
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Encryption
Methods for Key Distribution and Algorithms

Nicolás Severino
June 3rd, 2003

SANS GSEC Practical Assignment

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Encryption: Methods for Key Distribution and Algorithms
Nicolás A. Severino
June 3rd, 2003
SANS GSEC Practical Assignment v.1.4b

Abstract

Encryption is crucial to ensure the distribution of information securely in today’s
connected world. The level of expertise needed to perpetrate attacks is decreasing, the
information and tools available to generate these attacks is growing, and the combination
of these two factors can certainly jeopardize the integrity of the information if it is being
distributed enciphered.

This document reviews the different aspects of encryption, goes through the different
implementations of key distribution analyzing pros and cons, we will describe the
different algorithms and it relation to the level of security they provide, and what does the
key length represent. Then, well analyze a real life implementation and finish explaining
why is so important not to choose only one method.

Introduction

There was a time in which the enterprise client was a bunch of dumb character based
terminals connected to a mainframe. Then, the PC revolution came and the “powerful”
x386 running DOS or –in early adopter companies– Microsoft Windows (pick your
version of preference as soon as it is below 3.1) ruled the enterprise space. Novell was the
beating heart of this era, which changed again in the late nineties with Windows NT 4.0.

Nowadays, the enterprise information systems are fully connected to the Internet, have
dozens of applications installed and handle critical and sensitive information for the
company at the desktop level. This adds a significant degree of complexity when securing
the perimeter and raise the inevitable question: Is it possible to monitor and control all the
data going in and out through the communication channel? Is that channel secure
enough? Is the information safe from being compromised? From Julius Caesar Cipher 1
to the modern AES, security specialists have been pursuing stronger and faster encryption
methods. The information that is being protected can be used against individuals or
groups and Industrial espionage is also a concern among highly competitive business. As
a result of the evolution of the technology, more intrusive the new threats are and then
more compromised the confidentiality, integrity and availability gets. And this has a
direct impact in the administration, deployment and maintenance of the enterprise
security.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Encryption Export Regulations

Before we jump into the different algorithms and methods of encryption, I do not want to
forget to mention that there are specific regulations on encryption export outside the U.S.
This is regulated by the Bureau of Exporting Affairs 2 and basically this organization
determines if a product that encrypts information can be sold outside the U.S. (if yes they
also define where), and this depends not only on the level of encryption but also on the
functionality and nature of the hardware/software that would be actually shipped. Until
1996, anything stronger than 40-bit encryption not approved for export. Now, it is
possible to export 56-bit encryption, and 128-bit with some restrictions (as it is the new
digital standard for encryption).

Methods of Encrypting Data

When thinking about encryption of data, we think about a cumbersome process of
transforming the information into several characters that must not make any sense for the
occasional reader: the potential interceptor of that information. As this transformation
process can be implemented using software, the next challenge is to create the process in
such a way that the encryption/decryption does not consume much resource, but is strong
enough to avoid code breaking. One example of this is the 'PKZIP®' utility, which offers
both compression AND data encryption 3, which is accomplished by using an encryption
key to alter the compressed data. The key is not stored in the file and is needed for
decryption of the information.

Pursuing speed and performance, we encounter the translation tables as a quick method
as it does not need any heavy calculation other than checking the 'translation table',
and/or the resulting 'translated' value from within the table is then written into the output
stream. In fact, the instruction 'XLAT' was included in 80x86 CPU's. The 'XLAT'
instruction changes information between tables at the hardware level 4. The main risk
with this method is that once that the table has been discovered then the whole set of
encryption messages done (now and in the past) can be decrypted. In order to avoid this
the method can become more complex by adding a second (or a third or more) tables to
encrypt/decrypt. If the use of this tables is based on the premise of utilization in a
‘pseudo-random’ order then the code breaking gets relatively more difficult. A good
example of this method is the computer of the movie 2001: A Space Odyssey, whose
name was HAL. If you use a translation table that has an offset of one letter (taking as a
reference the English alphabet) then you will find out that “HAL” means “IBM”. As you
can see (and despite the fact that this is a simple and naïve example) this method is far
from secure, but is important to mention it as it was used for centuries until new methods
came to the table.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Adding complexity is 'data repositioning'. It takes more processing time than 'translation
table' but it is more secure (specially when used in combination with other methods). The
way this works is by 'reorganizing' the order of bytes and written. On the other end the
inverse process is done at destination 5. As an example, you could take the sentence “This
text will be encrypted” and the outcome could be “Tx rhtbyi epsw tieetlndelc”. Again,
this method (although more secure than translation tables) is still far from secure.

Last (but not least) we have word/byte rotation and XOR bit masking, a method that
rotates words following variable direction and duration for that rotation 6. It uses a cyclic
redundancy check as a checksum in this method. What this method does is take the
original information and start a cycle of reorganizing the words and bytes in such a way
that after each rotation the output matrix is different than the input making sure that the
operation is reversible. Basically this is done once and again in so called “rounds” and as
we will see through this paper, not only different ciphers use a different number of rounds
but also the same cipher could have multiple numbers of rounds depending on the key
length being used. A good example of this is AES, which iterates from 9 to 13 times
(depending on the key length) changing the bytes in order to generate the resulting
encrypted message.

Public and Symmetric Encryption Methods

As of today, encryption methods are based in keys. The key is the password used to
encrypt/decrypt the message. And there are two different implementations for this:
Symmetric and Public Encryption. The first one is a good option when key distribution is
not an issue, as the same key is used for encryption and decryption operations. Then,
Public Encryption came to solve the problem of key distribution 7, based on the
assumption that it is possible to cipher using the one key (i.e. the public key), but that is
not possible to decrypt using that same key (i.e. need to use the private). But let’s take a
closer look to each one of these methods:

Symmetric Key
As its name states, Symmetric Key encryption (also referred to as conventional
cryptography) 8 uses the same key to encrypt and decrypt information. As a result, the
success of the coding process relies on the encryption cipher ability to use stronger keys
at a higher speed. In fact, if we analyze the different algorithms that use symmetric keys,
we will find that there is a point in which there are iterations (also called rounds) that
permute once and again the information with the objective of generate the actual
encryption. Additionally, all the users that need to share the information need to have the
same key. Then it could be a little bit of a problem to distribute in a safe way all the keys
needed, as if only one key gets compromised, all the other ones need to be replaced.

The strength of this method relies in how securely we could maintain the key: The longer
not always means the safer. And it is important to notice that despite the fact that we can

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

generate a key of the length that we want, it does not assure 100% that it would not be
broken: First because as we pick a longer key some issues related to performance,
efficiency, cost (distribution) may arise in the horizon; and second because we can not
predict the future computational power, and its ability to brake the key. However, it is
possible to work balancing computational power available today, predictions on
time/effort required to brake a given length key and impact on performance in the real
world.

Finally, the solution to the “key” problem does not reside in the key itself, but in the
method for a safe distribution. Combining it with other keys (using public encryption
method for example) to encrypt it and then transmit it to the desired user is the best
solution for this problem. It not only ensures that the key gets to the right people, but also
helps to prevents it from being intercepted by attackers. 9

Disadvantages Advantages
It relies on the communication channel to
distribute the key Relatively small and fast algorithms

Not effective for authentication Low memory use

Not effective for non-repudiation 10 There are hardware implementations that
are faster than software implementations

The strength of this method relies in the
key

Algorithms are permutation based with
multiple rounds (more strength)

If only one key gets compromised, all the
other ones need to be replaced

Well known implementations of Symmetric Key algorithms are DES (Data Encryption
Standard), 3-DES (triple DES), IDEA, RC5, Blowfish, and AES (Advanced Encryption
Standard). AES was designated as the de facto encryption algorithm replacing DES, but
we’ll discuss this later on this paper.

Public Key
Martin Hellman and Whitfield Diffie developed this method in the mid 1970s. It is said
that the British Secret Service invented this method several years ago, but they kept it as
a secret 11. This is an asymmetric encryption method, as it uses two different keys (one
public and one private) to encrypt and decrypt the information.

NOTE: Although we will talk through this paper about encrypt and decrypt, there are
several other implementations that exist around encryption as digital certificates,
signatures and hashes.

These two keys are generated one for the public (public key) and another for personal use
(private key). Depending on the implementation that you are running, one or the other
could be used to decrypt or verify the information received. For example:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

You encrypt with someone's public key - that person decrypts with his private key.
You sign a message with your private key – the intended recipient/s check the
signature with your public key.

The beauty of this method is that is computationally unfeasible to infer the private key
from the public, ensuring that the information is safe to travel through an unsecured
channel (despite the fact that the public encryption key is available to the public). Having
said this, it is clear that the main problem that this method solves is the issue of
distributing a secret key via an unsecured channel, as no private key is transmitted nor
distributed. Additionally it has the advantage of being cheaper as there is no need for a
secure channel that could be used for information or key distribution.

Disadvantages Advantages

Slower than Symmetric Key Algorithms It is computationally unfeasible to infer
the private key from the public

Require larger keys than Symmetric Key
Algorithms (resource intensive)

Solves is the issue of distributing a secret
key via an unsecured channel

User needs to keep integrity of the private
key (you lost the key, you lost all messages
currently and previously encrypted using
that key)

It is possible to create digital signatures

Hard to prove the authenticity of a key’s
origin 12

There are several algorithms that implement the public key encryption methodology, such
as RSA, Diffie-Hellman, and El-Gamal.

The Key Length Issue

As the core component of encryption, the algorithms have a crucial role in the process.
Basically, it is not possible to encrypt without them. Since the very first days of
permutation, the biggest challenge was how to create a complex; fast, reliable algorithm
that could keep our information away from estranges eyes. Nowadays, algorithms use a
“key” to encrypt and decrypt the information, and there is a direct relation between the
length of the key and the computing resources required to crack the code. But before we
go into the different algorithms available, let’s review some facts about key length and
possible combinations (tied to computing resources required):

- A 56-bit key creates 72 quadrillion possible combinations
- A 128-bit key creates 4.7 sextillion possible combinations
- It took 1 month (back in 1999) to crack a 140-bit RSA Key 13
- It took 7.4 months (1999 - 2000) to crack a 512-bit RSA Key 13

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Having said this, it sounds pretty clear that, although a 512-bit key may be considered
adequate for RSA encryption z, 1024-bit keys are the ones that can really push back
attackers by adding complexity and computing cycles to potential brute force intents,
however there is a paper that describes how to built a machine that could break a 1024-bit
key in minutes 14. But if we think in actual hardware, with the processing power available
today a 56-bit key is considered crack able, a 128-bit key is not 15, (with ordinary
equipment and reasonable effort).

Depending on the Encryption Method that we decide to use, we will approach the key
strength issue from different sides: When we talk about Public Encryption we should take
under consideration the length topic, as it is always preferred to have a stronger
public/private key to cipher the information. On the other hand, if we are talking about
Symmetric Encryption, the focus should be in the method of distribution (see the
“Symmetric Key” section within “Public and Symmetric Encryption Methods”) above.

RSA and Diffie-Hellman

RSA
This public-key cryptosystem is available since 1977, and offers both encryption and
signatures. In real life we will see it working with DES or any other symmetric key
algorithm. Additionally is used for authentication (leaving a digital fingerprint that can be
validated later). The hash utilized by RSA creates the public and private keys based in
mathematic operations using prime numbers. The assumption is that factoring is difficult
(and then, it is difficult to get the private key from the public key). In order to encrypt the
message, the only key needed is the public key of the recipient of that message, who will
decrypt the message using his own private key 16.

This is not a fast algorithm, and by comparison DES can be up to 100 times faster if we
are talking about a software implementation (hardware implementations of DES are
indeed faster). However this algorithm is widely used (for example in financial
institutions) and has became a de facto standard in digital signatures.

Diffie-Hellman
This protocol is used mainly for key negotiation. It was created in 1976, and it “permits
the exchange of a secret key over an insecure medium without any prior secrets” 17.

The protocol works by sending public values generated by each party, then they compute
the received value with theirs, and both get to the same result. That result is the shared
secret that both parties share now. The problem encountered in this process, is that the
protocol is vulnerable to an attack (man-in-the-middle attack) in which if someone
intercepts the first value exchanged between both parties, he can gain access to the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

encrypted information that start to flow from one to the other, as he will be able to
generate the shared secret using the values intercepted. In order to solve this problem,
digital signature has been added to the exchange of information, allowing them to check
for the authenticity of the exchange of values (the interceptor may still be able to
intercept the message, but will not be able to reproduce the signature)

DES, 3-DES, AES and IDEA

DES and 3-DES
Originally developed to be embedded in hardware, DES is the one that has been used and
observed for the longest time: It started to be used in the late 1970s as a result of the
effort between IBM and the NSA. It uses a 56-bit key (which at the end brings the block
size to 64-bit with the addition of 8 bits intended for parity functions). The way the cipher
works is split in two, then applies the round function to only one of the two parts and then
combines it with the other part (XOR), and this continues up to 16 rounds 18. Nowadays,
DES is no longer considered secure (see “The Key Length Issue”), as it is easily crack
able with the commercial computing power available today.

In order to provide a response to the DES security problem, 3-DES is actually considered
a more secure algorithm. What 3-DES does is to run the encryption three times. If we
translate this into computing power, you could say that (just theory math) 3-DES take 2.5
times more CPU power than DES. We should keep in mind that DES uses a 56-bit key
while 3-DES uses a 168-bit key.

AES
The Advance Encryption Standard replaces DES as the standard for governmental use. It
is the new Federal Information Processing Standard (FIPS-197) algorithm. The process of
selecting this algorithm started back in 1997 and finished in November 2001.The main
objective for this new algorithm was the strength and ease of implementation. The
algorithm is public and unclassified, and was designed as a symmetric block cipher using
a minimum of 128-bit input blocks and supports 3 key sizes of 128, 192 and 256 bits.

The selected cipher was Rijndael, out of a group of fives that included MARS, RC6,
Serpent and Twofish. AES works as a cipher that has a variable block and key length that
iterates. This means that the plain text information gets transformed once and again
multiple times before producing the output (if a 128-bit key is being used then there are
nine rounds, if a 192-bit key is being used then there are eleven rounds, and if a 256-bit
key is being used there are thirteen rounds 19). Although Rijndael permits multiple
combinations of key and block lengths, the AES implementation only contains some of
them 20.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

But, how secure is AES? What if an AES Cracker hits the streets? Well, assuming that
you could break a DES key in one second, then it would take to that same machine
approximately 149 thousand billion years to crack a 128-bit key.

As stated above, there were other four finalists for AES, and Rijndael was selected based
not only on being considered the most secure, but also primarily on its low memory
requirements, efficiency, performance, flexibility and ease of implementation 21.

IDEA
As a result of the difficulties that laid ahead in the export of encryption outside of the
United States, there was a need (that grew more and more as time passed and the
available computational power for commercial equipment was more than qualified to
brake the 56-bit DES key) for a stronger cipher that could be used outside the US. Using
RSA was too slow if we compare it with other algorithms that were as secure as it is, and
then the idea of switching to another encryption schema after the initial authentication
seemed to be the solution. But were to jump?

Created by Xuejia Lai and James Massey of the Swiss Federal Institute of Technology,
this block cipher uses a 128-bit key length (twice as long as DES) and it goes up to 8
rounds in the cipher, to provide strong enough encryption for some time into the future.
As it uses Symmetric Encryption, it provides security based upon the ignorance of the
secret key, as the algorithm is public. Additionally, it has no export limitations and can be
implemented in hardware.

In order to measure the level of effectiveness, we could analyze the resulting information
out of the cipher and we would not be able to find references to the original plain text
message, making it as robust as needed in terms of effectiveness. One topic that is
pointed out more than once is the speed and the ability of IDEA to work faster than other
algorithms (even DES). So, lets take IDEA and compare its performance with a well-
known CPU chip: Any Pentium MMX compatible or Pentium II. We will then find that is
faster not only than DES, but also faster than RC5 or Blowfish encryption 22.

As a result of being stable, still unbreakable (although there were several the attempts to
brake it) and widely accepted, IDEA was entered in several standards as follows: ISO
9979/002: ISO Register of Cryptographic Algorithms, UN/EDIFACT: EDIFACT
Security Implementation Guidelines, ITU-T Recommendation H.233: Confidentiality
System for Audiovisual Services, IETF RFC 3058: Use of the IDEA Encryption
Algorithm in CMS, TBSS: Swiss Telebanking Security Standard, OpenSSL
Cryptographic Librar, WAP Wireless Transport Layer Security.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Pretty Good Privacy

PGP
All of the different cryptosystems that we have analyzed use whether Public Key or
Symmetric Key Encryption. Then, we have PGP. PGP (from Pretty Good Privacy) was a
created by Philip Zimmermann in 1991; it combines RSA and IDEA, resulting in an
excellent implementation that made it the most massive and popular of all methods.
Nowadays, it is easy to find plug-ins for popular email programs such as Outlook Express
or Eudora 23. And the reason for this is quite simple: With PGP, the information (email in
this case) will be protected, is easy to use, and is fast.

The way PGP works is interesting, because it combines Public Key and Symmetric Key
Encryption in order to get the best of both worlds as follows: It takes the plain text
information, and cipher it using IDEA (in the beginning a symmetric key cipher called
Bass-O-Matic was used, but this was dropped in PGP v2 as this encryption cipher was
weak). Is important to notice that this first encryption is accomplished by generating a
one-time session key 24. So at this point, we have the text encrypted. As the next step,
using the receiving person’s public key it encrypts the session key, and now the
encryption is complete: The receiving end gets both encrypted pieces of information, so it
decrypts the session key first (using its private key) and now that is has the session key it
decrypts the message.

To cite an example of PGP and the traction that this cryptosystems gain in the Internet
mail community, we can talk about OpenPGP. Its implementation relays in two RFCs
(RFC 1991, PGP Message Exchange Formats and RFC 2015, MIME Security with Pretty
Good Privacy) and its pretty solid, but it has some things that may prevent it to be
adopted as a standard. The first think would be that S/MIME (that already had 3
revisions) is widely accepted with also defined extensions such as secure mailing lists
and security labels among others 25. The second, OpenPGP RFCs were not accepted yet
(RPC 2015 is a proposed standard) and what may be preventing this from happening is
that is based in RSA key exchange and IDEA encryption, being both patented. But
despite the fact that OpenPGP may not became a IETF standard is being considered
seriously and has a very consistent implementation that not only works and is efficient,
but also that is accepted by the Internet mail community (and developers) today.

Secure Electronic Transaction
As we try to analyze an implementation in the real world that resumes all the information
discussed along this paper, it is important to notice that it will be found most commercial
software packages taking advantage of each Key Method (Public and Symmetric)
strength and overcoming its weaknesses. As an example we could cite the Secure

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Electronic Transaction (SET) protocol 26. MasterCard and Visa announced SET back in
February 1996.

It is clear that the main objective of this implementation is to avoid any leak of
information in the flow of data between the sender and the recipient. Having in mind the
nature of the http protocol (that by design is not intended to persist on each connection)
we can immediately infer the risk associated with commercial transactions in this hostile
environment 27.

But which are the gaps and what they mean in terms of security? When we talk about
commercial transactions we are talking about money, and it is obvious that no one wants
to see his money in the line of fire: It needs to be safe, and get to the hands of the right
people. No one wants his credit card number and payment information to travel “light”
through the Internet. This leads to the first goal accomplished by SET: Confidentiality of
the information transmitted. The way this is accomplished is by doing the following:

1. Encrypt the message using the Symmetric Key Method
2. Encrypt the key generated in step 1 using the receiver’s Public key
3. The encrypted message gets to the receiver recipient
4. The encrypted key gets to the receiver recipient
5. The receiver decrypts the key using his private key
6. The receiver decrypts the message using the decrypted key

When we send all the information about payment method and so on, the next step in the
transaction is to receive a confirmation on that. And it is important the buyer can check
the authenticity of that confirmation: Integrity of data is the second goal. Using a hash
combined with its private key, the sender produces a 160-bit message digest and this
signature is appended to the message, so then the receiver could check it with the
sender’s public key. If the contents of the message were altered in the transit, the end
party will know, as the signature will not be able to be confirmed.

But at this point, we checked that the information could travel safe, hidden within a
cipher; and that the messages interchanged were unaltered. But about checking if the
person that is selling/buying is the person that he/she says he/she is? And we are in the
third goal accomplished by SET: Party Authentication. Using a combination of x.509v3
certificates and RSA signatures, it is possible to confirm the identity of each end by the
other one.

In resume, combining both (Public and Symmetric) methods, the information gets to the
right place in shape, securing not only the distribution of the message, but also the
distribution of the key. The preservation of the Confidentiality of information, the
Integrity of data, the Cardholder account authentication and Merchant authentication are
the goals accomplished, making this implementation a great example of the good use and
application of encryption.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Conclusion

When we talk about encryption, we are talking about protecting our information from
being exposed to a non-intended audience. We are talking about securing the most
valuable asset that an organization has. And by doing that, we are not only making sure
that the information gets delivered to the intended recipient, but also that in the process of
being sent it does not get cracked nor stole.

After discussing the two implementations for key distribution, it’s clear that both have its
pros and cons. As we pursue the best implementation by assuring the confidentiality,
integrity and availability of the information, it is very important to keep in mind that a
combination of both represents the best alternative.

By combining the right methods, choosing the appropriate algorithms along with the right
key length (remember that not always longer means better) and a hash algorithm that
provides a signature that can alert on tampering, we will be able to implement encryption
at the corporate level in such a way that cost, performance and efficiency are balanced.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References

1 “Beginners' Guide to Cryptography”. April 1 2003. URL:
http://www.murky.org/cryptography/classical/caesar.shtml (June 12 2003)

2 DEPARTMENT OF COMMERCE, Bureau of Export Administration. “BXA Encryption Export
Regulations, Jan. 12, 2000”. January 10 2000. URL:
http://www.eff.org/Privacy/ITAR_export/2000_export_policy/20000112_cryptoexport_regs.html
(June 12 2003)

3 Frazier, R. E. “Data Encryption Techniques”. August 21 2002. URL:
http://www.mrp3.com/encrypt.html (June 12 2003)

4 “80386 Programmer's Reference Manual -- Opcode XLAT”. URL:
http://www.itis.mn.it/linux/quarta/x86/xlat.htm (June 12 2003)

5 CyberWorld. “How To Encrypt Data”. URL: http://powow.com/india/encrypt.htm (June 12
2003)

6 Kay, H. & Neufeld, L. “Methods of Encrypting Data”. Encryption. July 25 1999 URL:
http://oscar.cprost.sfu.ca/~isp253/99-2/gagne/Encryption.htm (June 12 2003)

7 Litterio, Francis. “Cryptography”. URL: http://world.std.com/~franL/crypto/ (June 12 2003)

8 “Introduction to Encryption: What is cryptography?”. URL:
http://waubonsie.com/security/intro.html (June 12 2003)

9 Barkley, John. “Secret Key Distribution”. X.400 Message Handling Services. October 7 1994.
URL http://csrc.nist.gov/publications/nistpubs/800-
7/node209.html#SECTION08321100000000000000 (June 12 2003)

10 Johnston, R.B. “Trading Systems and Electronic Commerce” 1998. URL:
http://www.dis.unimelb.edu.au/staff/jcarroll/252/encryption.pdf (June 12 2003)

11 Ellis, J H. “The Possibility of Secure Non-Secret Digital Encryption”. CESG Report. January
1970

12 Sobell, Mark. “Linux Security: Public Key and Symmetric Encryption”. April 17 2003. URL:
http://www.net-security.org/article.php?id=489 (June 12 2003)

13 Edwards, Mark Joseph. “Choosing an Encryption Key Length”. Sept 1 1999. URL:
http://www.ntsecurity.net/articles/index.cfm?articleID=7164&pg=1&show=648 (June 12 2003)

14 Schneier, Bruce. “Crypto Gram Newsletter”. March 15 2002. URL:
http://www.counterpane.com/crypto-gram-0203.html#6 (June 12 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

15 Froomkin, Dan. “Deciphering Encryption”. May 8 1998. URL:
http://www.washingtonpost.com/wp-srv/politics/special/encryption/encryption.htm (June 12
2003)

16 RSA Laboratories. “What is the RSA cryptosystem?”. RSA Laboratories' Frequently Asked
Questions About Today's Cryptography, Version 4.1. 2000. URL:
http://www.rsasecurity.com/rsalabs/faq/3-1-1.html (June 12 2003)

17 “What is Diffie-Hellman” URL: http://www.hack.gr/users/dij/crypto/overview/diffie.html
(June 12 2003)

18 Ocean Logic Pty Ltd. “OL_DES DES Cryptoprocessor” URL http://www.ocean-
logic.com/pub/OL_DES.pdf (June 12 2003)

19 Savard, John J. G. “The Advanced Encryption Standard (Rijndael)”. A Cryptographic
Compendium.URL: http://home.ecn.ab.ca/~jsavard/crypto/co040401.htm (June 12 2003)

20 SignalGuard International Ltd. “The Advanced Encryption Standard - AES/Rijndael”.URL:
http://www.signalguard.com/encryption/aes-rijndael.htm (June 12 2003)

21 Ford, Susan. “Advanced Encryption Standard (AES) - Questions and Answers”. October 2
2000. URL: http://www.nist.gov/public_affairs/releases/aesq&a.htm (June 12 2003)

22 Lipmaa, Helger. “Fast IDEA for Pentium MMX compatibles”. February 28 1998. URL:
http://home.cyber.ee/helger/implementations/fastidea/ (June 12 2003)

23 Greene, Anthony E. “A Newcomer's Introduction to Pretty Good Privacy (PGP)”. URL:
http://www.mindspring.com/~aegreene/pgp/ (June 12 2003)

24 Senderek, Ralf. “The Protection of Your Secret Key”. January 2001. URL:
http://senderek.de/security/secret-key.protection.html (June 12 2003)

25 “Enhanced Security Services for S/MIME” Request for Comments: 2634. June 1999. URL
http://www.imc.org/rfc2634 (June 12 2003)

26 Tall, Eric and Ginsburg, Mark. “Microsoft Internet Security Initiatives”. LATE NIGHT
ACTIVEX. October 1996. URL: http://sunsite.iisc.ernet.in/virlib/activex/latenight/ch8.htm (June
12 2003)

27 IBM. “How SET Works”. URL: http://www-
3.ibm.com/software/genservers/commerce/payment/support/works/workss.html (June 12 2003)

