
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Anatomy of an IP Fragmentation Vulnerability in Linux
IPChains: Investigating Common Vulnerabilities and
Exposures (CVE) Candidate Vulnerability CAN-1999-1018 (1)

GIAC Security Essentials Certification (GSEC) Practical Assignment, Version 1.4b,
Option 1
Karim R. Sobhi
Submitted on May 29, 2003

Abstract
This paper investigates a potential IP fragmentation vulnerability in Linux IPChains.
This candidate vulnerability is discussed in the Common Vulnerabilities and
Exposures (CVE) database (1). A candidate vulnerability is one that has been
identified, but has not yet been tested to establish whether it can be used to breach a
system. The aim of this paper is to do exactly that: to establish whether or not this
potential vulnerability can be used to compromise the security of a Linux IPChains
firewall.

The candidate IP fragmentation vulnerability in question allows an attacker to bypass
a Linux IPChains firewall by accessing ports on an internal network host that should
be blocked by the firewall. Because of a glitch in IPChains code, an attacker can
use IP fragmentation to disguise traffic that�s prohibited by the firewall rules as traffic
that is allowed.

After conducting a series of experiments, it appears that this is an actual vulnerability
in IPChains. Whether it is exploitable, on the other hand, could not be shown. It was
possible for a custom-made fragmented FTP SYN packet to reach an internal host
running Red Hat Linux 8.0 and protected by a Linux Mandrake 6.0 IPChains firewall,
although the firewall rules deny FTP traffic. However, the internal host did not issue
a reply due to a failure to re-assemble the packet fragments.

The Groundwork

Vulnerabilities
A vulnerability is a �bug�, either in a host�s operating system or a running application,
which causes the operating system or application to behave unpredictably or in a
fashion not intended by the operating system or application�s author under certain
circumstances. Vulnerabilities can be used to (9):

- Gain unauthorized access.

- Simplify gaining unauthorized access.

- Take a system offline.

- Desensitize sensitive information.

Aside from software �bugs�, some vulnerabilities exploit misconfigurations by system
administrators to exploit a system. The vulnerability discussed in this paper is a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

combination of a software bug and some misconfiguration on the part of the firewall
administrator.

IPChains
IPChains is the built-in firewall that comes with the Linux kernel version 2.2.x (4). It
provides a packet-filtering framework, allowing the administrator to specify which
packets are allowed into the system, out of the system, or through the system to
other hosts according to a set of rules, specified in �chains�. A chain is simply a
sequence of rules that are checked in order. As soon as a packet matches a rule,
that rule�s �target� applies to the packet. This target can be to accept, deny, reject
(drop and send an ICMP notification), masquerade (do Network Address Translation,
or NATing) among others. For the purpose of this paper, only the ACCEPT and
REJECT targets are relevant. Rules can match packets according to source IP
address/port, destination IP address/port, incoming interface, fragmentation
status�etc. IPChains has three basic �chains�, as described in (3) and (11):

1. The INPUT chain: Packets arriving at the network interface are checked
against the rules in this chain and, accordingly, are allowed or denied access
to the host.

2. The OUTPUT chain: Packets about to leave the host are checked against
this chain to determine if they should be allowed to leave.

3. The FORWARD chain: This chain is used for packets that arrive at the
network interface, but are destined to other hosts, rather than the firewall.
Note that packets that are to be forwarded are checked against all three
chains.

IP Fragmentation
So, what is IP fragmentation? As packets traverse the Internet to get from one
network to another, they may pass through different hosts on different physical
networks. Discrepancies in the way these hosts operate, and are configured, require
the IP protocol to do some extra work in order to accommodate for the diversity. IP
fragmentation is an example of this fact. A host has a Maximum Transmission Unit
(MTU), which is the maximum size of a datagram that can be placed into a frame
(10). In the event that the MTU is smaller than the size of the packet to be
transmitted, IP allows the division of this packet into �fragments�, which will be re-
assembled into one packet by the IP layer at the receiving host. This is done
transparently to the upper layer protocol (most commonly the Transmission Control
Protocol or TCP). Following is a diagram of the IP header fields, with emphasis on
the fields and flags used for IP fragmentation

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

LOB

HOB

Ethernet Header DataIP Header CRC

20 Bytes

IP Version
(4 bits)

Header Length in
32-bit words (4

bits)

Type of Service
(Unused - 1 byte)

Total
Length

(2 bytes)

Identification
(2 bytes)

Flags
(3 bits)

Fragmentation
Offset (15 bits)

TTL (1 byte)

Header
Checksum
(2 bytes)

Protocol
(1 byte)

Source IP
Address
(4 bytes)

Destination
IP Address
(4 bytes)

Unused bit

MF (More Fragments) flag

DF (Don't Fragment) flag

Fragment Offset (15 bits)

The DF (Don�t Fragment) flag indicates whether IP should be allowed to fragment
this packet. If it is set, IP will drop the packet if it is larger than the MTU. The MF
(More Fragments) flag indicates whether there are more fragments to come. It must
be set in all fragments except the last. The �Fragment Offset� field is used during re-
assembly to decide where each fragment fits in the original packet. The reason this
field is required is that packets do not necessarily arrive at the destination host in the
same order in which they were sent. Therefore, the destination host cannot depend
on the order of packets to determine how they should be assembled.

When a packet is fragmented, the Ethernet header is copied as-is to every fragment.
The IP header, on the other hand, must be modified. This list of steps is taken from
(10):

1. The MF (More Fragments) flag bit is set in all fragments except the last. This
indicates that this is not the last fragment. There are more to come.

2. The �fragment offset� field in each is set to the location this data portion
occupied in the original datagram, relative to the beginning of the original
unfragmented datagram. The offset is measured in 8-byte units.

3. The �header length� field of the fragment is modified.

4. The �total length� field of the fragment is modified.

5. The �header checksum� field is re-calculated.

The Vulnerability
This vulnerability candidate uses IP fragmentation in order to bypass IPChains. The
details are discussed on the SecurityFocus BugTraq mailing list (2). Following is the
relevant code excerpt from the IPChains source code (/net/ipv4/ip_fw.c). Note that

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the Linux kernel version 2.2.20 has some extra code to handle this issue. A
browsable copy of ip_fw.c for the 2.2.20 kernel can be found at (5).

 /* If we can't investigate ports, treat as fragment. It's
 * either a trucated whole packet, or a truncated first
 * fragment, or a TCP first fragment of length 8-15, in which
 * case the above rule stops reassembly.
 */

 if (offset == 0) {
 unsigned int size_req;
 switch (ip->protocol) {
 case IPPROTO_TCP:
 /* Don't care about things past flags word */
 size_req = 16;
 break;

 case IPPROTO_UDP:
 case IPPROTO_ICMP:
 size_req = 8;
 break;

 default:
 size_req = 0;
 }

 offset = (ntohs(ip->tot_len) < (ip->ihl<<2)+size_req);
 }

The vulnerability takes advantage of the fact that IPChains treats packets with
incomplete TCP header information in the same way as non-first IP fragments. The
�if� statement condition will be true if the fragment offset header field of the packet is
0. This will be the case if:

1. This is not a fragment. It is carrying a complete TCP datagram.

2. This is the first fragment of a fragmented datagram.

The last line sets �offset� to 1 (TRUE) if the total packet length is less than the sum of
the IP header length and the minimum allowable IP data segment size (16 bytes in
case of TCP). Later on in the code, the �offset� variable is used to differentiate
between non-first fragments and first fragments (or non-fragments). Therefore, if the
firewall receives a first fragment with an incomplete TCP header, the �if� statement
condition will evaluate to true, the code will be executed, and the �offset� field will
receive the value of 1 (TRUE), and will later on be dealt with as if it were a non-first
fragment.

The vulnerability also takes advantage of the fact that many firewall administrators
create a rule to accept all non-first fragments, assuming that they will not be re-
assembled correctly, and thus will be discarded, at the destination if the first
fragment was blocked by the firewall. Usually this is done to ease the load on the
firewall by relieving it from having to look into every single non-first fragment.
However, this rule will be our ticket to bypassing the firewall. This means that, for
this vulnerability to occur, two conditions must be satisfied (2):

1. The IPChains firewall must be configured to accept all non-first fragments.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2. The kernel must NOT be compiled with the kernel option
CONFIG_IP_ALWAYS_DEFRAG, which will cause the firewall to attempt to
re-assemble fragments instead of forwarding them as-is (2). Re-assembly will
expose the attack, and the firewall will block the complete packet after re-
assembly.

An attack to exploit this vulnerability would need to do the following (2):

1. Attacker sends a fragment, with offset 0, a set IP_MF bit, and a full transport
protocol header which meets the packet filter and is passed to the victim
machine.

2. Attacker sends a fragment, with offset 0, a set IP_MF bit, and a length of 4
bytes. This contains the (blocked) ports that the attacker wishes to access on
the victim machine. This fragment will be accepted by the firewall and overlap
- in the victim machine's reassembly chain - the port information contained in
the fragment sent in step 1.

3. Attacker sends a fragment with a cleared IP_MF bit, starting where the first
fragment left off, that completes the set of fragments.

At the destination host, the IP protocol will re-assemble these fragments. Since both
fragments are carrying an offset of 0, the second fragment will overwrite the port
information on the first fragment. The re-assembled datagram will be passed to the
TCP protocol, with the denied destination port number, thus allowing access to the
blocked port.

The Experiment

Setting Up the Network
In order to test this vulnerability, I figured I need three machines. One will be the
internal server, on which a service will be unlawfully accessed, a firewall box running
the vulnerable IPChains, and a third box representing the �outside world�, from which
the attack will be launched. To run IPChains, I needed a Linux distribution that
carries the 2.2.x kernel. Luckily enough, I was able to get my hands on Linux
Mandrake 6.0, built on the 2.2.9 kernel. For the internal server, I decided to use Red
Hat Linux 8.0. I configured it to run the Apache web server (the legitimate service),
telnet (in case I need it) and FTP (the service that we are trying to illegitimately
access). As the outside world, any machine would do.

Since I do not have three machines and two switches, I decided to set up my
network virtually using VMWare Workstation® 4.0. I created the setup as follows:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

VMWare Workstation Host Machine
(Windows XP)

Virtual Ethernet Card

Virtual Machine 2 - Web Server
(Red Hat Linux 8.0)

Virtual Ethernet Card (eth0)

Virtual Ethernet Card (eth1)

Virtual Ethernet Card (eth0)

Virtual Machine 1 - Gateway
(Linux Mandrake 6.0)

Virtual Switch

Virtual Switch

192.168.152.1

192.168.152.10

192.168.11.10

192.168.11.11

Running:
- Apache web server
- Telnet server
- FTP server

Running:
- Packet Forwarding
- IPChains

Configuring IPChains
IPChains consists of three main built-in firewalling �chains�: the INPUT, OUTPUT
and FORWARD chains.

For this setup, I configured the INPUT and OUTPUT chains to always accept all
packets. This is done by setting the �policy� for the chain using the �-P� option.

#ipchains –P input ACCEPT
#ipchains –P output ACCEPT

As for the FORWARD chain, I set the policy to REJECT, meaning that it will drop all
packets by default, and send an ICMP message back to the source to indicate that
the packet was dropped. The next step was configuring what traffic is accepted. I
allowed HTTP, Telnet and ICMP traffic, and I allowed FTP traffic from the inside of
the network to the outside world, but not the other way round.

#ipchains –P forward DENY
#ipchains –A forward –j ACCEPT –p icmp
#ipchains –A forward –j ACCEPT –p tcp –d 192.168.11.11 80 –i eth1 –b
#ipchains –A forward –j ACCEPT –p tcp –d 192.168.11.11 23 –i eth1 -b
#ipchains –A forward –j ACCEPT –p tcp –s 192.168.11.11 21 –i eth0

Finally, the firewall must be configured to accept all non-first fragments

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

#ipchains –A forward –j ACCEPT –f

The Game Plan
Now that the setup is complete, I am ready to run the attack. I first started a regular
FTP session while sniffing on the wire, in order to establish the exact sequence of
packets involved in the process. The following diagram represents the packet
sequence. At that point the firewall was configured to accept everything.

External Machine Firewall Web/FTP Server

SYN

SYN+
ACK

ACK

ACK +
PSH

ACK

Connection
Request Request

Received
and

Granted

Permission
Received

ACK
Received +

Please
Login

Login
Prompt

Received

3-Way
Handshake

There were five packets sent to establish the connection:

1. SYN packet, requesting connection

2. SYN+ACK packet, request acknowledged and granted

3. ACK, permission received

These three steps constitute the TCP 3-way handshake.

4. ACK+PSH packet, Received your acknowledgement, here�s the login prompt
(the PSH flag ensures that the data, the login prompt, is flushed from the
server�s TCP buffer) (8).

5. ACK, received your login prompt.

After careful consideration, I decided that my target would be to send a connection
request (SYN packet) to the FTP server and receive a valid reply (SYN+ACK). This
would provide a valid proof of concept, as it means that the attack was able to
successfully contact the FTP service on the server machine through the firewall
despite the fact that its rules deny FTP traffic.

The Attack
The attack consists of three fragmented packets, sent from the VMWare host
machine (Windows XP), to the web server (Red Hat Linux 8.0) through the IPChains

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

firewall (Linux Mandrake 6.0). When re-assembled at the web server, they will form
the SYN packet directed at port 21 (FTP), the first step in the TCP handshake
process. The following SYN packet was generated by a regular FTP request. It will
be the target packet.

45 00 00 30

03 65 40 00

80 06 D3 05

C0 A8 98 01

C0 A8 0B 0B

0B DC 00 15
76 3A 47 4A

00 00 00 00

70 02 FA F0

9A 5B 00 00

02 04 05 B4

01 01 04 02

IP Version (4) + Header
Length (5 32-Bit Words)

Type of Service (Unused)

Total Length (48 Bytes)

Identification (869)
Flags (Don�t Fragment)
+ Fragment Offset (0)

Time To Live (128)

Protocol (TCP)

Header Checksum
(0xD305)

Source IP Address
(192.168.152.1)

Destination IP Address
(192.168.11.11)

IP Header (20 Bytes)

Source Port (3036)

Destination Port (21 - FTP)
Sequence Number

(1983530826) Acknowledgement
Number (0)

Data Offset (7) + Reserved (0)
+ Flags (SYN)

Window (64240)

Checksum (0x9A5B) Urgent Pointer (0)

Options (Max. Segment Size 1460,
SACK Permitted) + Padding

TCP Header (28 Bytes)

0 8 16 3124

0 8 16 3124

Note that there is no TCP data segment. It is simply a connection request. The first
fragment involved in the attack will carry the first 16 bytes of the TCP header. The
following changes will be made to the IP header:

1. The MF (More Fragments) flag will be set.

2. the IP header checksum will be re-calculated to accommodate for these
changes.

3. In the TCP header, the destination port will be changed to 80 (HTTP). Note
that the TCP checksum is not re-calculated. By the time the datagram
reaches the TCP layer on the web server, the port will have been changed
back to 21 (FTP), and therefore the checksum must remain as-is.

Since the packet has an offset of 0 and a complete TCP header, and since HTTP
traffic is accepted by the firewall, the fragment will be allowed to pass through to the
web server.

The second fragment will carry a complete IP header. However, it will only carry the
first four bytes of the TCP header, specifying the same source port as the previous

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

fragment, but a destination port of 21 (FTP). Since this is a packet with an
incomplete TCP header, it will be treated by IPChains as a non-first fragment, will not
be checked for ports, and will be allowed through to the web server.

As for the third packet, it will carry the remaining 12 bytes of the TCP header, and
the following changes will be made to its IP header:

1. The fragment offset field will carry the value of 2, as it is calculated in units of
8 bytes (8*2 = 16 bytes sent in the fragment #1).

2. The IP header checksum will be re-calculated.

Since this is the last fragment, it�s MF flag will remain cleared.

The FTP service will receive our custom-made TCP datagram, with the SYN flag set.
It will issue a SYN+ACK reply, which will pass through the firewall (note that the
firewall was configured to allow outgoing FTP traffic) and back to the host machine,
thus proving the validity of the vulnerability candidate.

Tools Used
A number of Windows and Linux tools were used in order to conduct the experiment
successfully. Following is a discussion of each tool and how it contributed to the
experiment.

- VMWare Workstation 4 (http://www.vmware.com): VMWare Workstation is a
Windows/Linux application that creates virtual machines within the operating
system on the �host machine�. It encapsulates the host�s hardware, so that
the virtual machine sees it as if there were no operating system running. This
�abstraction� is so complete that any operating system can be installed on the
virtual machine, and will interact with it as if it were a physical machine.
Moreover, VMWare Workstation allows for the creation of networked
environment, through �virtual switches�. Virtual network cards can be added
to virtual machines and they can be �connected� to any virtual switch as
desired. This is how the networked setup was created for this experiment,
due to the lack of physical machines and switches. The guest operating
systems used were Red Hat Linux 8.0 and Linux Mandrake 6.0.

- Network Spy (http://www.sumitbirla.com/network-spy/): Finding a raw packet
generator for Windows was not an easy task. Most free tools are built for
Linux and released under the GPL. I tried several packages for Windows, but
none of them seemed to match my requirements. I was already investigating
JPCap (Java Packet Capture library) and planning to develop my own packet
generator in Java when I stumbled upon �Network Spy�. This tool is mainly a
protocol analyzer (similar to Ethereal, discussed below). However, it has an
extra tool that came in very handy: the �Packet Generator�. This tool allows
for the creation of custom frames to be sent unmodified on the wire. The
packet generator view is divided into two sections:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The packet shown above is the original unfragmented FTP SYN packet that I
used to create my attack fragments.

1. Details: The details view shows every field in the different frame headers,
namely the Ethernet (layer 2), IP (layer 3) and, in this case, TCP (layer 4)
headers. Unfortunately, though, it does not allow changes to be made to
the packet in this view. It is read-only.

2. Bytes: The lower part of the packet generator tool window shows the
actual bytes (in hexadecimal) that will be put on the wire. This is the
section where changes can be made. Any changes are immediately
applied to the �details� view, which simply provides a more readable view
of the frame.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

A very useful feature of the packet generator was the ability to save and load
packets. This allowed me to create my attack fragments once and then just
load them and make changes or send them as appropriate. One feature I
would have like to see in this software is the ability to define sequences of
packets to be sent automatically, instead of having to deal with each fragment
independently. However, this option was not there. There were several bugs
in the software, all related to fragmentation:

1. The DF and MF flags in the �details� view did not change after they were
edited in the byte view.

2. Possibly due to the previous bug, the packet generator treats all frames as
complete packets. This was clear when I used the tool to create a non-first
packet fragment. The �details� view attempted to interpret the IP data as a
TCP header, although it was clear that this was not a complete packet, and
therefore is not expected to carry a complete TCP header. Moreover, since it
is a non-first fragment, it is clear that it will not carry a complete TCP header.

Although this software was very useful to me in running my experiment, I
personally believe that a free and truly powerful packet generator for Windows
is yet to be developed.

- Ethereal (http://www.ethereal.com): Ethereal is a very powerful and
established protocol analyzer for Linux and Windows. I used it mainly on the
destination (Red Hat Linux 8.0) host, in order to check on the receiving
fragments to ensure that they arrive unchanged at the destination. It was very
useful to filter packets to show only TCP traffic sometimes to avoid seeing a
lot of unnecessary DNS, ARP and windows generated traffic.

- tcpdump (http://www.tcpdump.org): tcpdump is a classical console-based
protocol analyzer that comes with most, if not all, Linux distributions. As it
does not come with a GUI, it is not very easy to follow a packet�s details. I
only used tcpdump on the firewall host, as it was running Linux Mandrake 6.0
and did not come with Ethereal. I looked for an Ethereal version for Mandrake
6.0 but I gave up quickly. All I needed on the firewall was to establish which
packets are being let through and which are not, which was well within the
power of tcpdump. There are several useful options in tcpdump. One that
was very helpful to me was the �-vv� option, which means �be VERY verbose�.
This provided more information about the dumped packet (including
fragmentation information).

- HEC Calculator (http://byerley.cs.waikato.ac.nz/~tonym/hec.html): Since my
experiment entailed the creation of custom packets, it was necessary to be
able to calculate the IP header checksum, given the different IP header field
values. At first, my search brought forward several web pages that explain
how the IP header error checksum is calculated, complete with binary
examples. A little more search yielded this HEC (Header Error Checksum)
calculator, which made my life a lot easier.

- Microsoft Visio (http://www.microsoft.com/office/visio/): Microsoft Visio was
used to create the four drawings included in the practical.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Conclusions
The conducted experiment was successful as far as proving that this vulnerability
actually exists in IPChains. However, it was not possibly to establish that it is
practically exploitable.

The fact that the vulnerability exists in IPChains was established completely by
observing traffic arriving at the network interface of the web server. All three
fragments that constitute the attack arrived unaltered at the network interface, which
proves that IPChains did, in fact, treat a packet with incomplete TCP header
information as if it were a non-first IP fragment.

As far as proving that the vulnerability is exploitable, however, the experiment was
not as successful. After the fragments arrived at the interface, no SYN+ACK was
issued in response by the web server. Several causes may be responsible for this:

1. The fragments are too small to be processed by the web server. The three
fragments were 36 bytes, 24 bytes and 32 bytes long. However, it is worth
noting that the original unfragmented SYN packet is 48 bytes long.

2. The web server employs some sort of packet filtering, although all NetFilter
chains are running an ACCEPT policy, and have no rules defined.

3. The fragments time out in the receiver queue before they are all received, and
are discarded. This option was ruled out after a revision of the code (6)
showed that the fragmentation timeout is 30 seconds, and that an ICMP
�fragment timeout exceeded� packet is sent in the event of such an
occurrence. This did not occur in the experiment.

Heavy attempts were made to trace and follow the IP re-assembly process, with the
help of (7), and the �Cross-Referencing Linux� code database at http://lxr.linux.no.
However, it was not possible to establish the reason that no SYN+ACK is issued.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References
1. �CAN-1999-1018 (under review).� Common Vulnerabilities and Exposures

(CVE). CAN-1999-1018. 12 Sep. 2001.

URL: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-1999-1018 (14
Apr. 2003).

2. Lopatic, Thomas. �Linux IPChains Firewall Vulnerability.� 27 Jul. 1999.

URL: http://www.securityfocus.com/archive/1/19810 (14 Mar. 2003).

3. Russel, Rusty. �IP Firewalling Chains.� Linux IPCHAINS-HOWTO. v. 1.0.8. 4
Jul. 2000.

URL: http://www.tldp.org/HOWTO/IPCHAINS-HOWTO-4.html (8 Apr. 2003).

4. �YoLinux: Using Linux and iptables / ipchains to set up an internet gateway for
home or office.� Greg Ippolito.

URL:
http://www.yolinux.com/TUTORIALS/LinuxTutorialIptablesNetworkGateway.
html (28 Apr. 2003).

5. �Cross-Referencing Linux: Linux/net/ipv4/ip_fw.c.� Linux Kernel 2.2.20. 21
Oct. 1999.

URL: http://lxr.linux.no/source/net/ipv4/ip_fw.c?v=2.2.20 (8 May 2003).

6. �Cross-Referencing Linux: Linux/net/ipv4/ip_fragment.c.� Linux Kernel 2.4.18.
12 Jan. 2002.

URL: http://lxr.linux.no/source/net/ipv4/ip_fragment.c?v=2.4.18 (17 May
2003).

7. Westall, James M. �IP Reassembly.� 12 Mar. 2003.

URL: http://www.cs.clemson.edu/~westall/881/iprecv4.pdf (17 May 2003).

8. Meng, Xiannong. �TCP Header.� Transport Layer Protocols. 13 Nov. 1997.

URL: http://www.cs.panam.edu/~meng/Course/CS6345/Notes/chpt-
6/node7.html (8 May 2003).

9. Cole, Eric. Hackers Beware, First Edition. New Riders Publishing, August
2001.

10. Murhammer, Martin W. TCP/IP Tutorial and Technical Overview, Sixth
Edition. International Business Machines (IBM), October 1998. 48 � 55.

11. The IPChains Manual Page.

