, one system on a private network is trying to communicate with another
system on another private network, but travelling through the public network to get
there. The gateways are actually doing the work, which is transparent to the user, to
provide a secure tunnel between the two private networks.

IPSec tunnel Overview

The rules and processes by which an IPSec tunnel is constructed have been
standardized by the IETF (Internet). The current governing document for this is the
IKE document (Braden et al. 24).

In general, the process to create an IPSec tunnel is to first establish a preparatory
tunnel, encrypted and secure, then from within that secure tunnel, negotiate the
encryption keys and parameters for the IPSec tunnel. This first tunnel, or this secure
and authenticated channel (Carrel and Harkins 4) is commonly referred to as the
ISAKMP tunnel. IKE is actually the protocol and is used to negotiate and
authenticate keying material for the tunnel. It is important to note that IKE is a hybrid
protocol made up of a combination of ISAKMP (Internet Security Association Key
Management Protocol), Oakley, and SKEME (Secure Key Exchange Mechanism for
Internet) protocols (Carrel and Harkins 1). IKE does not implement the entire
ISAKMP, Oakley, or SKEME protocols (Carrel and Harkins 2). These protocols
have specific rules for use within IKE.

This ISAKMP tunnel, once created, continues in session until it expires. Note that
there is no expiration specified in any of the RFCs for this, it is vendor-dependent.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

For example, on the Cisco PIX Firewall, it can be set from two minutes to twenty-four
hours (Cisco 6-25). It creates the IPSec tunnel for a specified interval of time
(determined and pre-programmed by the administrator) and then will re-create a new
tunnel every time this interval is close to expiring again. See Figure 2 for a visual
overview.

ISAKMP Tunnel Creation

IKE specifies a two phase method for tunnel creation (Carrel and Harkins 4). A
secure ISAKMP tunnel is created upon completion of Phase One. This tunnel is not
used until Phase Two begins. Then, this new ISAKMP tunnel is used to create the
secure IPSec tunnel, which is in place when Phase Two is complete.

By creating this initial or preparatory tunnel, you are assured that your negotiation of
security parameters for the IPSec tunnel is going through a secure channel. So, you
are safe there. But this first tunnel was not negotiated from within a secure tunnel,
so what about here? You can create as many secure tunnels as you want, but
what’s ultimately going to matter is how secure was that first tunnel that was created.
If the first tunnel was not created securely, then it doesn’t matter how secure your
IPSec tunnel is. The reality is that your IPSec tunnel is really only as secure as the
first tunnel that created it was. Therefore, this really adds an importance to how this
first tunnel is created and thus the reason for the interest in this paper.

The security parameters involved in the first tunnel are actually much more secure
than those in the IPSec tunnel, as should be. So, here we have a secure tunnel
(first tunnel). But, if we have a secure tunnel, more secure than the IPSec tunnel,
why should we create a second tunnel in the first place for our IPSec traffic? Don’t
we want the most secure tunnel we can get? There are two reasons I have found.
First, the first tunnel is so secure that it will slow down the traffic. This is made under
the assumption that you are choosing much longer key lengths for your ISAKMP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

keys. Secondly, having two tunnels allows the first one the ability to periodically
“refresh” the keys (negotiate new keys) used in the second tunnel. These features
help the security of the IPSec tunnel. If the keys are refreshed, a brute force attack
would have to start over because a new key would have to be found. The timing of
the refreshes can be set so that a brute force attack on the keys would never have
enough time to exhaust all possible keys (Schneier 152). Also, the processor is
freed up in the second tunnel because less computation is required and keys don’t
need to be derived.

ISAKMP Phase One

In Phase One, there are six messages exchanged between the peers (Carrel and
Harkins 7). Note that there is an Aggressive Mode also using less messages which I
will not be going over here. Three messages are from the Initiator peer and three
are from the Responder peer. These are also thought of as three round trips of
messages. This round trip method of reference is helpful because there are three
types of exchanges going on. Let’s define the Initiator as the peer that wants to start
an IPSec session with the other peer, whom will be the Responder. In general,
when Message One is sent, the two peers are communicating in clear text. By the
time the sixth message is sent, their communication is encrypted and both of their
identities have been verified (authenticated). At this point, the ISAKMP tunnel is
built and ready to use by the peers in the beginning of Phase Two.

In Message One and Two (Round Trip One), the peers negotiate a security policy for
their upcoming private session in Phase Two. In Round Trip Two, the peers
exchange some Diffie-Hellman values and some secondary values. Finally, in round
trip three, the data exchanged in Round Two is manipulated by formulas, then
exchanged between the peers and used to authenticate the other peer. Also, the
keys are created that will be used to encrypt data in the new secure tunnel in Phase
Two. See Figure 3 for a graphic depiction of this.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This ‘tunnel’ and also the IPSec ‘tunnel’ are actually just a group of Security
Associations agreed to between the peers. These are more commonly referred to
as ‘SA’s. A tunnel has two SAs, one for each direction of data travel. (Atkinson and
Kent, Security 7)

It is important to note that up until the authentication round, either peer could be an
imposter disguised as one of the peers. The exchange that takes place in Round
Three is designed to stop these kind of imposters who should not pass
authentication. This adds to the importance of this round trip.

Round Two is arguably as important as Round Three. Round Three is important
because you don’t want to create a secure tunnel with the wrong person. Round
Two is important because you don’t want someone to break your encryption and be
able to see all your data. They are different concerns but equally important.

Before Round One, policies to be negotiated need to be pre-programmed into the
gateways. Usually this is done upon installation of the device by the system
administrator. The four main negotiated policy parameters of the ISAKMP SAs are
as follows: Encryption algorithm, Authentication method, Hash algorithm, and Diffie-
Hellman Group (Carrel and Harkins 6). Below, as I describe each round trip, I
describe how and where these parameters are used. The specific attributes
available are dependent on the hardware being used. There are some attributes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

that are required on all hardware and the rest are optional (Carrel and Harkins 6).
See Figure 4 for some common examples. Note that all of these options are not
available on all hardware. The hi-lighted items will be used in the example that
follows.

Phase One, Round One

The purpose of this round is to agree on parameters for the upcoming ISAKMP
tunnel. In this round, the Initiator peer will send a suite of proposed security
parameters and the Responder will choose one (if its on its acceptable list) and send
its choice back. Message One is the proposal and Message Two is the response.
After this round is over, both peers have an agreed suite of parameters for the
ISAKMP tunnel that will be protecting traffic in Phase Two.

One of the important pieces of this round is the generation and use of the Initiator
and Responder cookies. Each peer generates a 64-bit cookie that is included in
every subsequent message (Maughan et al. 20). In Message One, the Initiator
cookie is sent, and in Message Two, the Responder cookie is sent along with the
Initiator cookie (Maughan et al. 17). In subsequent messages, both cookies are sent

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

in the ISAKMP header. These cookies are used throughout Phase One to prevent
Denial of Service type attacks (Maughan et al. 11), and later in keying material
generation (see Phase Two below). For clarity, the symbolic representations
throughout this paper will not necessarily correspond to the symbols used in the
official documents of these protocols. My symbolic representations for the cookies
are as follows:

CKYI = Initiator’s cookie
CKYR = Responder’s cookie

The payloads in the following diagrams (Figures 5a, 5b) are symbolic and are not
perfectly representative of the actual complete IP packet. All of the packets in
Phase One are required to use UDP port 500 for transport (Piper 18). For brevity,
only the relevant items to this paper will be shown. I have also used the data from
Figure 4 above for one of the proposed security suites in Message One and the
actual chosen one in Message Two. The boxes represent encapsulation of
payloads and are representative of actual packet construction.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Phase One, Round Two

The purpose of this round is to come up with a shared secret value only known to
the Initiator and Responder, while communicating in clear text. This will later be
used to create the keys for the ISAKMP SAs.

This is done by exchanging four non-secret (public) values. Each side will calculate
four values. First, each side generates a private value from scratch that doesn’t get
sent across the channel. Based on this value, the first public value is generated. A
second public value is generated from scratch. Then, these two public values are
exchanged with the other peer’s public values. Then, the two received values from
the opposite peer, together with the first private value, are used to generate a fourth
value which becomes the shared secret.

Note that this new shared secret has never gone across the wire. Also note that the
two peers amazingly come up with the same value for the shared secret. This is
amazing because their private inputs are different!

A value has been created here using three variables. Two out of three of these
variables are available to an attacker/eavesdropper. Without this third variable, he
cannot calculate this shared value. Note that there are two different values for this
third variable. The Initiator uses one and the Responder uses another. Therefore
an attacker has two values that he can attempt to obtain instead of just one. This
third missing variable is the Diffie-Hellman private value described later and is
pseudo-randomly generated and very tough to obtain.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Round Two Pre-exchange Calculations

First, each side computes two pseudo-random values. These will be called the
nonce (Orman 3) and the Diffie-Hellman private value (Van Oorschot and Wiener 1).
The nonce is sent across the channel in clear text and the Diffie-Hellman private
value is kept secret. The Diffie-Helman private value is used to calculate the Diffie-
Hellman public value, and then this public value is sent across the channel in clear
text. These are described in detail below.

Pseudo-Random Numbers

Pseudo-random numbers are used here versus true random numbers. A
mathematician would say that true random numbers only occur in nature (Schneier
44). The next best numbers come from hardware that is designed and dedicated to
creating random numbers (Schneier 44). The next best numbers after that come
from software-based Pseudo-Random Number Generators (PNG) based on
Pseudo-Random Functions (PRF). The best of these work by obtaining random
input from various uncorrelated sources and mixing them together with strong mixing
functions (Crocker, Eastlake, and Schiller 13). This method is employed here.

This PRF is negotiated and agreed to as with the other items above in Figure 4. But,
this is an optional negotiation item (Carrel and Harkins 6) and is often not specified
by the system administrator. When this occurs, IKE requires the peers to use the
chosen hash algorithm as the Pseudo-Random Function (Carrel and Harkins 6).

Pseudo-Random Function (PRF)

In order for a hash algorithm to be used as a PRF, it has to be ran in HMAC (Hashed
Message Authentication Codes) mode. The negotiated hash algorithm can be ran in
two modes: native and HMAC (Carrel and Harkins 6). In this paper, MD5 (Message
Digest 5) is the chosen algorithm as shown in Figure 4.

In normal mode, MD5 is a function that accepts one arbitrary length input, which is
converted to a multiple of 512 bits, and outputs a fixed-length output of 128 bits
(Rivest 1). It cannot be reverse-engineered because of the mathematical properties
of the algorithm. It is these mathematical properties that make it such a good choice
to use for encryption or confidentiality. This function is also referred to as a one-way
hash function and a compression function. Normal mode is represented
symbolically as follows:

MD5 (message)

The simplest way to key a function would be to simply add a key to the front of the
standard input message and concatenate it together and then run it through the
formula as if it were one input, see below. The comma represents concatenation.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Simple-Keyed-MD5 = MD5 (key, message)

Bellare, Canetti, and Krawczyk explain in their paper (1), this method is not secure
or random enough for pseudo-random number generation. So, they created the
HMAC method. The HMAC mode is an adaptation of the normal MD5 function.
There are two separate, but dependent, iterations of MD5 for each one iteration of
HMAC-MD5. The core algorithm used is not changed, it is just re-used, if you will,
using the output of the first one. HMAC acts as a front-end to MD5. The formula for
HMAC-MD5 follows (Bellare, Canetti, and Krawczyk 14):

HMAC-MD5 = MD5 ([K xor OPAD] , [MD5 (K xor IPAD, X)])

This function is parsed and computed like a mathematical function. The internal
brackets are computed first and become the equivalent of the key and message
above. Then, like above, these are concatenated together and ran through the MD5
function. This mixing function combines logical operations using XOR, more
concatenation, bit padding (extending), and iterated function operations to create
this random number transformation. Note that the last function that occurs is MD5,
which makes the final output 128 bits. See Bellare, Canetti, and Krawczyk’s paper
for more details on this process.

Basically, the mixing details ensure the pseudo-randomness of the result. The
padding ensures the length of all the inputs are fixed (Rivest 2). The XOR is the
logical bit-wise exclusive-OR operator. Concatenation hides the beginning and
ending of the data from each variable. Iterated operations ensure the function
against collision attacks. Because of the complex mixing techniques, the collision
attacks used on the normal MD5 algorithm are infeasible on the HMAC version
(Bellare, Canetti, and Krawczyk 15).

Nonce

The nonce is a Pseudo-Random number generated locally by the designated PRF
(Orman 3), in this case, HMAC-MD5. The purpose of the nonce is to guarantee
liveness and protect against replay attacks (Maughan et al. 36). It will also be used
to derive the Diffie-Hellman Shared Secret (see below).

The interesting thing about the nonce is that if you think about the fact that it will be
sent over the open wire, in clear text, then why the worry about security. Actually,
there is no security in the nonce. The important thing about the nonce is that it is as
random as possible for its use in the upcoming equations.

The nonce is required to have a minimal amount of randomness (Orman 8). Entropy
describes the level of randomness. The nonce’s entropy level must be equivalent to
the strength of the negotiated Diffie-Hellman group (Orman 8). In this case, Group
Two is based on a 1024 bit prime number, but its strength, instead, depends on a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

few factors (Carrel and Harkins 28). This makes its entropy somewhere between 60
and 180 bits. Below are symbolic representations of the nonces.

NI = Pseudo-random number from Initiator (from HMAC-MD5 algorithm)
NR = Pseudo-random number from Responder (from HMAC-MD5 algorithm)

Diffie-Hellman Values

The Diffie-Hellman (DH) private value is another pseudo-random value generated
by the PRF, HMAC-MD5, but will never get sent across the channel. This is the only
value that is kept secret during this round. This is probably the most important value
to keep secret in all of IKE, and therefore IPSec. Each peer generates one of these
values. If these values become known by an attacker, its all over. Everything else is
already in the open, now this. An attacker would easily be able to create the same
keys that you’re about to create and any IPSec keys that you create from within your
ISAKMP tunnel.

After the private DH value is generated, the DH public value can be generated.
These must be generated in sequence, first the private value, then the public value.
This is because the private value is a required variable in the formula to calculate the
public value. Mathematically speaking, the public value is a function of the private
value. This public value is then sent across the channel with the nonce above.
Once again, just as it is important to keep the DH private value secret, it is also
important that the algorithm used to create the public value from the private value
not be reversible.

Private DH value generation

The private value is a pseudo-random number and is just created as stated above
using the current PRF. Below are symbolic representations of the DH private
values:

XI = Private DH value for Initiator
XR = Private DH value for Responder

Diffie-Hellman Groups

When speaking of Diffie-Hellman groups, one is referring to Diffie-Hellman public
values. These groups are also called Oakley groups because they originated with
the Oakley protocol (Carrel and Harkins 20). But do not confuse the group numbers.
The original Oakley groups were different for groups three, four, and others. The
group numbers now are defined by IKE standards.

The two main types of groups used today are Modular Exponentiation Groups
(MODP) and Elliptic Curve Groups (EC2N). Both of these have a connection with
prime numbers. The whole security of these groups is based on solving some

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

intractable math problem. An intractable math problem is a problem that is believed
to not be solvable in polynomial time (SANS 2-5). This is agreed to by the worldwide
mathematical community that is active in researching issues in the field of
computation complexity (SANS 2-5). Polynomial time is approximately equivalent to
your lifetime. It is important to note that there is no mathematical proof that these
problems can’t be solved easily, we only have the years of public scrutiny that
suggests that (SANS 2-5). For the MODP groups, the intractable problem is solving
the Discrete Logarithm Problem over finite fields (SANS 2-7). For the EC2N groups,
its also solving the Discrete Logarithm Problem but as applied to elliptic curves
(SANS 2-8).

Public DH value generation

The public DH value is derived from a formula (Orman 36): 2

X
 (mod P). The X is

the DH private value derived above and the P is a special prime number. The 2 and
the P are both hard-coded constants, with the only variable being X (Carrel and
Harkins 21). The P is different depending on the DH group that is being used. In
our case, Group 2 uses a 1024-bit prime number (Carrel and Harkins 21). Recall
that X is only 128 bits long because its an output from HMAC-MD5. The X is also
referred to as the Diffie-Hellman exponent.

The basic function employed here is exponentiation but using modular arithmetic.
First, 2 is raised to the Xth power, then modulus is ran on the result. Modulus is
division, but instead of looking for the quotient, you look for the remainder. For
example, (8 / 4 = 2), but (8 mod 4 = 0). Note that when you raise 2 to the Xth power,
you are not raising it to the 128th power, but to the decimal equivalent of the 128-bit
number. This ensures that 2

X
is always larger than P and that there is a remainder.

The following are symbolic representations of the public DH value. Note that ‘g’ is
always 2 in our example.

gXI short for [gXI (mod P)] = Public DH value for Initiator

gXR short for [gXR (mod P)] = Public DH value for Responder

Round Two Exchanges

At this point, each side has generated a Diffie-Hellman public value, or half-key
(Orman 12), and a unique nonce. These are now passed across the wire first from
the Initiator in Message Three and second from the Responder in Message Four.
See Figure 6a and 6b for visual depictions.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Round Three Pre-Calculations

After the two messages are exchanged, a number of things are calculated. Each
side will calculate keying material called the Diffie-Hellman Shared Secret. This will
be used to create the keys. If a pre-shared key is used, as in our case, it is also
used here.

Diffie-Hellman Shared Secret

The Diffie-Hellman Shared Secret must be computed first as one of the other
formulas depend on its value. Note in the formulas below that the first formula after
the equal sign is shown how it is commonly written. To the right, I’ve included the
complete mathematical operations for a clear idea of how they are derived (Van
Oorschot and Wiener 1).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

DHSS = (other peer’s public value)
your own private value

DHSSI = gXRXI = (gXR)XI short for [(gXR) XI mod P]

DHSSR = gXIXR = (gXI)XR short for [(gXI) XR mod P]

DHSS = DHSSI = DHSSR

This fourth equation states that the previous two are equal to each other. They are
equal because of the mathematical properties of exponents.

Pre-Shared Key

For pre-shared key authentication, the other shared secret is the pre-shared key.
Remember, this key is pre-determined and manually programmed into each peer
and is never passed across the line.

Keying Material Derivation

Four pieces of keying material must be calculated and all must be calculated in
order. SKEYID is the first of these, and its formula follows (Carrel and
Harkins 9):

SKEYID = HMAC-MD5[(pre_shared_key), (NI | NR)]

Recall that HMAC-MD5 is used as a keyed MD5 function. The “|” also symbolizes
concatenation of values. If you recall the definition of HMAC-MD5, the left is the key
side, represented here by the pre_shared_key. The right is the message side,
represented here by the concatenation of nonces. Note that the order of the nonces
is the same for both peers, NI is always first. This is true because there is only one
formula for SKEYID. The comma would normally symbolize concatenation, but don’t
confuse simple-keyed-MD5 with HMAC-MD5. The comma separates the two sides
which are plugged into the HMAC-MD5 function defined earlier.

It is important to note that the formula for SKEYID changes depending on the
authentication method. If digital signatures or public keys are used, there is a
different formula to derive SKEYID. There would also be a difference in Phase One
messages Three and Four (Carrel and Harkins).

Note that this value is secret only because the pre-shared key is secret. Both
nonces were sent across the channel in the clear. Also, note that SKEYID is never
sent across the channel. This is why it is important to choose a strong value for your
pre-shared key.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

At this point, the following keying material is generated from the SKEYID (Carrel and
Harkins 9). Like SKEYID, these are all 128-bit values (because of HMAC-MD5).
Unlike SKEYID above, these formulas are the same for all types of authentication.
This is true because they are all generated after SKEYID.

SKEYID_D = HMAC-MD5[(SKEYID) , (DHSS | CKYI | CKYR | 0)]

SKEYID_A = HMAC-MD5[(SKEYID) , (SKEYID_D | DHSS | CKYI | CKYR | 1)]

SKEYID_E = HMAC-MD5[(SKEYID) , (SKEYID_A | DHSS | CKYI | CKYR | 2)]

The process for processing these formulas is just like SKEYID above. Everything in
parenthesis is concatenated first, then the right and left sides are processed through
the HMAC-MD5 mixing process. The numbers at the end are just hard-coded
constants(Carrel and Harkins 9).

If you examine these formulas, you will notice that they have to be generated in the
sequence listed above. This is because part of the formula for one is dependent on
the previous one. You will also notice that by the time you get to SKEYID_E, the
numbers have been through many iterations, adding to the security of the
SKEYID_E keying material.

Although these keying materials must be generated in order, they don’t have to be
used in any particular order, but rather for different purposes. The different letters
represent the different purposes of these keying materials (Carrel and Harkins 3).
The ‘D’ stands for derive because it is used to derive the keys for the IPSec Security
Associations. The ‘A’ stands for authenticate because it is used to authenticate
ISAKMP messages. The ‘E’ stands for encryption because it is used to encrypt
ISAKMP messages.

At this point, everything is in place for creating the keys for Phase Two and
encrypting the channel, except the peers need to be authenticated.

Phase One, Round Three

This round provides the authentication of the peers, so that the first secure tunnel
(ISAKMP SA) can be created. All the material is now in place to create a secure
tunnel and it can be created right now, but you would have no guarantee that the
tunnel is going to where you think its going. To have this guarantee, authentication
is performed. To authenticate each other using pre-shared keys, a Hash Payload
and an Identification Payload are exchanged (Carrel and Harkins 15). Also, the
Hash Payload along with the Identification Payload are each encrypted (Carrel and
Harkins 2). The algorithm used is 3DES-CBC, from Figure 4, and the key is
SKEYID_E from above (Carrel and Harkins 3).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Hash Payload

The hash consists of some secret values and some public values. The hash
formulas differ for each peer. In the hash formulas shown below, the SKEYID
derived earlier is used to key the function. The message data (on the right) is mostly
public information and has been sent across the wire before. The exception is the
IDI and IDR, which are being sent across the wire now in the ID Payload and in
Message Six. The SAI is the entire SA payload offered in Message One by the
Initiator excluding the ISAKMP header (Carrel and Harkins 2). The IDI is the entire
Identification Payload without the generic ID Payload header (Carrel and Harkins 3).

Identification Payload

The ID payload includes information about the Initiator of this tunnel request. It
includes information such as the IP address or range of IP addresses to apply tunnel
parameters to, the protocol being used, and port being used (Piper 18).

Following are the formulas for the two hashes (Carrel and Harkins 9).

HASH_I = HMAC-MD5 [(SKEYID) , (gXI | gXR | CKYI | CKYR | SA I | IDI)]
HASH_R = HMAC-MD5 [(SKEYID) , (gXR | gXI | CKYR | CKYI | SAI | IDR)]

The following Figures (7a, 7b) show a visual depiction of Round Three.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Round Three Post-Calculations

As of now, both sides have exchanged a hash and an ID payload. Authentication is
accomplished by the fact that the other peer can reproduce the hash that you sent to
it (Carrel and Harkins 9). This should not be possible unless the other peer knows
the value of SKEYID, which was never sent over the wire. The other peer does
know this value because it also calculated it between Rounds Two and Three. Note
that the last of the inputs to be sent across the open wire, ID I and IDR , have just
been sent across in this round. Therefore, each peer now reproduces the hash and
compares it to the one sent to it. If it matches, then it will consider the other’s
identity true.

ISAKMP Phase Two

The purpose of Phase Two is to negotiate the parameters for an IPSec SA (Carrel
and Harkins 4). These are also known as “Non-ISAKMP SAs” (Carrel and Harkins
7). These SAs will be the channel that the actual data will be travelling through for
the two gateways. There are three messages involved in Phase Two (Carrel and
Harkins 17). All three messages are secure and use keys derived in Phase One
(Carrel and Harkins 9). By the end of Message Three, the keys will be created for
the IPSec SAs. Nonces are also exchanged here for replay protection (Carrel and
Harkins 16). See Figure 8 for a visual overview of this.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Keep in mind that at this point, we are communicating through a secure (encrypted)
tunnel. There will be more independent keys generated during this phase, but keep
in mind that someone would first have to break into the ISAKMP tunnel that you are
now communicating in.

Phase Two, Message One

In Message One, a proposal is made for a protection suite. For our example, we will
pick two protection suites: ESP-DES-MD5 and AH-MD5. Five things are sent
across from the Initiator to the Responder: ISAKMP header, a Hash Payload, an SA
Payload, a Nonce Payload, and a Key Exchange Payload (Carrel and Harkins 17).
The Key Exchange is optional, but required if you want PFS (Perfect Forward
Secrecy) (Carrel and Harkins 16). The reason why its not mandatory is that this
mode (Quick Mode) is also used for refreshing keys. When refreshing keys, its
much faster to skip the Key Exchange. All of these payloads are encrypted except
for the ISAKMP header (Carrel and Harkins 15) using the same method described in
Phase One, Round Three. See Figure 9 for a visual explanation.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Hash Payload

The purpose of this Hash is to authenticate the message and provide proof to the
other peer that it is alive (Carrel and Harkins 15). The authentication is done in the
same manner as in Phase One, Round Three. The Hash Payload uses the
negotiated PRF from Phase One to perform the mixing of its inputs.

Here, the SA, Nonce, and Key Exchange payloads, along with the Message ID
(found in the ISAKMP header) are mixed using the SKEYID_A key derived
previously in Phase One. Notice that all payloads in this packet are included in the
input of this hash including only part of the ISAKMP header, the Message ID. The
following is the formula for the hash (Carrel and Harkins 18):

HASH(1) = HMAC-MD5 [(SKEYID_A) , (M-ID | SA | NI | KE)]

Note that this hash does not include the variables that were input into it, but only a
hash of them. The actual variables are transported in their separate, respective
payloads below. Also note that the hash must be constructed last because it
depends on those other variables.

SA Payload

The SA Payload includes the Proposal Payload. More than one Proposal Payload
can be included, but only for negotiating multiple non-ISAKMP SAs, which we are
not doing here (Carrel and Harkins 8). The Proposal Payload includes the
Transform Payloads. These are similar to the ones offered in Phase One, Message
One, except these are destined for the final IPSec tunnel. The general options being
offered here are the AH (Authentication Header) protocol and the ESP
(Encapsulating Security Payload) protocol. The specific options offered here for AH
are to use the HMAC-MD5-96 protection suite. The specific options here for ESP
are to use the 3DES protection suite and use HMAC-MD5 for authentication.

The main difference between AH and ESP here is that ESP offers confidentiality
through encryption. For more detailed information on these specific protocols see
(Atkinson and Kent, IP Authentication 1) and (Atkinson and Kent, IP Encapsulating
2). Each transform also includes a unique pseudo-randomly generated value called
the SPI (Security Parameter Index) (Maughan et al. 62). Note that this is a 32-bit
value. The Protocol ID for each proposed protocol (ESP-DES, AH-MD5) is also
included in the payload.

Nonce Payload

The Nonce Payload includes a pseudo-random number generated by the agreed
upon PRF in Phase One (HMAC-MD5). The purpose of this nonce is to provide

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Replay Protection (Carrel and Harkins 17). The nonce provides a freshly generated
value to combat imposters that try use previous packets to create fake SAs.

Key Exchange Payload

The Key Exchange Payload is an optional payload, but should be included for PFS
(Carrel and Harkins 16). Perfect Forward Secrecy is the idea that if a single key is
compromised, only data protected by that key is also compromised. If that single
key is used to derive new keys, or the key which derived that single key is re-used to
derive new keys, the new keys could be compromised if you knew the first single key
(Carrel and Harkins 4). With PFS, the keys are independently derived and can’t be
compromised. By performing a key exchange, we are duplicating what was done in
Phase One, Round Two and basically deriving a key from scratch.

The contents of the Key Exchange Payload are the same as in Phase One. The
values passed are the Diffie-Hellman public values and the Diffie-Hellman group
number. As in Phase One, this Diffie-Hellman public value must be computed and is
based on a random Diffie-Hellman private value.

After each payload above is generated, each is individually encrypted using the
agreed encryption algorithm from Phase One, 3DES-CBC, including the hash. The
payloads are put together and then sent as Message One.

Phase Two, Message Two

Message Two is a response to the proposal in Message One. A proposal is chosen
and sent back to the Initiator. Message Two is just like Message One in that a Hash,
SA, Nonce, and Key Exchange Payload are sent (Carrel and Harkins 17). The
difference is that the SA payload will contain the choice of transforms from the
proposal in Message One. The nonce will be the Responder’s nonce and the Key
Exchange Payload will contain the Responder’s Diffie-Hellman public value. See
Figure 10 for a visual explanation.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Hash Payload

In this hash, an additional nonce is added to the concatenation on the message side
of the hash input. The “NIB” is the additional value put in for liveliness proof (Carrel
and Harkins 17). This is actually the Initiator’s bare nonce; the nonce payload
without the payload header. The formula for this hash is as follows (Carrel and
Harkins 17):

HASH(2) = HMAC-MD5 [(SKEYID_A) , (M-ID | NIB | SA | NR | KE)]

SA Payload

The SA payload is a response to the SA payload received in Message One. Here,
the Responder chooses a transform and sends the choice back to the Initiator. Our

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

choice will be ESP with 3DES encryption and HMAC-MD5 authentication. The
Responder also generates its own pseudo-random SPI and includes it in the
payload) (Maughan et al. 62). The protocol ID for the chosen protocol is also
included in the payload (Carrel and Harkins 17).

Nonce payload

This is the Responder’s pseudo-random number generated by the agreed upon
PRF, HMAC-MD5.

Key Exchange payload

This is the Responder’s Diffie-Hellman Public Value and group number. Just as in
Message One, first a pseudo-random value is generated and called the Diffie-
Hellman private value. Then, this value uses the formula from the agreed upon DH
Group number and derives the DH public value.

Like Message One, all the above payloads including the hash payload are
individually encrypted and then brought together to form Message Two. Message
Two is then sent.

Message Three Pre-Calculations

At this point, both peers have received and authenticated each other by using
Hash(1) and Hash(2). Also, Diffie-Hellman public values and nonces have been
exchanged. These values are now used to derive keying material for the non-
ISAKMP SAs. First, the new Diffie-Hellman Shared Secret is derived (DHSSq), then
the keying material (KEYMAT). The “q”s denote that these are Quick Mode
variables. The Diffie-Hellman Shared Secret will be the same for both peers. The
keying material will not be the same for both peers. There will be two sets of keying
material, one for each direction of traffic. One will be for traffic going from Initiator to
Responder (KEYMATIR) and one will be from Responder to Initiator (KEYMATRI).
The formulas for these are as follows (Carrel and Harkins 17):

DHSSQI = gq

XRXI = (gq
XR)XI short for [(gq

XR) XI mod P]

DHSSQR = gq

XIXR = (gq
XI)XR short for [(gq

XI) XR mod P]

DHSSQ = DHSSQI = DHSSQR

KEYMATIR = HMAC-MD5 [(SKEYID_D) , (DHSSQ | protocol | SPII | NI | NR)]

KEYMATRI = HMAC-MD5 [(SKEYID_D) , (DHSSQ | protocol | SPIR | NI | NR)]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The SKEYID_D is one of the resulting key materials from Phase One. The protocol
and SPIs are from the proposal payloads. The SPIs will be used to identify each SA,
one for each direction. Note that even though the differences are slight in the inputs
of the two KEYMAT formulas, their results will be quite different. The nonces are
from Message One and Message Two above.

Note that the KEYMAT formulas change if PFS is not needed (Carrel and Harkins
17). There would not be a Key Exchange element (DHSSQ).

Phase Two, Message Three

The purpose of Message Three is for the Initiator to prove its liveliness to the
Responder (Carrel and Harkins 17). It does this by sending a hash only, HASH(3).
The hash is keyed with the same key as HASH(1) and (2), but on the message side
is an 8-bit zero value, the Message-ID (from the ISAKMP header), and both of the
bare nonces from messages One and Two (Carrel and Harkins 17). Note that only
this hash is sent and not the additional payloads as in Messages One and Two. The
Responder peer receives this message and verifies it by reproducing the same hash
independently, then negotiations are over and peers can start using the SAs. See
Figure 11 for a visual representation. The formula for HASH(3) follows:

HASH(3) = HMAC-MD5 [(SKEYID_A) , (0 | M-ID | NIB | NRB)]

After Message Three

The IPSec tunnel is now complete. The security protocol is now put into action. In
this case, the derived keying material KEYMATIR and KEYMATRI will be used to
create the keys needed in the IPSec tunnel (Carrel and Harkins 18). User data will
now pass through and be transformed by these keys using the ESP protocol. This
continues until the SAs expire or are renewed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Conclusion

IPSec is a very secure way to create a VPN. The technology behind the creation of
secret keys and encryption is very complex, as you can see from this paper, but on
the surface, the average person doesn’t see this, nor do they need to. ISAKMP and
IKE are mature, industry proven standards that have made it through the real-world
challenges facing security protocols. Today’s IPSec construction standards have
taken into account all of the various attacks that have surfaced since the time of its
inception. The complexity of these protocols demonstrate the time and thought that
has gone into their development. After studying this, I have a deeper respect for the
ingenuity that goes into these processes and the theories behind them. One thing
that stands out here is the modular construction of the protocols. The ability for a
user to choose their own algorithms, etc. is an example of a well-designed and well-
thought-out framework with the future in mind. The structure is set for integration
with future algorithms, key generation, and key transport methods.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Works Cited

Atkinson, R., Kent, S. “IP Authentication Header.” RFC 2402, The Internet Society
(Nov 1998). <http://www.ietf.org/rfc/rfc2402.txt>

---. “IP Encapsulating Security Payload (ESP).” RFC 2406, The Internet Society
(Nov 1998). <http://www.ietf.org/rfc/rfc2406.txt>

---. “Security Architecture for the Internet Protocol.” RFC 2401, The Internet Society
(Nov 1998). <http://www.ietf.org/rfc/rfc2401.txt>

Bellare, Mihir, Canetti, Ran, Krawczyk, Hugo. “Keying Hash Functions for Message
Authentication.” Lecture Notes in Computer Science. Crypto 96 Proceedings (June
1996).

Braden, R., De La Cruz, A., Ginoza, S., Reynolds, J. “Internet Official Protocol
Standards.” RFC 3300, The Internet Society (Nov 2002).

Carrel, D., Harkins, D. “The Internet Key Exchange (IKE).” RFC 2409, The Internet
Society (Nov 1998). <http://www.ietf.org/rfc/rfc2409.txt>

Cisco PIX Firewall Command Reference, Version 6.2. Cisco Systems (Jan 2003).
<http://www.cisco.com/univercd/cc/td/doc/product/iaabu/pix/pix_62/cmdref/gl.htm>

Crocker, S., Eastlake, D., III, Schiller, J. “Randomness Recommendations for
Security.” RFC 1750, IETF Network Working Group (Dec 1994).
<http://www.ietf.org/rfc/rfc1750.txt>

How Virtual Private Networks Work. Cisco Systems (Nov. 2002).
<http://www.cisco.com/warp/public/471/how_vpn_works.shtml>

Internet Engineering Task Force Web Site (Feb 2003). <http://www.ietf.org/>

Maughan, D., Schertler, M., Schneider, M., Turner, J. “Internet Security Association
and Key Management Protocol (ISAKMP).” RFC 2408, The Internet Society (Nov
1998). <http://www.ietf.org/rfc/rfc2408.txt>

Orman, H. “The OAKLEY Key Determination Protocol.” RFC 2412, The Internet
Society (Nov 1998). <http://www.ietf.org/rfc/rfc2412.txt>

Piper, D. “The Internet IP Security Domain of Interpretation for ISAKMP.” RFC
2407, The Internet Society (Nov 1998). <http://www.ietf.org/rfc/rfc2407.txt>

Rivest, R. “The MD5 Message-Digest Algorithm.” RFC 1321, The IETF Network
Working Group (Apr 1992). <http://www.ietf.org/rfc/rfc1321.txt>

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SANS Institute. “Introduction into Encryption II”, SANS Security Essentials IV:
Encryption and Exploits, Course Material (Apr 2002)

Schneier, Bruce. Applied Cryptography Second Edition: Protocols, Algorithms, and
Source Code in C. New York: Wiley, 1996.

Van Oorschot, Paul C., Wiener, Michael J. “On Diffie-Hellman Key Agreement with
Short Exponents.” Eurocrypt ’96, LNCS vol. 1070, pp. 332-343, Springer-Verlag
1996.

